
Studying IDS signatures using botnet infected honey pots

Johannes Hassmund
Email: johannes.hassmund@liu.se

Supervisor: Nahid Shahmehri, nsh@ida.liu.se
Project Report for Information Security Course

Linköping University, Sweden

Abstract

In this report we explore botnet malware using an
isolated network of intentionally infected honeypots. The
honeypots are placed on an isolated network designed to
protect the Internet from our infected hosts. By a passive
study of the network traffic between the isolated network
and the Internet we suggest an IDS signature that
successfully discovers the malware FakeAlert.JB. We also
analyze available signatures used for detection of the
Conficker.C botnet. We suggest that the study of
intentionally infected honeypots bears an important role in
the analysis of botnets. To fully qualify as a method for the
development of IDS signatures and to obtain a deeper
understanding of sophisticated malware, the black box
approach used in this project needs to be complemented
with analysis using reverse engineering techniques such
as disassembly of malware binaries.

1. Introduction

In this section we present the objectives of LiU IRT
(Linköping University Incident Response Team) and the
motivation and goals of the project described in this report.
We also present the methods used and the limitations of the
project.

1.1 Background

Linköping University Incident Response Team handles
intrusions, intrusion attempts, spam, malware incidents,
complaints regarding copyright infringement and other IT
security related matters within Linköping University.
Between 2006 and 2008 in average 44 incidents per year
regarding virus and other malware have been recorded. We
suspect that all incidents are neither discovered, nor
reported so the number of total infections is probably
somewhat larger than this number. The majority of recorded
incidents regard students connected to the university’s
WLAN.

It is important to disconnect infected hosts from the
network as promptly as possible for several reasons, mainly
to prevent further infections and to uphold the university’s
reputation in the Internet community.

Infections of hosts connected to LiU-Net (Linköping
University Network) are mainly discovered through the
university’s Intrusion Detection System (IDS), due to
anomalies in the use of certain ports, among whose port 25
(SMTP) and the Windows RPC ports (137-139 and 445) are
the most prominent. Malware are also discovered due to
complaints from external parties or notifications from Sunet
CERT (Swedish University Network Computer Emergency
Response Team) and by the use of antivirus software. In
general infected computers have already been disconnected
by the IDS when external warnings arrive.

The network traffic patterns that are used to notice
suspected infections are mainly the consequence of either a
worm that is trying to spread to other hosts on the network,
or botnet participants sending large amounts of spam
emails.

Figure 1. Logical setup of infected honeypots

1.2 Purpose

Even though the current approach used at Linköping
University for detection of malware, as described in the
previous section, has proven to be efficient, it is not

satisfactory since an anomaly does not occur until malicious
activity have been ongoing for some time.

The main goal of this project is to identify or develop
signatures to be used in Linköping university’s IDS in order
to detect the control traffic of infected bots rather than the
consequences of infection (e.g. massive spam senders). By
moving from a reactive to proactive approach we aim to
minimize time from infection to time of detection.

A secondary goal is to gain experience from this type of
malware study and to establish a platform on which further
studies can be performed in a safe manner.

1.3 Method

This project has been pursued as a part of a university
course in Information Security at the Department of
Computer Science in association with the IT Incident
Response Team at Linköping University. The theoretical
part of the project is based on a literature study introducing
concepts of control channels of botnets. The actual study of
IDS signatures has been performed on a network of
honeypots connected to a firewall protecting the Internet
from the infected bots. This setup is illustrated in Figure 1
and is further described in Chapter 3.

1.4 Limitations

Due to time constraints focus will be put exclusively to
three malware binaries; FakeAlert.JB, Conficker.B and
Conficker.C. These malwares were chosen since they all
have been active on LiU-Net during the time of this project.

2. Botnets overview

A botnet is a group of compromised computers, bots,
under control by a malicious individual; a botmaster.
Botnets commonly include mechanisms for self
propagation, for example by exploiting security vulnerabili-
ties over the network like a worm, or sending virus infected
spam. What distinguishes botnets from other kinds of
malware is the ability to establish a command and control
channel with the botmaster.

Botnets can range in size from a handful to several
hundred thousands of cooperating computers [1]. The most
prominent threats of botnets are spamming and DDoS
(distributed denial of service) attacks.

2.1 History

The first bots appeared in the IRC (Internet Relay Chat)
community and were designed to perform administrative
duties like providing logging capabilities and help channel
operators to fight abuse. The bot Eggdrop, initially
developed with these purposes in 1993, is considered to be
one of the first bots [2]. Development of Eggdrop is still in
progress as an open source project.

Computer viruses have been known since the 1970s [3]
and the first malicious network worm, the Morris Worm,
appeared in 1988 [4]. Even though these self propagation
techniques were well known at the time of the first IRC bot
appearance, it was not until around the year 2000 that
malware authors combined the techniques constructing self
propagating botnets [5].

2.2 Control channels

Botnets traditionally use a command and control
structure as illustrated in Figure 2. Early bots like Agobot
and SDBot [6] utilized the IRC protocol. Infected hosts
connect to an IRC server through which the owner of the
botnet can issue commands that the hosts carry out. There
also exists bots controlled by HTTP, making the control
traffic harder to differentiate from normal network traffic
patterns and even DNS [7] which might increase chances of
control traffic to get through firewalls.

Today peer to peer protocols seem to be bot malware
authors’ preferred choice since this technique makes
tracking harder [7] and has the potential to make the botnet
more robust, whereas a static controller host might be shut
down, hence pacifying the botnet. The notorious Storm and
Conficker botnets both use peer to peer techniques [8] [9].

