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Abstract

Security  in  embedded  systems  is  limited  due  to  re-
source constraints. Security in embedded systems have to  
be adapted to these limitations. We provide a brief look  
at some of the limitations, such as the battery- and pro-
cessor-gap. We also discuss some solutions to the limita-
tions. In most systems the solutions are based on special-
ized cryptographic auxiliary processors. However there  
are  other  solutions  that  are  more  efficient  but  not  as  
widely used. Two of the other solutions are the instruc-
tion-  and data-driver  approaches  which  requires  hard-
ware support.  We also look at the impact  of the faster  
growth rate of the Shannon-Hartley theorem compared to  
Moore's law.

1. Introduction

The goal with this report is to provide a brief insight 
and overview of embedded systems compared with tra-
ditional computing from a security  point  of view.  We 
use the term traditional computing to provide the oppo-
site of embedded systems. The definition of embedded 
systems is beyond the scope of this article  but for this 
report  we consider  any system that  is  not  a  laptop or 
workstation an embedded system. For instance we con-
sider PDAs and cellphones as embedded systems, other 
examples  include  remote  controllable  thermostats  and 
any microprocessor in household appliances. Hoffmann 
et al. claims that a vast majority, as much as 97%, of all 
processors are to be considered embedded processor [2]. 
With  this ubiquity  of embedded systems security  fail-
ures  will  potentially  have  a  wide  spread  impact,  and 
thus security is not to be neglected.

We will discuss some of the limitations of embedded 
systems, and the consequences of them from a security 
point of view. An example of a limitation is power con-
straints,  especially  for battery powered  embedded sys-
tems. The limitations are what most significantly sepa-
rates embedded systems from traditional computing, to 
understand what is special  about security in embedded 
systems it is important to look at and understand them. 

One of the reasons why embedded systems security 
is important is that security failures may lead to safety 
issues.  Koopman exemplifies how a thermostat  can be 

abused [12],  this can result in anything from mere an-
noyance to economic loss or worse. Small children and 
animals may die from heat  related issues.  An attacker 
could potentially raise the temperature or turn off cool-
ing which might lead to dangerously high temperatures. 

Finally, we will address some of the limitations and 
what could be done to mitigate or ideally void them, but 
often it is as simple as a cost trade-off. This means that 
security that  works well  in traditional  computing have 
to be adapted  to  the  limitations  of embedded systems 
before it is possible to implement it [10]. Many embed-
ded systems are orders of magnitude slower or smaller 
than present time traditional computers - in essence they 
are comparable to one or a few decades old traditional 
computers [3].

2. Security Concerns for Embedded 
Systems

Gogniat et al. first divides the attacks in hardware and 
software [9]. The hardware attacks are further categorized 
as  physical  irreversible,  physically  reversible  and  side-
channel attacks. The first two physical attacks are also re-
ferred to as active attacks whereas the side-channel attacks 
are passive. The reversible attacks can further be subdivid-
ed in detectable and non-detectable. Please refer to Gogni-
at  et  al.  for a deeper  discussion of the categorization in 
Figure 1. Ravi et al. makes a slightly different categoriza-
tion but the general outline is the same as Gogniat et al. 
[5].

There might be hardware requirements such as tam-
pering resistance  [5],  but  also software  such as buffer 
overflows, logical  design errors and other  common is-
sues  that  is  common  for  most  computing.  Part  of  the 
software concerns are secure communication and stor-
age  requirements.  Both  of  which  are  needed  in  situa-
tions where the embedded systems are located in places 
where we do not want to transmit or store data in plain 
text, or if we simply want to restrict access (i.e. to en-
sure Confidentiality and/or Integrity of the data).

Availability is a concern that  is partially both hard-
ware and software, in the sense that batteries are hard-
ware concerns (i.e. up-time) but software in the terms of 
providing access  via  e.g.  wireless  communication.  An 
attacker can prevent availability by draining the batter-



ies  (Koopman refers  to these  as  battery  attacks [12]). 
One example of an battery attack is causing excessive 
network traffic that the embedded device must process. 
A successful battery attack could disable the embedded 
system even after the attack is over, a non-battery pow-
ered system probably would resume normal operation as 
soon as the attack is over. Identification of the user of 
the  system  can  be  important  or  superfluous,  however 
this depends on the type of the embedded system - some 
are  meant  to  serve  anyone  (e.g.  thermostats  or  light 
switches)  and  some  only  a  select  group  (e.g.  a 
card/RFID reader). 

