
Security in Embedded Systems

Fredrik Klasson Ylva Hecktor
Email: {frekl803,ylvhe819}@student.liu.se

Supervisor: Christian Vestlund, chrve@ida.liu.se
Project Report for Information Security Course

Linköpings universitetet, Sweden

Abstract

Security in embedded systems is limited due to re-
source constraints. Security in embedded systems have to
be adapted to these limitations. We provide a brief look
at some of the limitations, such as the battery- and pro-
cessor-gap. We also discuss some solutions to the limita-
tions. In most systems the solutions are based on special-
ized cryptographic auxiliary processors. However there
are other solutions that are more efficient but not as
widely used. Two of the other solutions are the instruc-
tion- and data-driver approaches which requires hard-
ware support. We also look at the impact of the faster
growth rate of the Shannon-Hartley theorem compared to
Moore's law.

1. Introduction

The goal with this report is to provide a brief insight
and overview of embedded systems compared with tra-
ditional computing from a security point of view. We
use the term traditional computing to provide the oppo-
site of embedded systems. The definition of embedded
systems is beyond the scope of this article but for this
report we consider any system that is not a laptop or
workstation an embedded system. For instance we con-
sider PDAs and cellphones as embedded systems, other
examples include remote controllable thermostats and
any microprocessor in household appliances. Hoffmann
et al. claims that a vast majority, as much as 97%, of all
processors are to be considered embedded processor [2].
With this ubiquity of embedded systems security fail-
ures will potentially have a wide spread impact, and
thus security is not to be neglected.

We will discuss some of the limitations of embedded
systems, and the consequences of them from a security
point of view. An example of a limitation is power con-
straints, especially for battery powered embedded sys-
tems. The limitations are what most significantly sepa-
rates embedded systems from traditional computing, to
understand what is special about security in embedded
systems it is important to look at and understand them.

One of the reasons why embedded systems security
is important is that security failures may lead to safety
issues. Koopman exemplifies how a thermostat can be

abused [12], this can result in anything from mere an-
noyance to economic loss or worse. Small children and
animals may die from heat related issues. An attacker
could potentially raise the temperature or turn off cool-
ing which might lead to dangerously high temperatures.

Finally, we will address some of the limitations and
what could be done to mitigate or ideally void them, but
often it is as simple as a cost trade-off. This means that
security that works well in traditional computing have
to be adapted to the limitations of embedded systems
before it is possible to implement it [10]. Many embed-
ded systems are orders of magnitude slower or smaller
than present time traditional computers - in essence they
are comparable to one or a few decades old traditional
computers [3].

2. Security Concerns for Embedded
Systems

Gogniat et al. first divides the attacks in hardware and
software [9]. The hardware attacks are further categorized
as physical irreversible, physically reversible and side-
channel attacks. The first two physical attacks are also re-
ferred to as active attacks whereas the side-channel attacks
are passive. The reversible attacks can further be subdivid-
ed in detectable and non-detectable. Please refer to Gogni-
at et al. for a deeper discussion of the categorization in
Figure 1. Ravi et al. makes a slightly different categoriza-
tion but the general outline is the same as Gogniat et al.
[5].

There might be hardware requirements such as tam-
pering resistance [5], but also software such as buffer
overflows, logical design errors and other common is-
sues that is common for most computing. Part of the
software concerns are secure communication and stor-
age requirements. Both of which are needed in situa-
tions where the embedded systems are located in places
where we do not want to transmit or store data in plain
text, or if we simply want to restrict access (i.e. to en-
sure Confidentiality and/or Integrity of the data).

Availability is a concern that is partially both hard-
ware and software, in the sense that batteries are hard-
ware concerns (i.e. up-time) but software in the terms of
providing access via e.g. wireless communication. An
attacker can prevent availability by draining the batter-

ies (Koopman refers to these as battery attacks [12]).
One example of an battery attack is causing excessive
network traffic that the embedded device must process.
A successful battery attack could disable the embedded
system even after the attack is over, a non-battery pow-
ered system probably would resume normal operation as
soon as the attack is over. Identification of the user of
the system can be important or superfluous, however
this depends on the type of the embedded system - some
are meant to serve anyone (e.g. thermostats or light
switches) and some only a select group (e.g. a
card/RFID reader).