Figure 2. Command and Control structure of a
traditional botnet

2.3 Threats

Botnets can be used for numerous malicious purposes.
As stated in section 1.1; most bots identified within LiU-Net
are found due to the large number of SMTP connections
that are initiated. Researchers suggest that botnets is the

number one method of choice for spammers [10] [11] and
that sending spam is currently the most prominent use of
botnets [12].

DDoS attack is another area where Botnets appear to be
the perfect tool. To successfully pacify the victim of a
DDoS attack, it is desirable for the attacker to utilize a
greater amount of bandwidth than what is available for the
victim. The effect of several thousands of bots initiating
DoS attacks at a coordinated time has the potential to be
devastating.

DDoS attacks have been used for extortions of Internet
businesses [7] as well as attacks towards business
competitors [13]. Recent attacks against Estonia [12] and
Georgia [14] show that botnets have the capacity to
substantially disturb small countries.

Other threats include hosting of phishing web sites [15]
and privacy theft [16]. The latter has gained increased
attention during 2009 with the reveal of GhostNet; a botnet
claimed to target Tibetan officials [17]. Privacy theft can be
performed by for example downloading documents or the
installation of key loggers (software that records key
strokes) on infected hosts.

The capacity of botnets is not restricted to the individuals
or organizations developing them. There are commercial
botnets where capacity is sold and charged by the minute of
use [12]. We can expect new threats to emerge as new
business concepts surface.

3. Implementation of the honeypots

This section describes how the honeypots were set up in
an isolated network environment and which actions were
taken to protect innocent hosts on the Internet from our
honeypots.

3.1 Logical setup

The logical setup of the infected bots is shown in Figure
1. The compromised computers are physical machines
installed with Windows XP SP2 (no further patches) acting
as full interaction honeypots. These computers are
connected to a separate network partly isolated by a
firewall. On the same network two reference computers are
installed. One of the reference machines is configured with
Windows XP SP3, fully patched and the other one carries
the same configuration as the infected computer; namely
Windows XP SP2 and no patches. After the experiment the
reference machines were inspected to conclude if the bots
were able to spread within the network.

3.2 Generic firewall configuration

In order to study control traffic of the infected bots we
had no choice but to connect the laboratory network to the
Internet. This entails some inevitable risks. First we have a
major risk of our botnet disturbing and attacking other
computers on the Internet, both internal and external to LiU-

net. To manage this risk we configured the firewall to block
all outgoing traffic to LiU-net. This may seem egoistic, but
is necessary since the infected network is a part of LiU-net
and the bots are placed inside the university’s defense
perimeters.

To protect external organizations and Internet users, the
firewall was configured to block all traffic on the notorious
TCP ports 135, 137-139 and 445. Further raw blocking was
considered but was not used since we do not want to make
assumptions on how the control traffic will flow. Instead we
opted for a thorough monitoring of the traffic, never running
the system unless we were sure we could respond to alarms
within 15 minutes.

3.3 Simulating successful spam bots

Even though we wanted to stop external attacks and
spam we strongly needed the bots to perceive a normal
networked environment. This was accomplished by the
following setup.
Initially all outgoing connections to TCP port 25 are dropped
by the firewall and logged by the syslog (system log) as
illustrated in Figure 3. A Perl script firewall-
shepherd.pl is continuously monitoring the syslog.
Whenever firewall-shepherd.pl discovers a
previously unknown IP address, which has been logged due
to a connection attempt to port 25, it will try to connect to
this address. If there is no reply or the reply does not follow
the SMTP standard [18] the IP address will be added to the
known list of IP addresses, marked as non-responding and no
further actions will be taken. The firewall will continue to
drop traffic destined to port 25 of the address. If there is a
SMTP server responding on the given address, firewall-
shepherd.pl will send a polite SMTP HELO- and QUIT-
message. The script will then parse the reply of the server
and make a request to another Perl script, the
destination-manager.pl. Now, the destination
manager has knowledge of how the specified IP address

BotFirewall

SYN no. 1

LOGDROP

REDIRECT to local
SMTP server

firewall-shepherd.pl
monitors log file

SYN no. 2

Figure 3. First SYN-packet is log-dropped and
analyzed, deciding the faith of further packets

should present itself. Finally, firewall-shepherd.pl will
allow and redirect traffic destined to port 25 of the given
address to a local Postfix SMTP server. Accordingly,
upcoming SYN-packets (see Figure 3) will be accepted and
rerouted to the local Postfix server.

The local Postfix server has been modified to make a
connection to destination-manager.pl in order to
fetch data on how it should present itself towards the clients.
As a consequence of this, all clients inside the firewall will
perceive that they are communicating with any real SMTP
server that is available, but will in reality only communicate
with the local Postfix server running on the firewall
machine. Figure 4 illustrates the cooperation of the Perl
scripts and Postfix.

The postfix server accepts all destinations but delivers all
mail to a local spam trap, effectively hindering spam from
reaching the Internet.

Figure 4. Mechanisms to stealthy capture spam

3.4 Risk of provoking the botnet to DDoS us

Apart from the risk of the infected bots launching attacks
towards external machines of the Internet there is also a risk
of provoking the botnet to launch a DDoS attack against
ourselves. Some botnets defend themselves in this way
upon detection of probing or reverse engineering attempts
[1]. The ideal situation would be to have a separated
research network for the purpose of this project. Since this
is not possible no attempt to inject traffic into the botnet will
be made; all analysis will be purely passive and we make
efforts to be perceived as a normal network of clients.

