
Practical WLAN Security

Johannes Förstner Niclas Zeising
Email: johfo249,nicze549@student.liu.se

Supervisor: David Byers, david.byers@liu.se
Project Report for Information Security Course

Linköpings universitetet, Sweden

Abstract
This Report concerns itself with security and

security weaknesses in wireless networks, WLANs,
based on the IEEE 802.11 standard.

The report is based on studies on different attacks
on wireless networks and how to prevent them. We will
show how some common attacks are done, and what
can be done to mitigate them and making the network
more secure. We will also show how to protect your
traffic on a inherently insecure network, such as a
unencrypted hotspot network.

We will look into how to break the encryption on a
WEP protected network, dictionary attacks on WPA
networks to find bad keys and pass phrases, which is
intended to gain access to networks. Then we will look
into different methods of redirecting and eaves-
dropping (snooping) on traffic to get at the
information flowing through the network. Lastly we
concern us with how to protect the network, and how
to protect your traffic on a insecure network.

1. Introduction
Wireless networks and wireless communication is

becoming more and more common. They are convenient
to use since no cabling is required and they make it
possible to move around in an area without loosing
connection, by so-called roaming. But there are not just
positive aspects on wireless communication. It introduces
new threats and security considerations not present in
wired communication. In this article we will focus on
wireless local area computer networks, so called WLANs,
based on the IEEE 802.11 standard. We will look into
some common attacks on wireless networks to gain
unauthorized access to the network and the information
therein. This will demonstrate why it is important to have
a general idea about security issues in wireless networks
and what can be done to reduce the possibility of someone
gaining unauthorized access, thereby reducing the risk of
unwanted information disclosure. We will also look into
different methods of redirecting and eavesdropping on
traffic in the network to get access to communication
between other systems which makes it possible to get
unauthorized access to information. In the end, we will
discuss some ways to make the network more secure, and

some methods on how to secure your communication on a
insecure wireless network where you are worried other
parties might try to listen in to your traffic.

2. Cracking WEP
This section is about cracking the keys of a WEP

encrypted WLAN by listening on traffic and injecting
special traffic to collect the data needed to crack the
encryption key. First we will discuss some of the
principles behind the attack and why it works from a
theoretical point of view. The next part will then
contain information on how to set up and perform the
actual attack.

2.1 Principles
WEP encrypts its packets with a stream cipher: it

uses the RC4 algorithm to produce a key stream from a
key, and the key stream is XOR'ed with the plaintext to
form the ciphertext. The actual key for a packet
consists of a 3-bytes “initialization vector”, which is
sent in plaintext together with the packet, followed by a
5-bytes (or sometimes 13-bytes) fixed key part which is
pre-shared among the clients and should remain secret.
The goal of WEP cracking is to recover these 5 or 13
secret key bytes, to be able to use the network. This is
done by capturing packets from the network (usually
combined with actively inducing traffic) and then
cryptanalyzing them.

The ciphertext of a packet is the plaintext XOR'ed
with the key stream, so the key stream can be
recovered if the plaintext is known. In practice,
plaintext can often be guessed; for example, it can be
assumed that packets of length 28 bytes are probably
request- or response-packets of the ARP (address
resolution protocol), which have fixed bytes in their
header.

In 2001, Fluhrer, Mantin and Shamir have shown
that it is possible to draw conclusions from a known
RC4 key stream output back to the used key.
Essentially, RC4 is a PRNG (pseudo random number
generator) which is seeded with the key (IV+PSK).
With certain “weak” IVs, it's possible to make guesses
about the PSK bytes with a certain probability.
Repeating this with multiple collected packets, and

counting which key bytes are guessed most often,
eventually reveals the correct key bytes. This is
combined with brute-forcing through different
combinations of the bytes with the highest probabilities
(for example, if for keybyte 1 there are 50 “votes” for
0xAA and 45 “votes” for 0x35) and also brute-forcing
the last one or two keybytes.