Cost is also a concern, that might prevent the choice
of bigger more expensive batteries or connecting to the
power grid and laying out cables. Cost might also pre-
vent developers from spending more time checking
their code (e.g. by means of formal code reviewing) or
implementing extra security features.

3. Limitations of Embedded Systems

There are several potential bottle-necks that limit se-
curity. One limitation is computational processing pow-
er, an embedded device might easily be saturated with
security related computations. This is the so called pro-
cessing-gap which we will return to in Section 3.1. The
implications of the processing-gap may result in failure
to maintain required operations, for instance a minimum
throughput or maximum response time [5]. Real-time
systems might have to use less time consuming security
related computations in order to be able to schedule the
tasks running on the system, depending on the real-time
scheduling policy used. Embedded real-time systems
are at risk of missing deadlines as a consequence of
DoS (Denial of Service) attacks [12]. Embedded sys-
tems may have battery and memory constrains, small
form-factor devices (e.g. PDAs and cellphones), are of-
ten severely constrain in this respect [5].

There are other gaps which we do not go in too much
detail explaining, these are the flexibility-, tamper resis-
tance- and assurance-gaps [14,15]. The flexibility-gap
stresses that embedded systems have to be flexible
enough to deal with different security protocols and

standards. Tamper resistance-gap deals with the fact
that embedded systems are facing an increasing amount
of different attacks, both hardware and software attacks.
Assurance-gap is related to reliability and that the sys-
tem should continue to operate reliable even if it is at-
tacked.

The battery-gap, is due to that batteries have a mod-
est 5-8% capacity increase per year, whereas the energy
requirements of the devices grow faster [5]. Although,
in recent years, with for instance Intel's new Atom pro-
cessors, the power envelope and TDP1 of processors
have been cut from 15W-165W for the Intel Xenon
family down to 0.65W-13W for the Intel Atom series
[6, 16, 17, 18].

Cost is mentioned as one aspect of limitations [5,12],
however the cost is also a limitation of traditional com-
puting of similar impact. However according to Koop-
man embedded systems are very cost sensitive [12]. In
essence the more money one has the more resources can
be put on mitigating other factors (e.g. development
time, code-review time, more expensive physical tam-
per-protection or detection). One impact of the battery-
gap limitation is that it directly translates to the avail-
ability, i.e. up-time, of the device. Since most commu-
nication, and wireless communication in particular, re-
quires power proportional to the amount of data being
transmitted, as a consequence this imposes limitations
in the amount or rate of data transmissions.

3.1 An Example of the Processing-gap

As mentioned above, part of the processing-gap can
be attributed to the battery-gap. Much of the processing-
gap stems from the impact of secure computations and
communication overhead, to illustrate the impact we
will borrow an example from Ravi et al., that takes a
handheld iPAQ H3670 PDA using SSL to secure com-
munication. The iPAQ H3670 contains an Intel SA-
1110 StrongARM processor clocked at 206 MHz [5].
Their research found that if 10% of the resources of the
SA-1110 processor was used the result would be that a
data rate less than 180 kbps was achieved [5]. Many
embedded systems, such as cellphones, use wireless
communication technologies such as GSM EDGE (En-
hanced Data rates for GSM Evolution [8]) or IMT-2000
(a.k.a. “3G”). We will look at the bandwidth of those
communication technologies and compare it to the data
rate of 180 kbps.

