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Abstract

Automotive systems are becoming more networked
than ever before, with more electronics and computer
systems embedded in them. The increased networking
abilities for automotive systems implies a higher risk
that someone with bad intentions can manipulate parts
of the system. To avoid such manipulations, intrusion
detection for networked embedded systems has to be de-
ployed to ensure the integrity of the system. This pa-
per provides a study of some intrusion detection system
techniques that are used in ordinary computer systems
and networks. This study is made to see if they are
fit to deploy in an automotive networked embedded sys-
tem or can be manipulated to fit the requirements of an
automotive networked embedded system.

1 Introduction
Computer network systems have for a long time

been subject for security research and many useful
approaches have emerged over the years. One of the
most used techniques today is probably the intrusion
detection systems (IDS) which will be the subject for
this paper. More specifically an approach to deploy
desktop computer IDSs in networked embedded sys-
tems will be given.

In our age more and more embedded systems comes
into our everyday life, lets take automobiles as an
example. Features like intelligent parking assistants,
blind-spot information, navigation systems with real-
time updates are just some of the computer systems
you may find in a modern automobile. Therefore it is
crucial that these systems works as intended and that
no one can intentionally insert malicious behaviour
into the systems.

With the mentioned reasons in mind it is easy to see
why there is a need for IDSs in embedded systems. In
this paper a definition of what an IDS is and descrip-
tion and examination of different types of IDSs used

in computer networks will be provided. A definition
of what a networked embedded system is will also be
provided so the target system where the IDS will be
deployed on is defined. After the definitions and de-
scriptions a section is devoted to define/construct an
IDS that in theory would be able to fulfill the require-
ments for an IDS on a networked embedded system.

1.1 What is an intrusion detection system?

The easy and non-technical way of describing an
IDS is to say that it is a ”burglar alarm for computers
that let someone know about the burglary”. With that
description most people can comprehend the function
of an IDS. But that does not say anything about the
functionality behind the IDS, how does it get to know
about the ”burglary”? How can it find out what was
the vulnerability that is to blame for the possibility
for the ”burglary”? A vulnerability in the context of
a house burglary would be for example an unlocked
door or open window which leads to the possibility to
commit a burglary. From here on the term ”intrusion”
is going to be used instead of ”burglary”.

An intrusion can be either physical or non-physical i.e.
dropping a probe on to a circuit and read out the bits
that flies by or writing malicious network packets. This
paper will focus on the non-physical branch of intru-
sion detection, for physical intrusion detection readers
are referred to papers on tamper evidence.

There are several different techniques that can be de-
ployed when constructing an ordinary IDS for a com-
puter system or network. Most of them, but not all,
perform ”real-time” detection which is going to be the
focus for this paper. This means that physical and
equipment under installation etc. is not considered
when designing the IDS. In section 2 descriptions of
several of the available techniques will be provided, one
of the more important parts of intrusion detection, au-
dit, will be presented in the next section.



1.2 Audit

Audit is probably the most important part of any
security system. If there is not some kind of auditing,
how can a system detect that something is wrong?

Audit is here defined as the process of generating,
recording, and reviewing a chronological record of sys-
tem events [1].
By using this definition it is very easy to see the im-
portance of auditing. The most interesting part is the
automation of the auditing process and also how to ap-
pend an alert system after the reviewing of the events.
The reviewing part of the audit process is often done
with regards to certain rules or policys to determine if
the events in a system are considered normal or not. If
they are not considered normal by the reviewing pro-
cess there should be a system to alert the management
about the detected anomaly.

1.3 What is a networked embedded system?

Now there is a ”definition” of what an IDS is and
what the conceptual idea of it is. As earlier mentioned
there exists several techniques to construct an IDS for
a computer system or network. To be able to construct
an IDS for a networked embedded system a definition
of the term ”networked embedded system” need to be
given.

For that it is first needed to define what an embed-
ded system is and secondly what a networked embedded
system is.

Formal Definition: Embedded System

An embedded system is a computing system with a
combination of hardware and software designed to per-
form one or a few dedicated functions [21].
Embedded systems can be a part of a larger system,
e.g. in cars where the antilock braking system is only
a part of the whole system in the car. The example
with the car will return later on in this paper since it
is a very good subject for this study. This leads to a
definition of a networked embedded system.