Here's a listing of the RC4 PRNG algorithm:
(initialization:)
begin ksa(with int keylength, with byte

key[keylength])
 for i from 0 to 255
 S[i] := i
 endfor
 j := 0
 for i from 0 to 255
 j := (j + S[i] + key[i mod

keylength]) mod 256
 swap(S[i],S[j])
 endfor
end
(PRNG:)
begin prga(with byte S[256])
 i := 0
 j := 0
 while GeneratingOutput:
 i := (i + 1) mod 256
 j := (j + S[i]) mod 256
 swap(S[i],S[j])
 output S[(S[i] + S[j]) mod 256]
 endwhile
end
Today, aircrack-ng uses the PTW (Pychkine, Tews,

Weinmann) crack method by default, which is a
refinement of the FMS method and needs far less
captured packets (approximate 20000 instead of
250000 for a 5-byte PSK), because it's not dependent
on weak IVs, and also runs a lot faster.

Another often exploited weakness of WEP is that it
has no protection against replays, so an attacker can
capture an (encrypted) packet on the network and then
replay it. Thereby, an attacker who wants to capture a
lot of traffic on an idle network, can capture a single
ARP request packet (guessing by its length) and then
replay it; the access point will respond with a new ARP
reply packet with new IV every time.

There are a lot more weaknesses in WEP. For
example, the integrity protection doesn't stop you from
altering an encrypted packet with known plaintext (it's
possible to calculate the required bit flips in the
encrypted integrity check value for a bit flip in the
ciphertext). However, these weaknesses are not
essential for cracking the key.

2.2 Software and setup
Here we describe our setup for the WEP crack

attack, which is the basis setup for most of the PoC
(proof of concept) attacks of this project. Subsequent
“Software and setup” sections will refer to this one,
describing additions and differences.

We were using:
– A La Fonera 2100/2200 WLAN access point

with OpenWRT installed on it. OpenWRT is a
FOSS firmware for WLAN routers.

– An EeePC 1001 laptop, which has an Atheros
chipset on its Wi-Fi card and therefore is
capable of packet injection. A Wi-Fi card with
injection capabilities is essential to carry out
the described attacks. A list of capable cards
can be found here1.

– A HP 6910p laptop with an Intel Wireless
WiFi link 4965 a/g/n card, also capable of
injection. Both laptops were running Backtrack
4.22. Backtrack is a Linux distribution
composed specifically for security-auditing and
similar purposes, and comes with all the tools
we needed for the project except for Open
Office.

Tools used: the aircrack-ng3 suite, specifically:
– airmon-ng – to put the wireless card into

monitor mode
– airodump-ng – first to find available WEP

networks around, then to capture packets of the
chosen network

– aireplay-ng – to wait for an ARP request
packet and continuously replaying it when
found.

– aircrack-ng – to perform the PTW
cryptanalysis to find the PSK.

Performing the actual attack is somewhat
straightforward once you have the network and laptops
set up and know which tools to use. There are several
detailed step-by-step, script-kiddie-usable tutorials on
the web, amongst others by the aircrack-ng community
itself4. The tools are simple command-line tools with a
human-friendly ncurses interface.

Steps in short:
– Put wireless card in monitor mode.
– Look for available networks with airodump-ng

(optional in this case, since we know the MAC
addresses of all participants.)

– Start capturing the chosen network's traffic.
– At the same time, start aireplay-ng, so it can

induce ARP traffic as soon as an ARP request
packet was captured.

– Wait for sufficient captured data (~10.000
packets for PTW attack on a 5-byte PSK.)

– Start aircrack-ng and watch it recover the PSK
– Stop all the tools, put the wireless card into

managed mode again, and use the key to
connect to the network.

Disclaimer: Remember to only try this on your own
network, since gaining unauthorized access to a
network might be illegal.

3. Dictionary attacks
This section will discuss principles of dictionary

attacks and how to use them to discover bad pass
phrases used in creating keys for wireless networks.
We will focus on WPA networks, since it's much

harder (to not say impossible) to crack the key than for
WEP networks.

Dictionary attacks are a form of brute-force method
where an attacker tries to guess a password by trying a
number of different passwords to see which works.
Usually the different passwords tried come from a list,
or dictionary, hence the name. This is why it is
important to mix letters, numbers and other characters
when making up a password instead of just using
common words. There are a number of different
variants of this scheme, but for our purposes, a quite
simple method was enough.