An Ericsson AB white paper from September 2009
that outlines the evolution of EDGE claims that user bit
rates of up to 250 kbps are available, this would leave
28% of the bandwidth unused for the Intel SA-1110 ex-
ample [8]. Furuskär et al. summarizes the IMT-2000's
data rate requirements to between 384 kbps and 2 Mbps,
depending on the coverage requirements [7]. Calculat-
ing with a lower bound of 384 kpbs gives 53% unused

1Thermal design power, which is an estimation of the maximum power
drain during normal usage, actual usage might be both more or less

Figure 1: Classification of attacks against embedded systems. Courtesy of
Gogniat et al[9]

bandwidth for the Intel SA-1110 example. The data
rates and processor speeds are merely snapshots of a
point in time, thus it is from a research point-of-view of
more interest to look at the asymptotic behavior to see
if this is just a temporary gap or if the bandwidth waste
will grow. Note that we are now disregarding from the
resources needed to perform encryption and decryption,
and only looking at the cost of channel coding2. Even
though specialized network hardware usually handles
the channel coding/decoding those parts are also em-
bedded processors themselves and part of the whole
larger embedded system, sharing the same battery and
other resources. Ravi et al. gives an example of what
they call “high-end embedded system” (exemplified
with VPN servers and firewalls) using an Intel Xenon
processor clocked at 2.8 GHz. If 100% of the Xenon
processor was used they were only able to get a data
rate of less than 29 Mbps[5]. For embedded systems
like VPN routers 29 Mbps might be unacceptable low.
Consider a wired 100 Mbps network, this would be 71%
unused bandwidth. With network cards capable of 1
Gbps speeds not being uncommon on newer (tradition-
al) computers the unused bandwidth will be even
greater. Hoffmann et al. explains that "Shannon asks for
more than Moore can deliver!" [2]. “Shannon” is a ref-
erence to the Shannon-Hartley theorem (a.k.a “Shan-
non's law”), which is providing a growth rate for algo-
rithmic complexity of channel coding. In essence it tells
us the theoretical upper bound of the maximum speed at
which we can reliably transmit data on a noisy channel.
The growth rates are visualized in Figure 2. “Moore”
referees to Moore's law that provides an estimate for the
expected growth of processors' transistor count over
time (which is generally translated to expected perfor-
mance increase). In other words Hoffmann et al. thus
claims that the unused bandwidth will keep growing as
time goes on (in the long term, we would even be un-
able to fully utilize the channels full bandwidth regard-
less of if we use encryption or not) [2]. Further more in
recent years the raw processor speeds of traditional
computers has stagnated between 1-3 GHz per core.

There has been a shift towards many-core, the impact
of which is yet to be seen (for instance this far only two

2Encoding the data for transmission over the communication channel.

of Intel's 19 Atom processors are dual core, the D510
and the 330 models [11]). It is worth pointing out that in
the long term the implications of Shannon-Hartley theo-
rem will also affect traditional computers' ability to uti-
lize full bandwidth regardless of encryption. However
embedded systems are comparable to old traditional
computers with respect to their limitations such as pro-
cessing capabilities. Due to this fact they are as illus-
trated by the SA-1110 example above already seeing
the effects of the Shannon-Hartley theorem [3]. The
processing-gap means that from a security perspective
we might not be able to use as much encryption as we
would like when we also seek high throughput. This is a
concern mainly for embedded systems expected to have
a high throughput while providing strong security such
as VPN routers or firewalls. These devices also need to
devote processing power to perform other tasks than
just pure encryption/decryption (e.g. packet filtering
logic, routing decisions), making the situation even
worse by adding more computational requirements.

4. Security Solutions to Limitations in
Embedded Systems

Security in embedded systems puts an extra strain on
the limited embedded systems. Due to this fact the secu-
rity solutions of embedded systems have to be adapted
to systems they are used for [13]. There are two differ-
ent approaches to address the problems with the pro-
cessing-gap. The first one is to reduce the security pro-
cessing workload, the other way is to enhance the pro-
cessing capabilities of the embedded system [5].

The development of crypto systems has lead to new
more efficient algorithms, such as ECC, AES and
NTRU [19,20,21]. However these are not widely used
due to a preference for conventional and well known al-
gorithms [5]. Although the newer ones are faster, the se-
curity risks are unknown. For example flaws have been
found in the original NTRU signature scheme, as well
as in the updated version that should have solved the
problems [5].