Example: Embedded system

A mp3 player is an embedded system, it is a computing
system that allows a user to store audio files and play
them. A general purpose device such as a handheld
computer is not truly an embedded system.

Definition: Networked Embedded
System

The view used in this paper is that a networked em-
bedded system is a system that consists of several em-
bedded systems sharing communication resources in a
larger system [21].

Example: Networked embedded system

A networked embedded system in the context of a car
is several different systems that are interconnected. In
a car there exists several different subsystems such as
Controller Area Network (CAN) which handles real-
time communication between controllers in a car and
Media Oriented System Transport (MOST) which han-
dles multimedia for in-car entertainment. These two
systems are today interconnected and every controller,
no matter on what subsystem, is able to send messages
to any other controller in the car [21].

2 Types of IDS
As mentioned there are several different techniques

for IDSs that can be used when constructing such a
system. In this section some of the techniques (or at
least their concepts) for IDSs will be explored and ex-
amination of their strengths and weaknesses will also
be done.

In literature and in implementation the first difference
people make between types of IDSs is if they are Host-
based or if they are Network-based. This difference in
practice depends on where they gather their informa-
tion, if they gather it from the traffic in the network
or from the host machines audit logs, system calls etc.
There are some distributed IDSs as well, sensor net-
works is a good example of one. In a sensor network
there are several sensors that provides a central unit
with information, from that information the central
unit can decide if a sensor has been broken or compro-
mised [5].

For the sake of understanding the rest of the paper the
following two definitions are needed:

Definition: Host-based IDS

Host-based IDSs (HIDS) typically resides on a host and
examines the internal state of it by analyzing logs of
system calls, access or modification of files etc.

Definition: Network-based IDS

Network-based IDSs (NIDS) examines data traffic in
transit between hosts in the network.



These two kinds of IDSs does not serve the same pur-
pose and therefore a NIDS can not be used instead of a
HIDS for an example. HIDS are more suitable for use
in non-networked environments to be most effective but
they can be used together with NIDSs to increase the
chances of detecting intrusions. Both these approaches
will be discussed more in depth in section 3.2.4 and
3.2.5.
2.1 Techniques in IDSs

This section provides descriptions of the different
techniques used in IDSs for ordinary computers. This
includes signature-based, anomaly-based, hybrids etc.
Strengths and weaknesses will also be discussed regard-
ing their use in regular computer systems/networks.

2.1.1 Signature-based

A signature-based IDS makes use of rules, more specifi-
cally rules describing malicious behaviour. This means
that a signature-based IDS compares sequences of
events, patterns of data etc. to the rules it has stored in
its knowledge database. These rules may only apply to
a single packet from the network or a small sequence of
system calls but it is possible to make more advanced
rules that can apply to series of packets over the net-
work. These advanced rules can evolve into more com-
plex rules with hundreds if lines of code [22].

Example: Snort rule

alert tcp $EXTERNAL_NET any -> $HOME_NET
80 (msg: "BOTNET TESTING RULE: Candidate
to detect adorelyric.com-like malware";
flow:to_server; content:"POST /";
depth: 10; content:".png HTTP/1.1";
depth: 30; content: "Content-Type:
application/x-www-form-urlencoded";
depth: 200; sid: 1100001; rev:1;)

This rule checks for tcp packets flowing to a server on
port 80 containing the string ”POST /” in the first 10
bytes and the string ”.png HTTP/1.1” in the first 30
bytes [23].

End of example.

When making use of a signature-based IDS there is
a constant need to feed its knowledge base (the rule
database) with new rules for every new exploit that is
detected, and today there exists a lot of exploits for
a wide variety of systems [24]. That said it is easy to
understand that such an IDS needs to have an exten-
sive knowledge base to cover most of the exploits, but

that is not guaranteed to help.

A rule often makes use of pattern matching of data
and are generally fixed for each case of an attack. The
same attack can be done in several different ways or
the same way but with different code/signature. That
means that if there only is a slight change in the pattern
of the attack, the IDS will miss it and the adversary will
succeed in his task. Even more troublesome is that it
is possible to desynchronize an IDS which tracks whole
connections [4].