3.5 Initial IDS configuration

The server running the firewall of the laboratory network
was augmented with a local IDS. The purpose of this IDS
was to increase the probability to detect attacks towards
innocent hosts on the Internet, originating from our
honeypots. The local IDS was also used as a platform for
experimenting with IDS signatures without disturbing the
main IDS of the university. Candidate signatures proven
efficient on the local IDS would later be deployed on the
main IDS to analyze the impact of false positives; the latter
can only be done in a ‘live’ environment.

3.6 Activity recording

Network traffic between the honeypots and the Internet
was recorded using tcpdump [19] on the firewall server. By
using the syntax “tcpdump –w filename”, traffic was
recorded in raw format allowing later study in the
Wireshark Network Protocol Analyzer [20].

3.7 Client infection

Initially spam e-mails captured by antivirus filters on the
university’s e-mail gateway were studied to retrieve
appropriate botnet malware binaries for the project. This
would however turn out to be a less appropriate source since
the malware found this way have not been seen active on
the university network. Instead we opted for a selection of
malware based on warning e-mails sent to the university’s
Incident Response Team by Sunet CERT (Swedish
university network Computer Emergency Response Team).

The first malware chosen was a botnet binary identified
by the AVG antivirus software as “Trojan Horse
FakeAlert.JB”. This malware was easily retrieved from the
website adorelyric.com shown in Figure 6.

As a second malware we choose to study the Conficker
botnet which we have seen some infections of on the
university network. An actual binary was somewhat hard to
get hands on but eventually an archive of malware where
found on the web site www.offensivecomputing.net [21].

4. Analysis of malware and evaluation of
IDS signatures

This section presents the malware and IDS signatures
chosen for study; namely FakeAlert.JB and the Conficker
botnet.

4.1 FakeAlert.JB (adorelyric.com)

During spring 2009 Linköping University received a
warning stating that a computer belonging to a department
of the university was infected with the “Fast-flux botnet
adorelyric.com”. The binary supplied by this web page was
identified as “Trojan Horse FakeAlert.JB”.

Fast-flux is a technique used by phishing attackers to
make it harder to get rid of malicious sites hosted on

compromised machines by rapidly changing the IP-address
that the domain name points to [22]. This technique makes
it extremely difficult to shut down a phishing site by
contacting the ISPs of the hosting web servers. The
remaining option is to get the registrar to suspend the
domain name. To illustrate the technique a sequence of
eight DNS queries of adorelyric.com is shown in Figure 5.

adorelyric.com was one of a number of domain names
that, at the time, supplied the web page shown in Figure 6.
The web page announces a truly amazing application,
allowing the user to secretly read other individuals’ SMS
messages without access to their cell phone. Upon
executing the binary supplied it appears that nothing
happens, but without noticing the user the computer starts
sending a lot of traffic to various web servers and shortly
also receiving HTTP traffic on port 80.

A typical HTTP request and server response made to our
infected host is shown in Appendix A. We have not put any
significant amount of effort into decoding or decrypting the
traffic intercepted. The rest of the captured traffic shows
that this is a typical pattern of the communication and as
humans it is fairly easy to recognize similar requests. To
make the IDS do this matching we focus on parts of the
communication deviating from standard HTTP requests.
Notice that restricting focus to the beginning of packets
minimizes the load on the IDS server.

The request made to the malicious server on our infected
host is a HTTP POST request on the form “POST
/coxbgxe.png HTTP/1.1”, the content specification
says “Content-Type: application/x-www-
form-urlencoded”. This is a very strange
specification; if a remote browser would post form data the
receiving URL would hardly be a png-image. Would a
HTTP POST-request specifying a png-image ever have this
Content-Type specification under normal circumstances?

In order to answer this question an IDS signature was
written with the intent to capture these circumstances. This
signature was then deployed on the main IDS of the
university network. The suggested signature, shown in

Figure 8, has so far given zero false positives, still detecting
all known instances of the malware studied. Knowing that
the signature is deployed give attackers the opportunity to
spam the IDS with false positives since it is trivial to craft
traffic that triggers the given rule. It is however easy for a
security analyst to inspect this traffic and deduce if the host
really is infected, studying the response of the HTTP
request (shown in Figure A-4, Appendix A).

As far as we can tell, FakeAlert.JB does only spread in
the form of a Trojan horse deceiving users to install an
‘awesome’ program.

Figure 6. Malicious web page promising an
exciting application

4.2 Conficker.B and Conficker.C

Conficker (also known as Downadup, Downup,
Conflicker and Kido) [23] is a worm based botnet which
has gained quite some attention during the spring of 2009.
The original Conficker binary exploits a vulnerability in the
Windows RPC (Remote Procedure Call) protocol
announced by Microsoft on October 23rd, 2008 [24]. Even
though Microsoft released patches for the vulnerability at
the time of the announcement, Conficker which was first
observed about a month later [25] [26], is said to have given
rise to “the most dominating infection outbreak since Sasser
in 2004” [9].

The first confirmed infection of Conficker at Linköping
University was noticed on February 23rd, 2009. Since then
about 20 confirmed or suspected infections have been
noticed, which can be compared to a total of 34 incidents
involving suspected botnet malware during the same period.

for i in `seq 8` ; do
dig adorelyric.com +short ; done
XXX.XXX.109.15
XXX.XXX.59.136
XXX.XXX.59.171
XXX.XXX.78.226
XXX.XXX.224.198
XXX.XXX.193.43
XXX.XXX.135.142
XXX.XXX.11.76

Figure 5. Repeated lookups of a fast-flux domain

Conficker is an interesting piece of malware and seems
to differ from the traditional botnets in the sense that the
worm rather than the traditional Command and Control
structure updates itself with new versions of the binary
using a peer to peer approach [9]. A thorough study of the
worm and its variants could probably fill a master thesis on
its own. In this project we focus exclusively on the ability to
discover Conficker by the use of IDS.