4.1 Hardware security Solutions

There have been several attempts to increase the se-
curity processing capabilities of general purpose proces-
sors. Due to the fact that most processors today are
word oriented, the main target have been to accelerate
the bit-level arithmetic operations [5]. Different in-
struction set extensions have been proposed. Many such
extensions to processors have already been made to em-
bedded processors in wireless handset devices [5].

Other hardware solutions that might be used to en-
hance the security are cryptographic processors. The
specialized cryptographic processors offloads the cryp-
tographic computations from the main processor to the
cryptographic hardware, easing the main processor's
workload. The cryptographic hardware can be designed
for high performance and low power consumption [15].

Figure 2: Comparison of the Shannon-Hartley theorem, Moore's
law and battery capacity growth. Image courtesy of Ravi Srivaths.

Most of the security solutions for the limitations in
embedded systems are based on cryptographic processor
solutions. However other solutions to the limitations are
important, since the cost of processor based solutions
are high [15]. A development of the hardware solution
is to let the processor offload large portions of the secu-
rity protocol, and not just the cryptographic algorithm,
to a security protocol processing engine [5]. Security
processing engines accelerate most of the security pro-
tocols functionality, and these engines are program-
mable and therefore can be used for multiple protocols.

One way of implementing security is with reconfig-
urable architecture and hardware monitors. The recon-
figurable architecture enables the implementation of se-
curity primitives. A security primitive corresponds to a
hardware accelerator and performs a security algorithm.
The device performs multiple security primitives inde-
pendently of each other. Different primitives are used
to fulfill different security goals. The goals could be
speeding up the computations of the security algo-
rithms, in comparison to the speed of pure software so-
lutions. Another goal is the flexibility to update or
switch to another security primitive as needed. A fixed
hardware implementation lacks this flexibility. Recon-
figurable architecture meet real-time constraints, such
as the power and reliability constraints [15]. Trough
monitoring, abnormal behaviors in the system can be
detected and attacks can be avoided.

4.2 Instruction- and Data-driven Approaches

Another way to reduce the strain that security puts on
the limited embedded system is to limit the security so-
lutions to the parts of code/data that need to be protect-
ed. There are two different ways of deciding which
parts of the code that are necessary to protect [13]. The
first is based on instruction-driven security, this static
approach analyzes the program at compile time to find
all the instructions that have operands that operate on
variables that should be protected. The second is based
on data-driven security and is a dynamic approach. At
run-time it analyzes what instructions and data to pro-
tect. When the processor is executing an instruction that
has an operand that is marked as secure it treats the in-
struction as secure.

4.3 Power Profile Analysis

Power profile analysis is when an attacker use the
pattern of the power consumption to get information
about the keys used in the system. The power consump-
tion is correlated to the operation the hardware device is
performing [5]. One way to prevent or at least make it
harder to perform power profile analysis is to mask the
power profile of instructions, this can done by for in-
stance computing complementary bits. Masking the
power consumption increases the overall power con-
sumption of the processor, something which puts more
strain on the batteries on battery powered systems. Sa-

putra et al. suggests a data-driven approach that requires
changes to the hardware architecture [13]. The ARM
TrustZone is one example of such an architecture where
Saputra's et al. data-driven solution could be imple-
mented. By extending the implementation to select
power masking variants of the instructions when operat-
ing on data tagged with the security tag called the S-bit.
The S-bit is used to create division between the two
zones of the ARM TrustZone architecture. According to
Ravi et al. the basic primary goal of TrustZone is the
creation of a separated secure kernel separating trusted
and untrusted code [5,13]. In essence also using the S-
bit for power masking would be using the instruction
driven approach since not necessarily all operations in
the trusted zone operates on data needing security.

5. Discussion

We think that the most severe limitations of embed-
ded systems security is the battery- and processor-gap
which are rather tightly coupled. Since faster processors
generally require more power, although Intel's new
Atom series has reduced the power requirements while
still keeping processor speeds above the 1 GHz line. In
our opinion the processor-gap still is the most severe
since it is likely to continue to be a limitation due to the
higher growth of complexity in communication com-
pared to processor speed.