3.1 Performing against WLANs
A wireless network using WPA (both versions)

encryption and protection is very hard, to not say
impossible, to break cryptographically like was done
with WEP as demonstrated. This does not mean that
WPA is entirely safe at all times. When using WPA in
pre-shared key (PSK) mode, which is the common
method for home use, the same cryptographic key has
to be shared between all hosts using the network. This
key is 256 bits long, meaning that it requires 64
hexadecimal digits to print, something which is both
cumbersome and error-prone to enter into a new host.
Instead of entering the key directly, it can be derived
from a pass phrase. This pass phrase can be any string
between 8 and 63 characters in length which makes it
possible to use words or phrases that's easy to
remember, but also easy to guess. In a dictionary attack
against WPA protected network this is what is
attempted.

3.2 Software and setup
This section will demonstrate the tools needed to

perform a dictionary attack against a wireless network
and go through the necessary steps to perform the
attack.

The equipment is mostly the same in this attack as
in the previous one. We had to change the AP to a
D-Link DIR-615 using the standard firmware when for
unknown reasons the other AP failed to use WPA
encryption.

From the aircrack-ng software suite the following
programs were used:

– airmon-ng – to put the wireless card into
monitor mode to capture the WPA handshake
and also to be able to inject packets

– airodump-ng – to look for suitable networks
and also to collect the WPA handshake

– aireplay-ng – to optionally disassociate a client
from the network in order to get the handshake
when the client reassociates

– aircrack-ng – to do the actual dictionary attack.
Performing this attack is straightforward once you have
set everything up. Unless you know the network you
want to attack you have to listen on the air to find

potential networks. Once a network has been found,
you need to capture the four-way handshake that is
completed every time a client associates with the AP. If
it takes too much time to wait for a new client to
associate, it is possible to inject traffic into the network
to make an already connected client disassociate. This
client will then automatically reassociate with the AP,
and it is possible to capture the handshake when it
does.

3.3 Speed and feasibility
This question has to be regarded from two points of

view, since the attack is carried out in two very
different steps: collecting the data and analyzing it.

For collecting data, all that's needed is to record one
single WPA handshake. This can be sped up by
actively deauthenticating a client. On the other hand, if
the attack is carried out with a Wi-Fi rifle from far
away, the attacker has more time to wait unobtrusively
for an eventual handshake.

The actual dictionary attack is carried out off-line,
and is in many regards the more problematic point. The
algorithm iterates through the dictionary, generating
the WPA key for every word and trying to apply it to
the recorded handshake (if it decrypts successfully, the
current word is the network's pass phrase). The
involved cryptographic algorithms are computing-
intensive, and so only a few hundred words can be tried
per second. In practice, this had been ~270 keys/s on
the EeePC 1001 (Intel Atom N450 processor) and
about 1100 keys/s on the HP 6910p (Core2 Duo 2GHz
processor), which illustrates the CPU-dependence of
the attack speed. Since this can be done off-line, this is
not much of a problem though, except in cases where
you want to crack into a WPA network as fast as
possible. The far bigger problem is: if the correct pass
phrase is not in the dictionary file, no algorithm will be
able to crack it. This can be helped a bit for example
by trying several permutations of appended/prepended
numbers or signs to each tried dictionary word (word
lists can be generated by another program and piped
into aircrack-ng), but of course this multiplies the time
needed to iterate through the whole dictionary by the
number of combinations used.

Bottom line: with standard computing equipment,
the WPA dictionary attack is feasible if you have time
to crack off-line and the pass phrase is weak.

3.4 On WPA(2) security
This section provides some further details about the

WPA and RSN, more commonly known as WPA2,
security standards for wireless networks, to give a
deeper understanding about why the WEP
cryptanalysis attack can't be applied here.

WPA (Wi-Fi Protected Access) was designed to
provide a second security layer on top of the existing
WEP and also running on the same hardware (so that

WEP could be replaced with a simple and free
firmware upgrade).

By using a master key, WPA produces a new RC4
key for every package; additionally, this key mixing
function is designed to avoid weak RC4 keys. So this is
why cracking the WEP key of a WPA network doesn't
make any sense.

WPA also has a second integrity check value on the
network layer (meaning when the SDU is put together
again from the possibly fragmented packets), and a
sequence number that prevents blind replay attacks.

RSN, or WPA2, is designed from scratch and
doesn't run on all legacy hardware. It doesn't use the
RC4 key stream generator anymore at all, but uses AES
instead (in “counter mode”, to use the block-cipher as a
stream-cipher).