The biggest problem with a signature-based IDS it that
it can not detect novel attacks because it does not have
a signature stored in its knowledge base for any new at-
tacks. This is a very disturbing fact when dealing with
systems, mostly because there exists a huge amount of
cases of anomalous behaviour compared to legitimate
behaviour.

To wrap it up for the signature-based IDSs it can
be seen that it is easy to understand how signatures
work and are used but they are at disadvantage in an
environment where that majority of the attacks can not
predicted.

2.1.2 Anomaly-based

Anomaly-based IDSs typically creates profiles of us-
age over some time. After having created a profile an
anomaly-based IDS can detect intrusion by examining
how different the observed behaviour is from the pro-
duced profile. This might raise some questions about
false alarms depending on how aggressive the IDS is,
and that is also one of the drawbacks of this kind of
IDSs. Depending on how maliciousness of an event
is determined a lower or higher false positive rate is
obtained. False positives are events that are reported
malicious while they are completely innocent.

Aggressiveness of an IDS is mostly defined by threshold
values, in statistical IDSs this can be how many connec-
tions that are established during a specific time period.
An example of how this is done in data mining-based
IDSs is given below.

Example: False positives and aggressiveness in
Data mining-based IDSs

In a data mining-based IDS each event can be repre-
sented as a point in a n-dimensional space, each di-
mension corresponding to an attribute. When a profile
is established points are placed in this n-dimensional
space and a centroid is calculated. A centroid is a mean
value of all the points in the space. When intrusion



detection is taking place with this model, every new
event is compared to the centroid, if the difference is
to big an alarm is raised. The difference between the
centroid and a new event is the value used for detection
in this case, and this value can be adjusted to create a
strict profile or a loose profile.

Let the centroid be a vector consisting of five attribute
values < 3, 4, 12, 5, 7 > and the a new point with the
attribute vector < 6, 3, 3, 8, 1 > arrives to the IDS. The
euclidean distance between the centroid and the new
point is

d(centroid, new point) =

=
√

(c1 − n1)2 + (c2 − n2)2 + . . . + (c5 − n5)2 =

=
√

(3− 6)2 + (4− 3)2 + (12− 3)2 + . . . =

=
√

136 ≈ 11.7

This distance is the threshold value in the data mining
case. This distance can be calculated in other ways
than just euclidean distance depending on what vari-
able types there is. That is beyond the scope of this
paper and readers are referred to literature on cluster
analysis.

End of example.

This problem has been subject to several research
projects when the aim is to develop an anomaly-based
IDS, the lower the false positive rate (while keeping the
true positive rate high), the better the system. As an
example of this the attention can be turned to Tan and
Xi (2008) and Tandon&Chan (2006) [3, 2] where they
examine the possibility of using Hidden semi-Markov
model (HSMM) for anomaly detection in a specific
program by looking at audit logs and analyzing sys-
tem call sequences. Some more detailed examples of
anomaly-based techniques will be provided in section 3.

In ordinary computer systems anomaly-based IDSs al-
low their pre-established usage profile to evolve with
the legitimate usage of the system. After it has evalu-
ated some events it will recalculate the profile values,
thus letting it evolve with the evolving user of the sys-
tem. This is a great way to get around problems with
false positives while still letting the user change his
behaviour bit by bit. But there is also disadvantages
with this mechanism, a patient adversary can induce
this evolving of the IDS to allow him to use the system
for his malicious intents without any alarm going off.

Example: Evolving IDS

The same system as the previous example is used to
illustrate the evolving of IDSs. When a new point is
compared to the centroid and is found to be normal
the centroid value is recalculated using the new point
as well as the old points. Thus the centroid values
changes towards the new normal behaviour.

Let a usage profile consist of 5 points with the attribute
vectors v1 =< 4, 6, 1, 7, 8 >, v2 =< 8, 11, 3, 2, 12 >
, v3 =< 5, 4, 8, 2, 9 >, v4 =< 3, 1, 5, 2, 2 >, v5 =<
10, 13, 3, 7, 9 >. These 5 points gives a centroid with
the attribute vector c =< 6, 7, 4, 4, 8 > calculated as
the mean value of the 5 points in the usage profile. A
new point n =< 12, 7, 4, 10, 14 > is accepted as normal
and the centroid has to be recalculated as the mean of
the 5 old points and the new point. The new centroid
attribute vector will be c =< 7, 7, 4, 5, 9 >.