4.3 Observations of honeypot infected with
Conficker.B

Upon infection of a host with Conficker.B, it shortly
starts TCP-scanning the Internet, looking for hosts which
have port 445 open. The packets sent are ordinary TCP
SYN-packets which by themselves cannot be used as
signatures for an IDS. If every try to initiate a TCP
connection on port 445 were to be interpreted as a host
infected with malware the number of false positives would
be unbearable.

The massive amount of connections made however
provide an excellent mean to eliminate false positives.
Figure 7 shows a warning from the IDS indicating a large
number of SYN-packets destined to port TCP/445 on
various addresses, all packets originate from a single
infected host. Even though we cannot know that the host is
infected with Conficker we can be sure that it is performing
some malicious activity and should be disconnected from
our network promptly.

There are other patterns that can be used for detection of
Conficker.B infected clients; for example before starting the
SYN-scan the hosts infected with Conficker.B checks their
external IP addresses by contacting the web sites
www.getmyip.com, www.whatismyip.org, www.whatsmy-
ipaddress.com, and checkip.dyndns.org. However, only
checking for numerous connection attempts of port 445 has
the potential to detect other malware as well as Conficker.B
and it is desirable to keep the signatures as simple as
possible. We have noticed that the SYN-scan starts
immediately after the DNS lookups mentioned, meaning
that there is no significant amount of time to be gained
regarding by implementing further signatures. Consequently
we opt for continued use of this simple approach and not
investigating Conficker.B further.

An observation worth mentioning is that Conficker.B
spreads aggressively on USB memories, but was not able to
spread to vulnerable computers within the isolated network
during an eight hour period.

4.4 Conficker.C

The C-variant of Conficker behaves in quite different
ways than the earlier variants. A host freshly infected with
Conficker.C neither seem to spread the malware by USB
memories, nor probe for open TCP ports 445. Instead it tries
to synchronize to the botnet using a UDP based peer to peer
protocol. The IP-addresses chosen to scan for is decided by
an algorithm involving the current date [9]. A suggested
signature to match this synchronization traffic is available at
[27], shown in Figure 9.

This signature successfully detects Conficker.C but
causes a significant amount of false positives. We suspect
the Internet phone application Skype as one of the sources
of these, making the signature less appropriate for a large
network’s IDS.

alert tcp $EXTERNAL_NET any -> $HOME_NET 80 (msg: "BOTNET TESTING RULE:
Candidate to detect adorelyric.com-like malware"; flow:to_server; content:"POST
/"; depth: 10; content:".png HTTP/1.1"; depth: 30; content: "Content-Type:
application/x-www-form-urlencoded"; depth: 200; sid: 1100001; rev:1;)

Figure 8. Candidate signature to detect control traffic of FakeAlert.JB/adorelyric.com-like malware

Figure 7. IDS warning upon a large number of tries
to initiate connections on port 445, originating

from an infected host

Yegneswaran [28] has suggested an IDS plug in based
on Conficker.C’s internal algorithms for calculating IPs of
peers to sync with. The plug in has been tried out on the
university’s network and has only given reason to a small,
manageable number of false positives. The plug in however
needs to be rewritten slightly, as well as analyzed in terms
of load impact, before being deployed.

5. Related Work

The work presented in this report touches upon a great
amount of previously conducted research. In this section we
present a small selection of such work.

Gu et al. have studied methods to recognize botnet
command and control channels using network anomaly
detection. They study correlations of network traffic, rather
than signatures, thus enabling detection of previously
unknown botnets even if the payload of the control traffic is
encrypted. Their focus is however put exclusively on HTTP
and IRC based control channels. [29]

The P2P botnet Storm has been studied by Holz et al..
They have conducted their research by gathering botnet
binaries using spam traps (e-mail addresses set up solely for
the purpose of receiving spam) and installing these on
honeypots. Finally they have successfully infiltrated the
Storm botnet and injected their own commands into the
botnet control channels, thereby disturbing and measuring
the botnet. [8]

Rajab et al. have presented an overview of botnet
techniques and tracking methods. Their work was
conducted before the significant rise in popularity of P2P
techniques. [16]

The use of honeypots has been given an extensive
presentation by Provos et al. Although their book “Virtual
Honeypots” focus on virtualization techniques they also
cover aspects relevant for standalone honeypots. [7]

6. Conclusion and Further Work

We conclude that a protected network of honeypots has
proven to be a great tool for the security department or a
security analyst who wishes to get hands-on experience of
malware. We expect such experience to provide required
insights when determining which signatures that may be

appropriate for use with an IDS or to benchmark an
antivirus software.

The honeypot setup used included a somewhat
sophisticated mechanism for capturing outgoing spam. In
retrospect we can conclude that this mechanism was never
needed since the malware studied did not initiate any spam
sending sessions. It was however a safety net that we would
not have wanted to be without. A simpler approach to this
matter may have been appropriate but we strongly advice
against experiments with malware on Internet connected
hosts without at least some basic approach towards spam
redirection.

As shown in the case of FakeAlert.JB, passive
monitoring of botnet control traffic can provide sufficient
basis for the design of IDS signatures. We can also use this
approach to confirm that current techniques of malware
discovery are successful and appropriate, as in the case of
Conficker.B.