The implications of the processing-gap is that devel-
opers are forced to choose less security in order to pro-
vide high performance. Another issue is that the cost of
the embedded systems have to be increased to allow for
use of more costly components. Larger batteries or spe-
cialized auxiliary processors that offload the main CPU
(e.g. FPGAs which could be programmed to more effi-
ciently perform security related computations). We
have seen that to deal with security in embedded sys-
tems flexibility is becoming important. Therefore the
more general programmable processors will probably be
coming more into use instead of hard wired crypto-
graphic processors.

Other solutions require more drastic changes such as
new processor techniques, for instance the ARM Trust-
Zone which requires changes in the design of not just
the processor but also the memory to accommodate se-
curity information. As mentioned earlier, the ARM
TrustZone could be extended to allow for power mask-
ing variants of the instructions when operating on se-
cure data, at the expense of higher power consumption.
Especially for the naïve approach of power masking ev-
erything executing in the trusted zone with the S-bit.
One could alternatively choose the static approach and
put the power masking tag in the instruction code
words. The work of Saputra et al. [13] suggests that the
dynamic, data-driven approach is the most efficient,
since it gives opportunity to use more energy efficient
instructions when operating on data not tagged as se-
cure. Thus only employing protection on operations

working on secure data or the result of other operations,
where at least part of the input was protected. It is worth
pointing out that TrustZone and the data driven ap-
proach of Saputra et al. [13] have been designed with
different intent, separation of control depending on
(dis-)trust compared to selective data protection de-
pending on the data.

Following the discussion above, it becomes fairly ob-
vious that a naïve merge, where all code in the Trust-
Zone use power masking instruction variants, would be
comparable to the static approach of Saputra et al. [13].
Since not all trusted code necessarily operate on data
that needs protection. Saputra et al. [13] demonstrates
that on average the static approach is 16% less efficient
than the dynamic approach. It might be beneficial to
combine the TrustZone with the ideas of Saputra et al.
but this requires more research.

6. Conclusions

The most severe limitations are the processing- and
battery gaps. The processor-gap is mainly due to the
higher growth of the communication complexity com-
pared to the evolution of processors. Various mitigation
strategies have been proposed. However these mere
postpone the need to lessen either the requirements on
security or performance of the embedded systems. Solu-
tions may require changes to the architecture of the em-
bedded systems. Changes may be to add auxiliary pro-
cessors to the embedded system or more fundamental
changes including memory layout, such as the ARM
TrustZone.

References

[1] Madhukar Anand and Insup Lee. 2008. Challenges
and opportunities in deeply embedded systems
security. SIGBED Rev. 5, 1, Article 25 (January
2008), 2 pages.

[2] N.B: Secondary source in Zambreno et al. [4]
references: Andreas Hoffmann, Heinrich Meyr, and
Rainer Leupers. 2002. Architecture Exploration for
Embedded Processors with Lisa. Kluwer Academic
Publishers, Norwell, MA, USA.

[3] Arbaugh, W.A.; van Doorn, L.; , "Embedded security:
challenges and concerns," Computer , vol.34, no.10,
pp.40-41, Oct 2001

[4] Joseph Zambreno , Alok Choudhary , Rahul Simha ,
Bhagi Narahari , Nasir Memon, SAFE-OPS: An
approach to embedded software security, ACM
Transactions on Embedded Computing Systems
(TECS), v.4 n.1, p.189-210, February 2005

[5] Srivaths Ravi, Anand Raghunathan, Paul Kocher,
and Sunil Hattangady. 2004. Security in embedded
systems: Design challenges. ACM Trans. Embed.
Comput. Syst. 3, 3 (August 2004), 461-491.