End of example.

The strengths of anomaly-based systems compared to
the signature-based is that anomaly-based systems re-
quires no predefined rules for detection of attacks,
therefore they can also detect new attacks. The dis-
advantage is that anomaly-based systems need to es-
tablish a profile of normal usage. This often requires a
training period where the system supposedly behaves
as intended, without any anomalous behaviour what-
soever. This is a very hard requirement to fulfill in
ordinary networked systems which often are connected
to the Internet which is overflowing with malware. If it
were possible to establish a profile for normal behaviour
without the risk of malicious behaviour during the
training period the effectiveness of an anomaly-based
IDS increases significantly. This is because anomaly-
based IDSs reacts on events that deviates from the es-
tablished profile and if the profile contains malicious
data then malicious events may not be registered as
malicious [10]. Another disadvantage with anomaly-
based detection is that it just detects anomalies, it does
not necessarily give you any additional information on
what went wrong. This can be solved using hybrid
systems which can use signature-based classification,
which will be discussed in the section 2.1.3.

There exists a great variety of anomaly-based detec-
tion schemes, to go through all of them is not essential
for further understanding of this paper. The techniques
that are discussed in the construction section will be
described in more detail because it will be needed to
understand the reasoning behind the choices during the
”construction” of the new IDS for networked embed-
ded systems. For those who are interested in anomaly-
based IDSs a few additional techniques is mentioned



here; Bayesian networks, Markov models, Genetic al-
gorithms, neural networks, clustering etc.

2.1.3 Hybrid Systems

Hybrid IDSs comes in a lot of shapes and sizes, a few
of them will be described in the rest of this paper both
in this section and section 3.

Decision Trees (DTs) are a good example of a hybrid
system, DTs are often used for classification e.g. clas-
sification of behaviour, data or attacks [7, 8]. To be
able to use a decision tree properly the data must be
divided into several classes which can be labeled for hu-
man interpretability of the classification. For a human
it can be hard to look at a cluster of data points and
understand what they mean, therefore it can be needed
to assign each cluster an appropriate label e.g. spam
attacks, DoS attacks etc. An example of a decision tree
could look something like in figure 1 where it can be
seen that every node is analogue to a cluster/class of
data, and every edge represents a rule from which the
upper class can be further divided into smaller classes
which can be labeled as ”normal” or ”anomalous” and
also more specifically give the reason to why it is la-
beled as anomalous. This is something that is very
useful in a lot of cases, to know exactly which param-
eter(s) gives the anomalous decision.

Figure 1: Example of a decision tree for network traffic.

2.1.4 Artificial Immune Systems

A special case of anomaly-based IDSs is the Artifi-
cial Immune Systems (AISs). When AISs are used
they are mainly used to try to enforce the concept of

self/non-self onto a computer system it is inspecting.
The concept is ideal for intrusion detection, consider-
ing how immune systems work in biological organisms.
The problem here is how to define what data belongs
to the system and what is malicious data.

Several different papers state important principles for
the design of an IDS to be optimal in the sense of mim-
icking a human immune system [15, 16, 17]. The prop-
erties stated in Kim et al. (2007) [15] will be used in
this paper since they correspond to the best compiled
list of the found properties for AISs.

Distributed. A distributed IDS supports several
properties that are desirable to achieve when cre-
ating such a system; robustness, configurability,
extendability and scalability. By not having a
single point of failure the system is much more
reliable and robust than a system with a central-
ized IDS. Another advantage of this principle is
that several IDSs can operate concurrently and
also co-operate and exchange information about
attack signatures.

Self-organised. A self-organised IDS detects new at-
tacks automatically and responds to compro-
mised components by eliminating them without
outside management or predefined attack signa-
tures.

Lightweight. The lightweight principle says that the
IDS should not impose large overhead or heavy
burden on the components CPU and I/O. The
principle of imperfect detection is embedded in
the Lightweight principle. Imperfect detection
allows the system to be very flexible and not
consume a huge amount of resources by keeping
the entire database of attack and/or non-attack
signatures at hand. This can be achieved by
only keeping a subset of detectors in memory and
change the subset used during run-time [9].

Multi-layered. This principle also increases the ro-
bustness of the overall system and differs from
the distributed principle by placing sensors at dif-
ferent levels in one monitoring place.