Cost is also a concern, that might prevent the choice 
of bigger more expensive batteries or connecting to the 
power grid and laying out cables. Cost might also pre-
vent  developers  from  spending  more  time  checking 
their code (e.g. by means of formal code reviewing) or 
implementing extra security features.

3. Limitations of Embedded Systems

There are several potential bottle-necks that limit se-
curity. One limitation is computational processing pow-
er, an embedded device might easily be saturated with 
security related computations. This is the so called pro-
cessing-gap which we will return to in Section 3.1. The 
implications of the processing-gap may result in failure 
to maintain required operations, for instance a minimum 
throughput  or  maximum  response  time  [5].  Real-time 
systems might have to use less time consuming security 
related computations in order to be able to schedule the 
tasks running on the system, depending on the real-time 
scheduling  policy  used.  Embedded  real-time  systems 
are  at  risk  of  missing  deadlines  as  a  consequence  of 
DoS (Denial  of  Service)  attacks  [12].  Embedded  sys-
tems  may have  battery  and memory  constrains,  small  
form-factor devices (e.g. PDAs and cellphones), are of-
ten severely constrain in this respect [5].

There are other gaps which we do not go in too much 
detail explaining, these are the flexibility-, tamper resis-
tance-  and  assurance-gaps  [14,15].  The flexibility-gap 
stresses  that  embedded  systems  have  to  be  flexible 
enough  to  deal  with  different  security  protocols  and 

standards.  Tamper  resistance-gap  deals  with  the  fact 
that embedded systems are facing an increasing amount 
of different attacks, both hardware and software attacks. 
Assurance-gap is related to reliability and that the sys-
tem should continue to operate reliable even if it is at-
tacked.

The battery-gap, is due to that batteries have a mod-
est 5-8% capacity increase per year, whereas the energy 
requirements of the devices grow faster [5].  Although, 
in recent years, with for instance Intel's new Atom pro-
cessors,  the  power  envelope  and  TDP1 of  processors 
have  been  cut  from  15W-165W  for  the  Intel  Xenon 
family  down to 0.65W-13W for  the Intel  Atom series 
[6, 16, 17, 18].

Cost is mentioned as one aspect of limitations [5,12], 
however the cost is also a limitation of traditional com-
puting of similar impact.  However according to Koop-
man embedded systems are very cost sensitive [12]. In 
essence the more money one has the more resources can 
be  put  on  mitigating  other  factors  (e.g.  development 
time,  code-review time,  more expensive physical  tam-
per-protection or detection). One impact of the battery-
gap limitation is that  it  directly translates to the avail-
ability, i.e. up-time, of the device. Since most commu-
nication, and wireless communication in particular,  re-
quires power proportional  to the amount of data being 
transmitted,  as a  consequence this  imposes limitations 
in the amount or rate of data transmissions.

3.1 An Example of the Processing-gap

As mentioned above, part of the processing-gap can 
be attributed to the battery-gap. Much of the processing-
gap stems from the impact of  secure  computations  and 
communication  overhead, to  illustrate  the  impact  we 
will  borrow an example  from Ravi et  al.,  that  takes a 
handheld iPAQ H3670 PDA using SSL to secure com-
munication.  The  iPAQ  H3670  contains  an  Intel  SA-
1110 StrongARM processor  clocked  at  206  MHz [5]. 
Their research found that if 10% of the resources of the 
SA-1110 processor was used the result would be that a 
data  rate  less  than  180 kbps was  achieved  [5].  Many 
embedded  systems,  such  as  cellphones,  use  wireless 
communication technologies such as GSM EDGE (En-
hanced Data rates for GSM Evolution [8]) or IMT-2000 
(a.k.a.  “3G”).  We will  look at  the bandwidth of those 
communication technologies and compare it to the data 
rate of 180 kbps. 