[6] “Intel® Xeon® Processor ULV 1.66 GHz, 2M
Cache, 667 MHz FSB with SPEC Code(s):”,Intel
Inc., Intel product specifications,

http://ark.intel.com/Product.aspx?id=29750
(accessed at 2010-04-28)

[7] Furuskär, A.; Mazur, S.; Müller, F.; Olofsson, H.; ,
"EDGE: enhanced data rates for GSM and
TDMA/136 evolution," Personal Communications,
IEEE , vol.6, no.3, pp.56-66, Jun 1999

[8] "The Evolution of Edgde", Ericsson AB, Ericsson
White Papers, Sep 2009. Available at
http://www.ericsson.com/article/evolution_of_edge_
20100210105126 (Last accessed 2010-04-16)

[9] Gogniat, G.; Wolf, T.; Burleson, W.; Diguet, J.-P.;
Bossuet, L.; Vaslin, R.; , "Reconfigurable Hardware
for High-Security/ High-Performance Embedded
Systems: The SAFES Perspective," Very Large
Scale Integration (VLSI) Systems, IEEE
Transactions on , vol.16, no.2, pp.144-155, Feb.
2008

[10] Vaslin, R.; Gogniat, G.; Diguet, J.-P.; Pegatoquet,
A.; , "Trusted computing - A new challenge for
embedded systems," Electronics, Circuits and
Systems, 2006. ICECS '06. 13th IEEE International
Conference on , vol., no., pp.776-779, 10-13 Dec.
2006

[11] "Intel® Atom™ Processor Specifications".
http://www.intel.com/products/processor/atom/speci
fications.htm. Accessed at 2010-04-19.

[12] Koopman, P.; , "Embedded system security,"
Computer, vol.37, no.7, pp. 95- 97, July 2004

[13] Saputra, H.; Ozturk, O.; Vijaykrishnan, N.;
Kandemir, M.; Brooks, R.; , "A data-driven
approach for embedded security," VLSI, 2005.
Proceedings. IEEE Computer Society Annual
Symposium on, vol., no., pp. 104- 109, 11-12 May
2005

[14] Gogniat, G.; Wolf, T.; Burleson, W.; ,
"Reconfigurable Security Primitive for Embedded
Systems," System-on-Chip, 2005. Proceedings. 2005
International Symposium on, vol., no., pp.23-28, 17-
17 Nov. 2005

[15] Gogniat, G.; Wolf, T.; Burleson, W.; ,
"Reconfigurable Security Support for Embedded
Systems," System Sciences, 2006. HICSS '06.
Proceedings of the 39th Annual Hawaii International
Conference on, vol.10, no., pp. 250a- 250a, 04-07
Jan. 2006

[16] “Intel® Xeon® Processor 7020 (2M Cache, 2.66
GHz, 667 MHz FSB) with SPEC Code(s)
SL8UA:”,Intel Inc., Intel product specifications,
http://ark.intel.com/Product.aspx?id=27224
(accessed at 2010-04-28)

[17] “Intel® Atom™ Processor Z500 (512K Cache, 800
MHz, 400 MHz FSB) with SPEC Code(s)
SLB6Q:”,Intel Inc., Intel product specifications,
http://ark.intel.com/Product.aspx?id=35472
(accessed at 2010-04-28)

[18] “Intel® Atom™ Processor D510 (1M Cache, 1.66
GHz) with SPEC Code(s) SLBLA:”,Intel Inc., Intel
product specifications,

http://ark.intel.com/Product.aspx?id=43098
(accessed at 2010-04-28)

[19] Menezes, A. J. 1994 Elliptic Curve Public Key
Cryptosystems. Kluwer, Academic Publishers.

[20] AES Algorithm (Rijndael) Information. Available at
http://csrc.nist.gov/encryption/aes/rijndael

[21] NTRU Communications and Content Security.
Available at http://www.ntru.com

	1. Introduction
	2. Security Concerns for Embedded Systems
	3. Limitations of Embedded Systems
	3.1 An Example of the Processing-gap

	4. Security Solutions to Limitations in Embedded Systems
	4.1 Hardware security Solutions
	4.2 Instruction- and Data-driven Approaches
	4.3 Power Profile Analysis

	5. Discussion
	6. Conclusions
	References