Diverse. This principle imposes a lot of difficulties for
an attacker, by knowing the detection scheme at
one place the attacker gains limited or no infor-
mation about the detection mechanisms at other
systems.

Disposable. This can be seen as a sub principle of
the distributed principle, it states that the IDS



should not depend on a single component. That
is, a component should be easy to replace with
other components.

There are several different techniques used in AISs
which have been presented over the years, most of the
earlier works can be classified into three different cate-
gories:

• Conventional immune system inspired algorithms

• Negative selection

• Danger Theory

In the next section the danger theory will be explored,
no other AIS category is explored since they are not
essential for further understanding for this paper.

The Danger Theory

Aickelin & Greensmith (2007) use an approach which
mimics the dendritic cells in the immune system, their
approach is based upon the Danger theory in immunol-
ogy which states that the immune system is not ac-
tivated when a non-self entity is detected but when
danger or damage is detected. Dendritic cells (DCs)
acts as antigen-presenters, they are affected by signals
in their surroundings which causes them to mature.
When a DC has collected a sufficient amount of input
signals it will presents its collected amount of antigens
and together with the state of the DC it will be deter-
mined if it present a threat to the body or not [9].

Aickelin & Greensmith (2007) presents their theory
about using the Danger Theory in intrusion detection
by two algorithms; the Dendritic cell algorithm (DCA)
and the TLR algorithm. Both of these make use of
DCs as antigen presenters whereas the TLR algorithm
also uses T-cells to match presented antigen [9].

Powers & He (2008) also describes the use of
detector-antigen matching, which is analogue to the use
of DCs and T-cells in immunology but their implemen-
tations in the computer world might differ [10].

3 Constructing an IDS for a networked
embedded
system

This section is devoted to the ”construction” of an
IDS for a networked embedded system. Firstly the
problem will be defined as specific as possible together
with the target on which the IDS is constructed for.
Secondly IDSs will be ”constructed” from several dif-
ferent approaches such as, network-based, host-based,
anomaly-based, attack vs non-attack and so on. In sec-
tion 3.3 the different suggested approaches in section

3.2 will be compared and a design for the IDS will be
proposed.

3.1 Definition of problem
The aim for this paper is to provide a possible solu-

tion for an IDS in a networked embedded system, This
section will specify the problem and the target for the
IDS as detailed as possible.

3.1.1 The Networked Embedded
System

The networked embedded system of choice is an auto-
mobile, there are several reasons for this choice. An
automobile is a good representative for the computer
systems which many humans interact with daily but
never think about it much. It is also an example of
a large system where the computer system inside it is
responsible for a lot of the functionality and is liable
for a major part of the total cost [21].

The security in these systems today is not as good as it
should be. There exists possibilities to subvert/modify
the systems behaviour in such a way that it would not
be safe to use it anymore [21]. This is a very good
example where an IDS would be useful to detect mali-
cious tampering with the system and alert the user of
the system that is everything is not alright. To get a
grip of some of the embedded systems that can exist
in an automobile, see figure 2.

Figure 2: Example of an automobile with embedded
computer systems [27].

There exists several different bus types inside an au-
tomotive system, table 1 gives some examples of
bus types and a bus representative for each type.



The first three representatives LIN (Local Intercon-
nect Network), CAN (Controller Area Network) and
FlexRay handles car functionality such as door lock-
ing, power windows, real-time communication between
controllers, engine management etc. FlexRay guaran-
tees transmission times for controller information and
is as such used in more safety-critical networks [21].
Thus, these networks should not really have to much
connection with e.g. MOST (Media Oriented System
Transport) buses that handles in-car multimedia.

Bus type Bus representative Speed
Subbus LIN 20kbit/s
Event-triggered CAN 1 Mbit/s
Time-triggered FlexRay 10 Mbit/s
Multimedia MOST 24 Mbit/s
Wireless Bluetooth 720 kbit/s

Table 1: Bus types and representatives with operating
speed for each bus.

3.1.2 General Assumptions

This section aims to make some assumptions that are
going to be used during the construction of the IDS in
the following section.

Firstly The systems behaviour is well-defined and
uses well-defined ways of communication between
components.