However, as malware gets more sophisticated we expect
limited success in the quest of designing IDS signatures
when experiments are restricted to the black box approach
used in this project. In addition to passive study of network
traffic in isolation we believe that a more in-depth
understanding requires analysis of the malware binaries
themselves. The results of our study of available signatures
for detection of Conficker.C are an example of this. The
first signature tested gave rise to far too many false positives
to be useful for our purposes. The more successful approach
of detection, based on work by Yegneswaran [28], requires
analysis of the binary itself.

We believe that reverse engineering and disassembly of
malware binaries will keep proving to bear an important
role in further research of specific botnets. It might however
be in more sophisticated traffic correlation analysis that we
will find the most efficient techniques in the quest of
disarming botmasters.

alert udp $HOME_NET [!1720,!1722,!2427,!5060,1024:] -> $EXTERNAL_NET [!1720,!1722,
!2427,!5060,1024:] (msg:"ET CURRENT_EVENTS Possible Downadup/Conficker-C P2P encrypted
traffic UDP Ping Packet (bit value 1)"; dsize:>19; byte_test:1, &, 1, 19; threshold:
type both, track by_src, count 95, seconds 50; classtype:trojan-activity; reference:
url,mtc.sri.com/Conficker/addendumC/ ; reference:url,
www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_Conficker ;
sid:666661; rev:3;)

Figure 9. Signature that detects Conficker.C P2P traffic, but give rise to numerous false positives

7. References

[1] Sandep, Sarat, Sandeep and Terzis, Andreas.
Measuring the Storm Worm Network, HiNRG
Technical Report: 01-10-2007. 2007.

[2] Grizzard, Julian B., et al. Peer-to-Peer Botnets:
Overview and Case Study. Cambridge,
Massachusetts : USENIX Association, 2007.

[3] Kaspersky Lab. Viruslist.com. History of Malware.
[Online] [Cited: 04 15, 2009.]
http://www.viruslist.com/en/viruses/encyclopedia?c
hapter=153310937.

[4] Orman, Hilarie. The Morris Worm: A Fifteen-Year
Perspective. Security & Privacy, IEEE. 2003, Vol.
1, 5.

[5] McLaughlin, Laurianne. Bot Software Spreads,
Causes New Worries. IEEE Distributed Systems
Online. 2004, Vol. 5, 6.

[6] Barford, Paul and Yegneswaran, Vinod. An
Inside Look at Botnets. [book auth.] Mihai
Christodorescu, et al. Malware Detection (Advances
in Information Security).

[7] Provos, Niels and Holz, Thorsten. Virtual
Honeypots, From Botnet tracking to Intrusion
Detection. Boston, Massachusetts : Addison-Wesley
Professional, 2007. ISBN 978-0321336323.

[8] Holz, Thorsten, et al. Measurements and
mitigation of peer-to-peer-based botnets: a case
study on storm worm. San Francisco, California :
USENIX Association, 2008.

[9] Porras, Phillip, Saidi, Hassen and Yegneswara,
Vinod. An Analysis of Conficker's Logic and
Rendezvous Points. Malware Threat Center.
[Online] [Cited: 04 23, 2009.]
http://mtc.sri.com/Conficker/.

[10] Ramachandran, Anirudh and Feamster, Nick.
Understanding the network-level behavior of
spammers. ACM SIGCOMM Computer
Communication Review. 2006, Vol. 36, 4.

[11] Geer, David. Malicious bots threaten network
security. Computer. 2005, Vol. 38, 1.

[12] Lesk, Michael. The New Front Line: Estonia under
Cyberassault. Security & Privacy, IEEE. 2007, Vol.
5, 4.

[13] Freiling, Felix C., Holz, Thorsten and Wicherski,
Georg. Botnet Tracking: Exploring a Root-Cause
Methodology to Prevent Distributed Denial-of-
Service Attacks. Computer Security – ESORICS
2005. Berlin : Springer, 2005.

[14] Keizer, Gregg. Cyber attacks knock out Georgia's
Internet presence. MIS Asia. [Online] 08 12, 2008.
[Cited: 05 03, 2009.] http://mis-
asia.com/news/articles/cyber-attacks-knock-out-
georgias-internet-presence.

[15] Ianell, Nicholas and Hackworth, Aaron. Botnets
as a Vehicle for Online Crime. The International
Journal of Forensic Computer Science. 2007, Vol.
2, 1.

[16] Rajab, Moheeb Abu, et al. A Multifaceted
Approach to Understanding the Botnet
Phenomenon. Rio de Janeriro, Brazil : ACM, 2006.
1-59593-561-4.

[17] Information Warfare Monitor. Tracking
GhostNet. s.l. : Information Warfare Monitor, 2009.

[18] Klensin, J. Simple Mail Transfer protocol. The
Internet Engineering Task Force. [Online] [Cited:
03 26, 2006.] http://tools.ietf.org/html/rfc5321.

[19] tcpdump.org. tcpdump/libpcap. [Online] [Cited: 04
26, 2009.] http://www.tcpdump.org/.

[20] Wireshark Foundation. Wireshark. [Online]
[Cited: 04 28, 2009.] http://www.wireshark.org/.

[21] Offensive Computing, LLC. Offensive
Computing. [Online] [Cited: 04 17, 2009.]
http://www.offensivecomputing.net/.

[22] Moore, Tyler and Clayton, Richard. Examining
the impact of website take-down on phishing.
Pittsburgh, Pennsylvania : ACM, 2007. ISBN:978-
1-59593-939-8.