Security weaknesses still in place with these new
standards are the distribution of pre-shared keys
(resulting in people using simple dictionary words as
pass phrases), and the unprotected management frames
(which makes denial-of-service attacks easier).

4. ARP redirection on wireless networks
This section will demonstrate how to redirect traffic using

a common method known as ARP redirection or ARP
poisoning. This makes it possible to get access to all or
selected parts of the traffic in a network once the network is
broken into.

4.1 What is ARP redirection
ARP redirection is a common way to redirect traffic on an

Ethernet network to a computer of the attacker's choice. It
uses the inherited insecurities, mostly lack of authentication,
in the address resolution protocol used on Ethernet networks.
ARP is used to map between network addresses, such as IP
addresses, and hardware MAC addresses. By faking
unsolicited ARP replies it is possible to make one or more
computers on the network send traffic to a specified machine
instead of the genuine one.

This is done by inserting ARP messages that contains
information that a certain network address is at a specific
MAC address instead of the actual one, making the victim
send traffic to the wrong computer. Since ARP traffic is not
authenticated in any way the victim has no possibility to
verify if an ARP reply is genuine or not.

What's more, ARP is a stateless protocol, to make simple
and fast implementations possible. That means that a
computer doesn't remember what IP addresses it asked the
MAC addresses for, but instead it simply stores whatever it
hears on the network into its ARP cache, so that a poisoner
doesn't have to wait for ARP requests and then has to be
faster than the genuine computer to do a fake reply, but
instead can send unsolicited replies. For detailed information
about how ARP works, see5.

4.2 Performing ARP redirection
A common tool used for this is ettercap6. It comes with a

CLI as well as a GUI, and lets you perform ARP redirections
by first finding hosts on the network, then defining two target
groups and finally launching the attack, which will poison the
two groups' ARP caches about the respective other group. It
is also possible to redirect all traffic to a specified host. In this
state, ettercap continuously sends out “poisonous” ARP
replies with some seconds interval. When the “poisoned”
computers want to send IP traffic to the other group, they will
now in fact send it to the attacker's MAC address; ettercap by
default forwards the packets to the genuine MAC addresses,
allowing the attacker to sniff into the traffic between the
groups, often without the victims noticing anything wrong.

To actually capture the traffic for analysis, a program
called wireshark7 was used. Wireshark can capture some or
all the traffic going to a network interface and also do some
decoding, filtering and other similar things.

Setup:
– For our proof-of-concept attack, we had a third

person run a web service in our network, so one of
us could connect to that site and the other one could
perform the attack with ettercap.

– We had wireshark running on the attacker's laptop
as well, to see if the attack actually was performed
properly.

In wireshark, you can see the following:
– When ettercap scans the network for hosts, it sends

out a lot of ARP requests (for the whole subnet
address space).

– When ettercap is performing the attack, it sends out
unsolicited ARP responses with some seconds
interval.

– A communication attempt of T1 (someone in the
target group 1) to T2 (in group 2) is sent as a packet
with T2's IP address, but the attacker's MAC
address, and then re-sent from the attacker to T2
with the proper MAC address; same goes for
communications in the other direction.

– You can “follow TCP stream” to examine the
communication between two clients closer and see
if there's maybe a password sent over in the clear.
Although you only can “follow TCP stream” for tcp
connections, wireshark will still capture all traffic
for analysis.

5. Eavesdropping
This section demonstrates how to eavesdrop on

radio traffic while it's in the air. This makes it possible
to get to traffic in a wireless network unobtrusively,
without connecting to it. Connecting could be logged
by the AP and noticed by the admin, and it would also
be needed to circumvent an eventual MAC filter. Using
a big antenna and signal amplifiers even makes it
possible to listen from a distance. The only caveat is
that if the traffic is encrypted, you have to be able to
decrypt it to get to the information.

5.1 Software and setup
This section will demonstrate the tools needed to perform

eavesdropping, both on unencrypted and encrypted
networks. As for all other attacks demonstrated, it is
necessary to put the network interface into monitor mode.
This can be achieved with airmon-ng as previously
explained, but it is also possible to use iwconfig. Iwconfig is
a tool for managing wireless network cards that usually
comes with the Linux operating system installation.

A software that captures packets is also necessary. For the
capturing of traffic the command line tool tcpdump is
sufficient. This can be used to capture packets to a file for
later analysis. For more advanced analysis, including
decryption, the software package wireshark is needed. This
also gives the benefit of a graphical user interface, which can
be convenient.