An Ericsson AB white  paper  from September 2009 
that outlines the evolution of EDGE claims that user bit  
rates  of up to 250 kbps are available,  this would leave 
28% of the bandwidth unused for the Intel SA-1110 ex-
ample  [8].  Furuskär et  al.  summarizes  the IMT-2000's 
data rate requirements to between 384 kbps and 2 Mbps, 
depending on the coverage requirements [7].  Calculat-
ing with a lower bound of 384 kpbs gives 53% unused 

1Thermal design power, which is an estimation of the maximum power 
drain during normal usage, actual usage might be both more or less

Figure  1: Classification  of  attacks against  embedded  systems. Courtesy of 
Gogniat et al[9]



bandwidth  for  the  Intel  SA-1110  example.  The  data 
rates  and  processor  speeds  are  merely  snapshots  of  a 
point in time, thus it is from a research point-of-view of 
more interest to look at the asymptotic behavior to see 
if this is just a temporary gap or if the bandwidth waste 
will grow. Note that we are now disregarding from the 
resources needed to perform encryption and decryption, 
and only looking at  the cost of channel  coding2.  Even 
though  specialized  network  hardware  usually  handles 
the  channel  coding/decoding  those  parts  are  also  em-
bedded  processors  themselves  and  part  of  the  whole 
larger  embedded system, sharing the same battery and 
other  resources.  Ravi et  al.  gives an example  of what 
they  call  “high-end  embedded  system” (exemplified 
with VPN servers and firewalls)  using an Intel  Xenon 
processor  clocked  at  2.8  GHz.  If  100% of the  Xenon 
processor  was used they  were  only able  to  get  a  data 
rate  of  less  than  29  Mbps[5].  For  embedded  systems 
like VPN routers 29 Mbps might be unacceptable low. 
Consider a wired 100 Mbps network, this would be 71% 
unused  bandwidth.  With  network  cards  capable  of  1 
Gbps speeds not being uncommon on newer (tradition-
al)  computers  the  unused  bandwidth  will  be  even 
greater. Hoffmann et al. explains that "Shannon asks for 
more than Moore can deliver!" [2]. “Shannon” is a ref-
erence  to  the  Shannon-Hartley  theorem  (a.k.a  “Shan-
non's law”), which is providing a growth rate for algo-
rithmic complexity of channel coding. In essence it tells 
us the theoretical upper bound of the maximum speed at 
which we can reliably transmit data on a noisy channel. 
The  growth rates  are visualized  in  Figure  2.  “Moore” 
referees to Moore's law that provides an estimate for the 
expected  growth  of  processors'  transistor  count  over 
time (which is generally translated  to  expected  perfor-
mance  increase).  In other  words Hoffmann et  al.  thus 
claims that the unused bandwidth will keep growing as 
time goes on (in the long term, we would even be un-
able to fully utilize the channels full bandwidth regard-
less of if we use encryption or not) [2]. Further more in 
recent  years  the  raw  processor  speeds  of  traditional 
computers has stagnated between 1-3 GHz per core.

There has been a shift towards many-core, the impact 
of which is yet to be seen (for instance this far only two 

2Encoding the data for transmission over the communication channel.

of Intel's  19 Atom processors are dual  core,  the D510 
and the 330 models [11]). It is worth pointing out that in 
the long term the implications of Shannon-Hartley theo-
rem will also affect traditional computers' ability to uti-
lize  full  bandwidth  regardless  of  encryption.  However 
embedded  systems  are  comparable  to  old  traditional 
computers with respect to their limitations such as pro-
cessing capabilities.  Due to this fact  they are as illus-
trated  by  the  SA-1110  example  above  already  seeing 
the  effects  of  the  Shannon-Hartley  theorem  [3].  The 
processing-gap means that  from a security  perspective 
we might not be able to use as much encryption as we 
would like when we also seek high throughput. This is a 
concern mainly for embedded systems expected to have 
a high throughput while providing strong security such 
as VPN routers or firewalls. These devices also need to 
devote  processing  power  to  perform  other  tasks  than 
just  pure  encryption/decryption  (e.g.  packet  filtering 
logic,  routing  decisions),  making  the  situation  even 
worse by adding more computational requirements.