[23] Conficker Working Group. Conficker Working
Group . [Online]
http://www.confickerworkinggroup.org/wiki/.

[24] Microsoft corporation. Microsoft Security Bulletin
MS08-067 – Critical. Microsoft TechNet. [Online]
[Cited: 04 24, 2009.]
http://www.microsoft.com/technet/security/Bulletin/
MS08-067.mspx.

[25] Symantec. W32.Downadup. Symantec Security
Response. [Online] [Cited: 04 26, 2009.]
http://www.symantec.com/security_response/writeu
p.jsp?docid=2008-112203-2408-99&tabid=2.

[26] McAfee Inc. W32/Conficker.worm. McAfee Avert®
Labs Threat Library. [Online]
http://vil.nai.com/vil/content/v_153464.htm.

[27] Conficker Working Group. Network Detection.
Conficker Working Group. [Online]
http://www.confickerworkinggroup.org/wiki/pmwik
i.php/ANY/NetworkDetection.

[28] Yegneswaran, Vinod. Conficker C Peer-to-peer
Detector. SRI International. [Online] [Cited: 04 29,
2009.]
http://mtc.sri.com/Conficker/contrib/plugin.html.

[29] Gu, Guofei, Zhang, Junjie and Lee, Wenke.
BotSniffer: Detecting Botnet Command and Control
Channels. San Diego, CA : s.n., 2008.

Appendix A

No. Time Source Destination Protocol Info
 830 170.820551 203.218.XX.XX 130.236.XX.XX TCP [TCP segment of a
reassembled PDU]

0000 00 13 21 06 84 cd 00 15 c5 5d 71 f1 08 00 45 00 ..!......]q...E.
0010 00 ee 79 f1 40 00 73 06 8f e7 cb da XX XX 82 ec ..y.@.s......m..
0020 XX XX 11 e5 00 50 09 a6 da b1 38 e0 db 48 50 18 P....8..HP.
0030 b4 00 f3 bc 00 00 50 4f 53 54 20 2f 63 6f 78 62 POST /coxb
0040 67 78 65 2e 70 6e 67 20 48 54 54 50 2f 31 2e 31 gxe.png HTTP/1.1
0050 0d 0a 52 65 66 65 72 65 72 3a 20 4d 6f 7a 69 6c ..Referer: Mozil
0060 6c 61 0d 0a 41 63 63 65 70 74 3a 20 2a 2f 2a 0d la..Accept: */*.
0070 0a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 61 .Content-Type: a
0080 70 70 6c 69 63 61 74 69 6f 6e 2f 78 2d 77 77 77 pplication/x-www
0090 2d 66 6f 72 6d 2d 75 72 6c 65 6e 63 6f 64 65 64 -form-urlencoded
00a0 0d 0a 55 73 65 72 2d 41 67 65 6e 74 3a 20 4d 6f ..User-Agent: Mo
00b0 7a 69 6c 6c 61 0d 0a 48 6f 73 74 3a 20 31 33 30 zilla..Host: 130
00c0 2e 32 33 36 2e 31 2e 32 35 33 0d 0a 43 6f 6e 74 .236.1.253..Cont
00d0 65 6e 74 2d 4c 65 6e 67 74 68 3a 20 39 37 38 0d ent-Length: 978.
00e0 0a 43 61 63 68 65 2d 43 6f 6e 74 72 6f 6c 3a 20 .Cache-Control:
00f0 6e 6f 2d 63 61 63 68 65 0d 0a 0d 0a no-cache....

Figure A-1. Request from a remote party to our infected host, part I

No. Time Source Destination Protocol Info
 832 170.835875 203.218.XX.XX 130.236.XX.XX HTTP POST /coxbgxe.png
HTTP/1.1 (application/x-www-form-urlencoded)

Frame (1032 bytes):

0000 00 13 21 06 84 cd 00 15 c5 5d 71 f1 08 00 45 00 ..!......]q...E.
0010 03 fa 79 f2 40 00 73 06 8c da cb da XX XX 82 ec ..y.@.s......m..
0020 01 fd 11 e5 00 50 09 a6 db 77 38 e0 db 48 50 18 P...w8..HP.
0030 XX XX b3 56 00 00 61 3d 5f 77 41 41 41 73 52 77 ...V..a=_wAAAsRw
0040 6b 61 7a 71 70 6b 57 52 48 42 68 79 4a 30 46 4a kazqpkWRHBhyJ0FJ
0050 33 71 30 50 55 78 75 36 46 34 6e 2d 77 33 62 51 3q0PUxu6F4n-w3bQ
0060 39 59 4c 69 42 42 71 5a 43 57 36 71 66 44 58 63 9YLiBBqZCW6qfDXc
0070 43 4b 4b 4d 45 36 2d 68 44 31 4e 36 39 49 6a 61 CKKME6-hD1N69Ija
0080 59 45 2d 6f 4d 42 6d 33 44 53 37 77 66 63 7a 32 YE-oMBm3DS7wfcz2
0090 43 74 52 48 6e 47 4c 57 7a 4a 38 32 4f 44 76 54 CtRHnGLWzJ82ODvT
00a0 42 4a 73 68 52 76 34 55 6f 51 54 62 59 31 31 48 BJshRv4UoQTbY11H
00b0 52 6f 72 44 75 46 45 5a 5f 51 66 47 48 6c 66 53 RorDuFEZ_QfGHlfS
00c0 32 39 4b 38 50 4d 6f 65 31 50 31 2d 33 47 38 31 29K8PMoe1P1-3G81
00d0 59 58 33 54 39 63 6e 52 6e 43 61 68 38 66 42 74 YX3T9cnRnCah8fBt
00e0 32 68 5f 47 41 6c 45 6d 68 6a 41 43 67 44 43 4e 2h_GAlEmhjACgDCN
00f0 6c 57 5f 47 38 5a 64 5f 39 32 58 53 68 45 33 42 lW_G8Zd_92XShE3B
0100 71 52 62 39 66 36 32 39 38 41 34 77 57 6a 6d 43 qRb9f6298A4wWjmC
0110 71 46 6b 6a 55 76 63 54 6a 4a 32 44 53 41 78 4d qFkjUvcTjJ2DSAxM
0120 4d 6e 44 74 34 59 47 5a 6f 70 53 77 73 54 4f 74 MnDt4YGZopSwsTOt
0130 54 33 6d 55 6f 2d 6c 47 48 6a 4b 50 68 67 41 65 T3mUo-lGHjKPhgAe
0140 42 45 64 4f 6c 31 56 56 45 76 6b 48 2d 48 69 62 BEdOl1VVEvkH-Hib
0150 53 56 76 34 49 6b 74 33 54 4e 63 6a 34 57 7a 6f SVv4Ikt3TNcj4Wzo
0160 44 7a 4d 72 47 43 64 61 51 65 48 43 4a 70 67 72 DzMrGCdaQeHCJpgr
0170 49 6f 5f 6e 4d 6a 68 2d 46 33 62 5a 4b 51 34 76 Io_nMjh-F3bZKQ4v
0180 76 65 61 73 45 34 79 44 71 51 4a 4b 51 50 36 35 veasE4yDqQJKQP65