5.2 Unencrypted eavesdropping
To eavesdrop (or sniff as it is also called) unencrypted

traffic, the first step is to put the interface in monitor mode.
This can be achieved with airmon-ng as previously
explained, or using iwconfig to set the mode of the wireless
network card to monitor. It's not needed to associate to the
access point where the interesting traffic is originating. By
putting the network interface in monitor mode, all traffic in
the air can be captured (as long as the signal is strong
enough).

The next step is to start wireshark and select the interface
on which to capture the traffic. The traffic should then show
up. With wireshark it is possible to do all kinds of analysis.
One possibility is to follow traffic streams to see traffic
between two communicating hosts. When using this options,
data in multiple TCP packets will be reassembled and the
data between hosts are displayed for further analysis. This
can in turn be used to find unencrypted passwords used to log
on to websites, e-mail servers and other applications and also
complete e-mails or data posted in a web forum. It is also
possible to use wireshark to save the files transferred as part
of an HTTP request. Wireshark has numerous other filters
and tools to filter, decode and otherwise manipulate captured
data.

One caveat is that it might be needed to fiddle with the
protocol options for IEEE802.11 in the preferences menu in
wireshark. Especially the option “Assume packets have
FCS”, which was needed to make our capture work.

5.3 Encrypted eavesdropping with key
 When the computer and wireshark is set up to capture

unencrypted traffic, it is easy to take the next step and also
decrypt encrypted traffic. For WEP, all that's needed is the 40
or 104 bit WEP key, which we have previously explained
how to obtain. Then it is just to select “Enable decryption”
and enter the key in the protocol options for IEEE 802.11 in
wireshark. This will decrypt traffic using this key, and present
the decrypted information in the same way as unencrypted
packets. This can then be analyzed as described above.

To decrypt WPA/WPA2 traffic, a little more involvement
is needed. WPA/WPA2 can be decrypted by either using the
pass phrase or the pre-shared key, which is entered in the
same place as the WEP key. This is not all that is needed
though. It is also necessary to capture the complete 4-way
eapol handshake to be able to decrypt the traffic. This is the
same information as that needed when doing dictionary
attacks against WPA/WPA2 networks. Wireshark can
capture this handshake, but it might be needed to disassociate
clients connected to the access point to get this in a timely
manner, as explained in 3.2 Software and setup. It might be
needed to do this more than once, especially if there is a lot of
other traffic in the air, as not all packets might get captured if
there is too much traffic.

6. Securing WLANs and traffic
Now that we showed some common security weaknesses

and you have a vague idea of how and why attackers might
attack you or your network, here's a section about how to
close these holes and what to keep in mind when using a
wireless network.

6.1 Securing WLANs
If you are setting up your own home WLAN, here are

some important checkpoints to configure it in a secure way:
– Use the newest security standard RSN, more

commonly known as WPA2. It is not possible to use
WEP in a secure way, as demonstrated in section 2
Cracking WEP. See also section 3.4 On WPA(2)
security.

– You can use a MAC filter as an additional layer to
protect from opportunistic crackers; though for
people who know how to circumvent them, it's
merely a little annoyance. This should never be used
as the only means of security, since it is usually
trivial to fake a MAC address.

– In simple home WLANs, the most common
authentication technique is PSK (pre-shared keys),
generated from a pass phrase. The usual precautions
about secure passwords apply: use a secure
password (at least 8 characters, not to be found in
any dictionary, with random numbers and special
characters etc.) and don't write it down and leave the
note lying around in your room. Many operating
systems today have the possibility to save the key so
you only have to enter it once, meaning you only
need to have the password in case the saved
password gets lost or you want to grant access to
new computers.

– Always make sure to configure your AP properly in
the first place. Many APs come unencrypted by
default or have a default admin password that
attackers can derive from the default SSID.

6.2 Securing your traffic
There are other situations where you're not the admin of

the WLAN you want to use, and you don't trust the security

of the network (or the admin). This can be the case when
you're using a public hotspot; they are often unencrypted, and
you never know whether someone might be eavesdropping
on your traffic. In this case, here are some possibilities to
protect yourself and your traffic from attackers:

– Use an additional layer of encryption. You can use
SSL connections to write mails, surf on the web
(https) and for chatting (make sure this is enabled in
your client). Using SSL encryption is especially
important when logging in to web sites such as
facebook, gmail or your online bank, or e-mail
servers where you authenticate with a password.
Without SSL, this password is sent in clear text,
meaning that anyone who can listen in on the traffic
can get to it. This is always important, even when
using wired networks.