4. Security Solutions to Limitations in 
Embedded Systems

Security in embedded systems puts an extra strain on 
the limited embedded systems. Due to this fact the secu-
rity solutions of embedded systems have to be adapted 
to systems they are used for [13]. There are two differ-
ent  approaches  to  address  the  problems  with  the  pro-
cessing-gap. The first one is to reduce the security pro-
cessing workload, the other way is to enhance the pro-
cessing capabilities of the embedded system [5].

The development of crypto systems has lead to new 
more  efficient  algorithms,  such  as  ECC,  AES  and 
NTRU [19,20,21].  However  these are not widely used 
due to a preference for conventional and well known al-
gorithms [5]. Although the newer ones are faster, the se-
curity risks are unknown. For example flaws have been 
found in the original  NTRU signature scheme,  as well 
as in  the  updated  version that  should have  solved  the 
problems [5].

4.1 Hardware security Solutions 

There have been several attempts to increase the se-
curity processing capabilities of general purpose proces-
sors.  Due  to  the  fact  that  most  processors  today  are 
word oriented, the main target  have been to accelerate 
the  bit-level  arithmetic  operations  [5].  Different  in-
struction set extensions have been proposed. Many such 
extensions to processors have already been made to em-
bedded processors in wireless handset devices [5].

Other  hardware solutions that  might  be used to en-
hance  the  security  are  cryptographic  processors.  The  
specialized cryptographic  processors offloads the cryp-
tographic computations from the main processor to the 
cryptographic  hardware,  easing  the  main  processor's 
workload. The cryptographic hardware can be designed 
for high performance and low power consumption [15].

Figure  2: Comparison of the Shannon-Hartley theorem, Moore's 
law and battery capacity growth. Image courtesy of Ravi Srivaths.



Most of the security solutions for the limitations in 
embedded systems are based on cryptographic processor 
solutions. However other solutions to the limitations are 
important,  since  the  cost  of  processor  based  solutions 
are high [15]. A development of the hardware solution 
is to let the processor offload large portions of the secu-
rity protocol,  and not just the cryptographic algorithm, 
to  a  security  protocol  processing  engine  [5]. Security 
processing engines accelerate  most of the security pro-
tocols  functionality,  and  these  engines  are  program-
mable and therefore can be used for multiple protocols.

One way of implementing security is with  reconfig-
urable architecture and hardware monitors. The recon-
figurable architecture enables the implementation of se-
curity primitives. A security primitive corresponds to a 
hardware accelerator and performs a security algorithm. 
The device performs multiple security primitives inde-
pendently of each other.   Different primitives are used 
to  fulfill  different  security  goals.  The  goals  could  be 
speeding  up  the  computations  of  the  security  algo-
rithms, in comparison to the speed of pure software so-
lutions.  Another  goal  is  the  flexibility  to  update  or 
switch to another security primitive as needed. A fixed 
hardware  implementation  lacks this flexibility.  Recon-
figurable  architecture  meet  real-time  constraints,  such 
as  the  power  and  reliability  constraints  [15].  Trough 
monitoring,  abnormal  behaviors  in  the  system  can  be 
detected and attacks can be avoided. 

4.2 Instruction- and Data-driven Approaches

Another way to reduce the strain that security puts on 
the limited embedded system is to limit the security so-
lutions to the parts of code/data that need to be protect-
ed.  There  are  two  different  ways  of  deciding  which 
parts of the code that are necessary to protect [13]. The 
first  is based on  instruction-driven  security,  this static 
approach analyzes the program at compile time to find 
all  the instructions that  have operands that  operate  on 
variables that should be protected. The second is based 
on  data-driven security and is a dynamic approach. At 
run-time it  analyzes what instructions and data to pro-
tect. When the processor is executing an instruction that 
has an operand that is marked as secure it treats the in-
struction as secure.