0190 6c 31 6c 2d 4d 57 64 35 56 55 4d 64 4d 69 4e 43 l1l-MWd5VUMdMiNC
01a0 69 35 33 36 65 47 33 73 50 6a 45 5a 58 6e 46 36 i536eG3sPjEZXnF6
01b0 56 31 34 59 4e 45 4a 79 59 56 6f 36 64 75 73 69 V14YNEJyYVo6dusi
01c0 75 46 73 69 6a 4d 51 64 6a 76 4b 6d 35 33 45 6a uFsijMQdjvKm53Ej
01d0 30 31 34 55 6a 41 79 6a 4e 4e 67 74 6d 6d 39 77 014UjAyjNNgtmm9w
01e0 7a 4f 66 47 42 57 73 30 49 66 50 46 57 49 55 31 zOfGBWs0IfPFWIU1
01f0 4f 47 4b 44 56 6b 69 64 70 63 70 50 75 36 43 36 OGKDVkidpcpPu6C6
0200 70 79 76 5a 56 74 67 39 30 69 54 75 43 42 47 72 pyvZVtg90iTuCBGr
0210 78 45 31 77 2d 59 46 4d 72 43 37 79 4a 64 4c 35 xE1w-YFMrC7yJdL5
0220 4a 4e 6f 78 70 54 38 69 38 73 37 63 45 56 46 62 JNoxpT8i8s7cEVFb
0230 5a 76 7a 73 66 65 30 47 4d 46 30 4d 30 33 71 4e Zvzsfe0GMF0M03qN
0240 4a 59 30 65 55 35 6d 59 37 4d 77 56 6d 73 34 48 JY0eU5mY7MwVms4H
0250 35 59 78 62 6a 55 79 32 68 79 73 61 6f 72 4f 7a 5YxbjUy2hysaorOz
0260 32 55 7a 52 70 51 73 6e 7a 4f 64 79 34 74 71 6c 2UzRpQsnzOdy4tql
0270 72 77 73 68 39 53 5a 4c 5a 65 58 41 5a 6b 51 50 rwsh9SZLZeXAZkQP
0280 45 6d 38 59 35 6a 57 31 50 63 56 33 78 71 45 43 Em8Y5jW1PcV3xqEC
0290 50 66 35 70 6f 4c 78 6e 78 57 63 77 62 79 6c 69 Pf5poLxnxWcwbyli
02a0 30 35 59 75 43 56 72 53 6f 31 5f 32 46 4a 69 78 05YuCVrSo1_2FJix
02b0 33 46 6e 32 6a 72 62 6e 57 6a 5f 6d 47 76 71 76 3Fn2jrbnWj_mGvqv
02c0 6d 50 4e 56 47 67 6c 72 64 35 4a 33 78 61 52 49 mPNVGglrd5J3xaRI
02d0 54 32 79 53 71 61 68 6f 4a 53 68 67 6e 70 66 6b T2ySqahoJShgnpfk
02e0 70 34 71 34 4d 76 4e 6a 78 47 53 31 54 6f 6b 62 p4q4MvNjxGS1Tokb
02f0 64 4e 30 65 5f 47 70 36 43 70 71 59 6d 46 4f 57 dN0e_Gp6CpqYmFOW
0300 4f 6b 30 6f 71 74 77 66 53 56 55 6a 7a 56 6d 68 Ok0oqtwfSVUjzVmh
0310 56 62 6c 7a 7a 71 30 2d 63 6f 64 62 73 30 57 4f Vblzzq0-codbs0WO
0320 6c 6d 44 78 4e 50 59 65 54 4c 50 70 52 46 75 51 lmDxNPYeTLPpRFuQ
0330 37 77 47 62 56 4a 30 61 64 5a 67 4e 61 65 73 6a 7wGbVJ0adZgNaesj
0340 56 4f 61 66 5f 41 38 6e 71 67 6c 6c 46 43 36 75 VOaf_A8nqgllFC6u
0350 59 46 34 34 64 6d 72 30 33 47 31 6b 6b 58 33 6e YF44dmr03G1kkX3n
0360 65 67 70 50 55 36 32 6d 56 69 34 35 6e 52 53 62 egpPU62mVi45nRSb
0370 75 2d 6a 61 47 76 46 67 77 72 52 56 62 78 44 46 u-jaGvFgwrRVbxDF
0380 6b 69 49 45 55 54 5a 67 43 4a 32 37 78 71 49 6e kiIEUTZgCJ27xqIn
0390 4d 50 36 63 2d 50 6b 65 59 66 71 63 30 46 65 4f MP6c-PkeYfqc0FeO
03a0 70 52 6c 2d 44 66 47 74 6a 6b 5f 37 5a 70 76 59 pRl-DfGtjk_7ZpvY
03b0 30 78 6a 45 6b 75 44 6f 71 78 49 4f 65 70 58 47 0xjEkuDoqxIOepXG
03c0 76 4c 78 75 51 30 30 47 38 75 62 64 36 4b 47 70 vLxuQ00G8ubd6KGp
03d0 37 76 77 71 2d 39 71 71 6c 49 75 4a 59 6b 61 54 7vwq-9qqlIuJYkaT
03e0 34 47 4c 70 38 30 34 6a 38 4c 38 4a 41 54 6c 31 4GLp804j8L8JATl1
03f0 62 42 70 74 72 6e 36 74 49 4c 58 76 57 4f 63 26 bBptrn6tILXvWOc&
0400 62 3d 41 41 41 41 41 41 b=AAAAAA