– Since SSL uses cryptographic certificates to
authenticate the remote host, you can also detect
ARP redirection attacks performed by fellow
WLAN users. Only the real host can produce the
known certificate. Thus, never trust an unknown
certificate on an untrusted network.

– Attackers can still see what hosts you are
communicating with, and what protocols you use
(by looking at the TCP/UDP ports). If you want to
prevent that, you need a tunnel connection to a
proxy at a secure location (outside of the WLAN).
For this purpose, you can (A) use the services of a
privacy proxy company, (B) setup your own proxy
server at home, or (C) use an open-source
anonymity network like TOR8, which also provides
anonymity at the cost of high latency.

It is also possible to tunnel traffic over an SSH connection or
set up your own VPN to a network you trust. The VPN
might give the additional benefit of making it possible to
access resources inside the trusted network, which aren't
available from the internet.

7. Conclusions and summary
In this report we have studied some common attacks

on WLAN networks, and possibilities to protect your
networks and your traffic. We have studied how to crack
the encryption in WEP protected networks, how to
perform dictionary attacks on WPA protected networks,
and how to perform different types of traffic redirection
and snooping to get to the information passing through.
Lastly we have looked into some methods of securing
your wireless network, and some methods to protect
your traffic in a unsecured network, such as a public
hotspot.

With all the shown proof-of-concept attacks in this
report, one might conclude that security in wireless
networks is a big issue. Technically, it isn't – all you
have to do is to configure your home AP to use WPA2
and give it a proper password; and be aware of the
possibilities of eavesdropping and redirection when
using a public network. Practically, though, there are

plenty of security holes out there that put people at risk.
The reason for this is that many people don't care to
think about their WLAN being attacked, because they're
not aware of the dangers. It's one thing to read that it's
“easy to break into a WEP secured network”, but a
totally different thing to actually have an idea about how
such a breach is performed. Only when you know how
the attacks work, you can reason about how good your
protection actually is, and it also enables you to audit
your home WLAN security from an attacker's point of
view.

Another thing that can be learned, if not from this
report, then from further studies: The design of secure
communication protocols is a non-trivial matter. At first
sight, WEP as a system looks reasonable and secure; it
sure did for its designers. After all, they didn't construct
it as lecturing material for students. Still, they managed
to produce an inherently broken standard which many
people are still using today.

[1] List of supported Wi-Fi cards: http://aircrack-ng.org/doku.php?id=compatibility_drivers#which_is_the_best_card_to_buy
[2] Information on Backtrack Linux and where to download it: http://www.backtrack-linux.org/
[3] Information about aircrack-ng: http://www.aircrack-ng.org
[4] Examples of some aircrack-ng tutorials: http://www.aircrack-ng.org/doku.php?id=tutorial
[5] An Ethernet Address Resolution Protocol, RFC 826: http://tools.ietf.org/html/rfc826
[6] Information about ettercap: http://ettercap.sourceforge.org
[7] Information about wireshark: http://www.wireshark.org
[8] The Onion Router, see http://torproject.org

http://aircrack-ng.org/doku.php?id=compatibility_drivers#which_is_the_best_card_to_buy
http://torproject.org/
http://www.wireshark.org/
http://ettercap.sourceforge.org/
http://tools.ietf.org/html/rfc826
http://www.aircrack-ng.org/

	1. Introduction
	2. Cracking WEP
	2.1 Principles
	2.2 Software and setup

	3. Dictionary attacks
	3.1 Performing against WLANs
	3.2 Software and setup
	3.3 Speed and feasibility
	3.4 On WPA(2) security

	4. ARP redirection on wireless networks
	4.1 What is ARP redirection
	4.2 Performing ARP redirection

	5. Eavesdropping
	5.1 Software and setup
	5.2 Unencrypted eavesdropping
	5.3 Encrypted eavesdropping with key

	6. Securing WLANs and traffic
	6.1 Securing WLANs
	6.2 Securing your traffic

	7. Conclusions and summary