Secondly It is possible to have a training period of at
least parts of the total system where there is a
guarantee that it is only the intended data that
comes in contact with the IDS.

3.1.3 Specific problems

There are some attacks for which the target is known,
some attacks for each target are listed below [12].
These two targets, communication protocol and com-
putation node, corresponds well to the view of HIDS
and NIDS and it can be seen there is a need for both
concepts in a systems where both types of attack tar-
gets are present.

Communication protocol

• Bogus synchronization/forged messages.

• Eavesdropping/Channel hijack.

Computation node

• Worms and viruses

• Buffer overflow

• Heap overflow

3.1.4 Aims of the construction

Because of the nature of the system that the IDS is
designed for there are some goals for the system that
needs to be thought of during the design process.

• Real-time detection

• Low resource consumption

• Continous data processing

These properties are some of those stated by Axels-
son (2000) in his survey and taxonomy of intrusion
detection systems at that time [20]. In an automotive
embedded system the aim is primarily real-time detec-
tion because threats during run-time should be taken
care of immediatly. Because the target is embedded
system components low resource consumption should
be aimed. Continous data processing by the IDS is
desirable because the system probably do not have a
sense of when it is important to look for intrusions i.e.
a sharp turn or heavily trafficed roads.

3.2 Construction
This section is the main section of this paper, it

aims to see if and in that case how an IDS technique
can be applied to a networked embedded system, more
specifically an automotive embedded system. Previ-
ously known techniques will be considered and tries to
manipulate and combine them in the following sections
will be made.

3.2.1 Signature-based

Signature-based IDSs have the drawback that they
need resources for the knowledge database where all
the rules are stored. It should be intuitive that the
amount of rules can be vast [25] when the system gets
more complex and since there are several different buses
and ways of communication in an automotive system
the probability that the amount of rules exceeds the
available storage is rather high. The CPU usage should
also be kept low because the IDS should not be the pri-
mary purpose of the components. Paulauskas Skudutis
(2008) did a performance test on the popular NIDS
Snort which showed that a PentiumIII with 450MHz
CPU had over 30 % CPU usage already at 10 Mbps



traffic rate [26]. These reasons makes pure signature-
based systems very undesirable in an embedded system
so they will not be considered a valid option for this
kind of IDS.

3.2.2 Attack vs non-attack

This approach is probably the most intuitive approach,
there is a need to be able to detect attacks among sets
of data containing normal data and attack data.

Decision Tree

This technique could be used without regard if it is a
host-based or network-based IDS. To be able to use the
DT at all there is a need to cluster the data (divide the
data into classes) using some clustering algorithm. In
Xiang et al. (2007) Bayesian clustering is used, it is an
unsupervised classification method which divides the
data into its ”natural” classes [7]. This can of course
be done by using any other clustering algorithm, but
that is beyond the scope of this paper. In this case
there will be access to some clean training data, i.e.
data of normal usage not containing any attack data
at all. Using a clustering method on that data will
generate classes describing normal behaviour in dif-
ferent situations. A DT algorithm is then applied to
the classes generated by the clustering algorithm and
creates a DT which distinguishes between the different
classes by looking at the used parameters.

Using the created DT, normal and anomalous be-
haviour can easily be distinguished. If the data that is
examined follows the branches of the DT down to the
leaf where it ends up, the data is most probably harm-
less for the system. But if the data does not conform
to any of the branches that previously was established
something is wrong.

Traversing branches in a tree is efficient and fast and
it is easy to classify the data as normal or anomalous,
this is an advantage when dealing with embedded sys-
tems. A disadvantage is that a DT might not be able
to classify the anomaly properly, classification will be
discussed in section 3.2.3. A problem is that there is a
need of a good unsupervised clustering algorithm which
can partition data in a good way for the IDS to use.

Control-Flow Checking

Control-Flow Checking (CFC) can be seen as a variant
of DT’s. This method is used for real-time evaluation
of executing programs to see if they behave as intended.

The basic idea of CFC is that a program consists of ba-
sic blocks which is branch-free code, i.e. code that does
not contain any operations that changes the control
flow by jumping several lines or calling other functions.
Each basic block can contain a branch instruction as
its last instruction which moves the program from one
basic block to another, these transitions between basic
blocks are evaluated. Each program is represented by
a graph which contains basic blocks and branches that
represents legitimate transitions between basic blocks
[13, 14]. To connect to the earlier stated problems, e.g.
buffer overflows is a typical attack where the program
is tricked into making (mostly) illegal jumps.