Figure A-2. Request from a remote party to our infected host, part II

POST /coxbgxe.png HTTP/1.1
Referer: Mozilla
Accept: */*
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla
Host: 130.236.XXX.XXX
Content-Length: 978
Cache-Control: no-cache

a=_wAAAsRwkazqpkWRHBhyJ0FJ3q0PUxu6F4n-w3bQ9YLiBBqZCW6qfDXcCKKME6-hD1N69IjaYE-
oMBm3DS7wfcz2CtRHnGLWzJ82ODvTBJshRv4UoQTbY11HRorDuFEZ_QfGHlfS29K8PMoe1P1-
3G81YX3T9cnRnCah8fBt2h_GAlEmhjACgDCNlW_G8Zd_92XShE3BqRb9f6298A4wWjmCqFkjUvcTjJ2DSAxMMnDt4Y
GZopSwsTOtT3mUo-lGHjKPhgAeBEdOl1VVEvkH-HibSVv4Ikt3TNcj4WzoDzMrGCdaQeHCJpgrIo_nMjh-
F3bZKQ4vveasE4yDqQJKQP65l1l-
MWd5VUMdMiNCi536eG3sPjEZXnF6V14YNEJyYVo6dusiuFsijMQdjvKm53Ej014UjAyjNNgtmm9wzOfGBWs0IfPFWI
U1OGKDVkidpcpPu6C6pyvZVtg90iTuCBGrxE1w-
YFMrC7yJdL5JNoxpT8i8s7cEVFbZvzsfe0GMF0M03qNJY0eU5mY7MwVms4H5YxbjUy2hysaorOz2UzRpQsnzOdy4tq
lrwsh9SZLZeXAZkQPEm8Y5jW1PcV3xqECPf5poLxnxWcwbyli05YuCVrSo1_2FJix3Fn2jrbnWj_mGvqvmPNVGglrd
5J3xaRIT2ySqahoJShgnpfkp4q4MvNjxGS1TokbdN0e_Gp6CpqYmFOWOk0oqtwfSVUjzVmhVblzzq0-
codbs0WOlmDxNPYeTLPpRFuQ7wGbVJ0adZgNaesjVOaf_A8nqgllFC6uYF44dmr03G1kkX3negpPU62mVi45nRSbu-
jaGvFgwrRVbxDFkiIEUTZgCJ27xqInMP6c-PkeYfqc0FeOpRl-
DfGtjk_7ZpvY0xjEkuDoqxIOepXGvLxuQ00G8ubd6KGp7vwq-
9qqlIuJYkaT4GLp804j8L8JATl1bBptrn6tILXvWOc&b=AAAAAA

Figure A-3. The same request as in Figure A-1 and Figure A-2 in pure ASCII.
The shaded data is used in the proposed signature of Figure 8

Server Response in ASCII (not shown as raw data):
HTTP/1.1 200 OK
Server: nginx/0.6.34
Date: Sun, 26 Apr 2009 12:40:09 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive
X-Powered-By: PHP/5.2.8

172
_wAAAQ_4znIvP1ISxjAbYZWIlmzuM4VYuLUBN1RYxMnC8nPQcHv_RiwCdUneNxKlt1rxkof42TjDnNaEA0cYiY2DeXT2O3
cg6-kmyFDh-EpYgPTGvfD5bIGFVGbp7To-
LUBP3OWNCdJWcAZmx4IGEHPZV1jw2XNRV6t9jQ5B3ZWps4K0otzoVAAvWTZM887cVwl2kQMylwWIy05cP5r5OZ-
DS5JbeTmAOntBuHtAijp-0KjoW_lOKSdkLfZiy2zhPFLufCSEFQ9eaM4dJuR_rBSIRvHgWRCFONxb6r-
_3ATN6k8MHSZf15gHcp0_5mlpmH5uwfJ6MoN9XVZ-E2OlD3AeG4-re0Gk17nae7U7s5L9k1kw1g

Figure A-4. The response (in ASCII) from our infected host to the request above.
The pattern of this response has the potential to track down false positives.