4.3 Power Profile Analysis

Power profile  analysis  is when an attacker  use the 
pattern  of  the  power  consumption  to  get  information 
about the keys used in the system. The power consump-
tion is correlated to the operation the hardware device is 
performing [5]. One way to prevent or at least make it 
harder to perform power profile analysis is to mask the 
power profile  of instructions,  this can done by for  in-
stance  computing  complementary  bits.  Masking  the 
power  consumption  increases  the  overall  power  con-
sumption of the processor, something which puts more 
strain on the batteries on battery powered systems. Sa-

putra et al. suggests a data-driven approach that requires 
changes  to  the  hardware  architecture  [13].  The  ARM 
TrustZone is one example of such an architecture where 
Saputra's  et  al.  data-driven  solution  could  be  imple-
mented.  By  extending  the  implementation  to  select 
power masking variants of the instructions when operat-
ing on data tagged with the security tag called the S-bit. 
The  S-bit  is  used  to  create  division  between  the  two 
zones of the ARM TrustZone architecture. According to 
Ravi et  al.  the basic  primary  goal  of  TrustZone is the 
creation of a separated secure kernel separating trusted 
and untrusted code [5,13]. In essence also using the S-
bit  for  power  masking  would be  using the  instruction 
driven approach since not necessarily  all operations in 
the trusted zone operates on data needing security.

5. Discussion

We think that the most severe limitations of embed-
ded systems security  is the battery-  and processor-gap 
which are rather tightly coupled. Since faster processors 
generally  require  more  power,  although  Intel's  new 
Atom series has reduced the power requirements while 
still keeping processor speeds above the 1 GHz line. In 
our  opinion  the  processor-gap  still  is  the  most  severe 
since it is likely to continue to be a limitation due to the 
higher  growth  of  complexity  in  communication  com-
pared to processor speed.

The implications of the processing-gap is that devel-
opers are forced to choose less security in order to pro-
vide high performance. Another issue is that the cost of 
the embedded systems have to be increased to allow for 
use of more costly components. Larger batteries or spe-
cialized auxiliary processors that offload the main CPU 
(e.g. FPGAs which could be programmed to more effi-
ciently  perform  security  related  computations).  We 
have seen that  to deal  with security  in embedded sys-
tems  flexibility  is  becoming  important.  Therefore  the 
more general programmable processors will probably be 
coming  more  into  use  instead  of  hard  wired  crypto-
graphic processors.

Other solutions require more drastic changes such as 
new processor techniques, for instance the ARM Trust-
Zone which requires changes in the design of not just 
the processor but also the memory to accommodate se-
curity  information.  As  mentioned  earlier,  the  ARM 
TrustZone could be extended to allow for power mask-
ing variants  of the  instructions  when operating  on se-
cure data, at the expense of higher power consumption. 
Especially for the naïve approach of power masking ev-
erything  executing  in  the  trusted  zone  with  the  S-bit. 
One could alternatively choose the static approach and 
put  the  power  masking  tag  in  the  instruction  code 
words. The work of Saputra et al. [13] suggests that the 
dynamic,  data-driven  approach  is  the  most  efficient, 
since it gives opportunity to use more energy efficient 
instructions  when operating  on data  not  tagged  as  se-
cure.  Thus  only  employing  protection  on  operations 



working on secure data or the result of other operations, 
where at least part of the input was protected. It is worth 
pointing  out  that  TrustZone  and  the  data  driven  ap-
proach of Saputra et  al.  [13] have been designed with 
different  intent,  separation  of control depending  on 
(dis-)trust  compared  to  selective data protection  de-
pending on the data.

Following the discussion above, it becomes fairly ob-
vious that  a naïve merge,  where all code in the Trust-
Zone use power masking instruction variants, would be 
comparable to the static approach of Saputra et al. [13]. 
Since  not  all  trusted  code  necessarily  operate  on data 
that  needs protection.  Saputra  et  al.  [13] demonstrates 
that on average the static approach is 16% less efficient 
than  the  dynamic  approach.  It  might  be  beneficial  to 
combine the TrustZone with the ideas of Saputra et al. 
but this requires more research.

6. Conclusions

The most severe limitations are the processing- and 
battery  gaps.  The  processor-gap  is  mainly  due  to  the 
higher  growth of the communication complexity  com-
pared to the evolution of processors. Various mitigation 
strategies  have  been  proposed.  However  these  mere 
postpone the need to lessen either the requirements on 
security or performance of the embedded systems. Solu-
tions may require changes to the architecture of the em-
bedded systems. Changes may be to add auxiliary pro-
cessors  to  the embedded  system or  more  fundamental 
changes  including  memory  layout,  such  as  the  ARM 
TrustZone.
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