Artificial Immune System

When creating an IDS for the networked embedded sys-
tem there are several aspects to consider, first and fore-
most there is the resources. An embedded system com-
ponent does not necessarily have a lot of CPU or stor-
age available since it is built for a specific purpose, this
corresponds well to the Lightweight property of AISs.
Secondly, since this work is done witht a networked em-
bedded system with several specialized components as
a target there exists a high degree of Distributability
and Diversity inside our system which also relates very
well to the main properties for an AIS.

So if there were a working AIS with these proper-
ties it might have been a valid solution to the problems
stated above. Today there exists several AISs created
from different approaches of the human immune sys-
tem [9, 10, 15] and some of them has been tested on
the ”usual” KDD 1999 cup data set to see how they
work compared to other NIDSs [10].

This is an area where a lot of research remains to
be done but if someone can make an AIS that satisfies
most of the properties mentioned earlier in this paper
there will be a great interest to use AISs for IDSs.

Statistical anomaly detection

Statistical anomaly detection is most often mentioned
in the case of NIDS, used to create profiles of network
usage. Typical metrics could be traffic rate, packets
per protocol, number of IP addresses connected etc
[19]. Statistical anomaly detection works by first cre-
ating a profile of usage on training data, which in this
case can be done. Then the systemcan then duplicate
this profile and update the second version over time
with the new data that is inputted to it during run-
time. This kind of systems also has the advantage that
they do not need previous knowledge about attacks to
detect them, and they can also evolve over time. The
drawback with this kind of methods is that they can be



trained i.e. evolved by the attacker to accept behaviour
that should not be accepted from the beginning [19].
One of the biggest drawbacks however, is the high rate
of false positives which is still a challenge in the IDS
area [19].

3.2.3 Classification of anomalies

It can be of equal importance to be able to classify the
detected anomalies as it is to actually detect them, this
section will be devoted to discuss some techniques used
for classifying attacks.

Self Organising Map

Powers He (2008) [10] uses a Self Organising Map
(SOM) to map connection vectors onto one of the clus-
ters that describes different types of attacks. These
clusters which defines attack type are created by unsu-
pervised learning on a data set consisting only of dif-
ferent attacks. A SOM can be seen as a mechanism
that takes points from an input space and maps them
to coordinates in an output space [18, 10]. This output
space can be partitioned into several different classes
of attacks which in turn makes the SOM into an attack
classifier.

To be able to use a SOM for this purpose it needs
a training period where it is trained with attack data
and then the different clusters in the SOM are labeled
with an attack class. Intuitively the problem with this
is that it is impossible to know every type of attack
when conducting the training of the SOM.

Data Mining-based

Xiang et al. (2007) makes use of bayesian clustering
and decision trees to be able to differentiate between
different classes of attacks. The bayesian clustering
algorithm clusters attribute vectors by looking at what
class the vector should be assigned to and then looking
at the probability density function for the class on the
condition that the attribute vector is already assigned
to that class. This approach might be very effective,
but unfortunately the classification only works well for
known attacks [7] .

Despite that the classification only works well for
known attacks i.e. labeled data I think that data min-
ing can be useful to detect the natural classes of the
attacks. Even though they might not be intuitive for
a human they can still provide information about the
characteristics of attacks.

3.2.4 Host-based

According to the assumptions there exists a model
of normal use even for individual components of the
system (at least in a part of the total system, most
probably in the more important parts that should
be protected from input from e.g. MOST networks).
That is there is a possibility to use anomaly detection
schemes for hosts as in any experimental setting [2, 11].
The advantage here to use anomaly- and host-based
IDSs is that an automotive system is a controlled en-
vironment and there is a knowledge of what should
happen in each component for every step.

This approach allows the IDS to supervise the process-
ing inside the host. There is still a need to sanity check
every variable from the network, i.e. there is a for need
an IDS looking at incoming traffic to determine if it is
within the bounds specified.

As mentioned earlier in Section 3.2.2 this can be solved
by using CFC which is very well suited for smaller, pur-
pose specific components.

The advantages here being that it is possible to
run an IDS on the individual components looking for
anomalous sequences of system calls which is not that
hard with a good model to derive normal behavior
from. The disadvantages being that it is hard to know
where it went wrong, it is only assumed that the net-
work would behave in a well-defined way. That does
not mean that the values coming in to the host is al-
ways being the correct values.

3.2.5 Network-based

The previous section about a host-based approach leads
to the intuitive step to provide a discussion about
network-based IDSs. In the previous section it was
stated that pure host-based IDSs can not provide in-
trusion detection in the sense that it would be needed
to know from where the threat emerged. Was it be-
cause of a transient fault? Or was it because another
component has been compromised? Maybe it exists
a bug within the network allowing components to ad-
dress important components as they absolutely should
not be able to do? These questions can be answered
by using a network-based IDS.

In a normal computer network there is a great variety
of protocols used which makes it very difficult to create
an IDS to cope with all of them, which in the long term
makes the computer networks vulnerable to different
kinds of attacks. However, in a networked embedded
system like in an automotive system there is not the



need for a great variety of protocol for communication.
Taking it a step further, there should be explicitly
stated rules of who can talk to who in such a system
to avoid unnecessary resources being used and opening
up the system for more attacks.

The less static properties of network communication
also need to be considered. Traffic rate and unusual
communication patterns are examples of attributes
that can show anomalous behavior and can not be
detected by using only rules. Hence there is need for
anomaly-based intrusion detection.

The NIDS can introduce a need for a more central-
ized analyzing unit that checks all network traffic, this
is because it can be very expensive to let every single
component waste resources on checking all inbound-
/outbound traffic [26]. A centralized unit is a disad-
vantage because it is more vulnerable if an attacker
learns about the location the IDS has in the network
and can deploy techniques to avoid it [4].

There exist several anomaly detection schemes for
computer networks that can be considered when de-
signing an IDS for networked embedded systems. Some
of the techniques mentioned earlier such as DTs, statis-
tical methods, clustering etc. can be used to solve the
problem of illegitimate network traffic in a networked
embedded system.

3.3 Summary
Starting of with the host-based approach it can

be seen that the approach available today with CFC
is well suited for detecting errors or attacks with the
drawback that it can not by itself determine what is
really happening. To be able to determine if there
is an attack underway or if the system is exposed to
transient faults there is a need to complement the CFC
with a classification system. Classification without pre-
vious knowledge about attack is hard, probably one of
the hardest tasks when creating an IDS. Using a data
mining approach on the clean data and then compare
anomalous attribute vectors with the pre-established
model can probably be a way to solve this problem.
Looking at what parameters giving the anomalous
behaviour and using a domain experts knowledge clas-
sification can be made.

Continuing onto the network-based part, the easiest
solution would probably be a hybrid system of statis-
tical anomaly detection to take care of traffic rates etc
and a signatures to take care of sanity checking of the
data values that are sent over the network. However,
there is a the risk of high false positives when using
statistical methods if not used carefully so this part

might need some more thorough research to come up
with the optimal solution for this particular problem.
If however recovery from anomalies can be extended to
be able to cope with some false positives, the rate can
be allowed to be a little higher.

What would have been the most optimal is an IDS that
combines NIDS and HIDS into one singular system. In
the existing literature there doess not exist a system
that today successfully combines these two concepts
into one system.

4 Conclusion
To conclude this review of IDS techniques and con-

struction of an IDS for networked embedded systems
the aims of the system is restated here because they
have had a big influence on the design process.

• Real-time detection

• Low resource consumption

• Continous data processing

From the summary in section 3.3 it can be seen that
techniques used in todays IDSs can be used and
adapted to form an IDS for a networked embedded
system but that there still exists a lot of work that can
be done. What would be really nice to see is a system
deployed at a single host that can take care of the tasks
of both NIDS and HIDS and combine the systems and
look for correlations between events in a better way
than what is done today.

Another interesting approach is the AISs which is
probably going to solve some of the problems of todays
IDSs. They offer a good potential of being flexible,
lightweight, diverse and disposable that no other IDS
today does. The results of Aickelin & Greensmith’s
work with the danger theory and the DC algorithm [9]
will be an interesting read.

This paper has not covered all techniques there are out
there, and there could be other IDS techniques that
can be adapted to embedded systems.
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