
DNS Security

Imran Khan
Email: imrkh883@student.liu.se

Supervisor: David Byers, davby@ida.liu.se
Project Report for Information Security Course

Linköpings universitetet, Sweden

Abstract
The Domain Name System is a distributed database

that allows convenient storing and retrieval of information
and resources records. It has been extended to provide
DNS security extensions (DNSSEC) mainly through public
key cryptography. In this report I have described the
common attacks affecting the Domain Name Systems
performance and the way how modern Domain Name
Systems are secured. The different kinds of DNS security
flavors and their working also described in detail. The
DNSSEC subset proposed is presented and analyze from
different point of view.

1. Introduction
To fully understand the strategy of DNS security [1] there
is a well- known case of DNS spoofing need to be
considered. In July 1997, during two periods of several
days user around the internet who typed
“www.internet.net” into their web browsers thinking they
were going to the InterNIC’s web site instead ended up at
a web site belonging to the AlterNIC. How’d it happen?
Eugene Kashpureff then affiliated with the AlterNIC, had
run a program to “poison” the caches of major name
servers around the world, making the belief that
“www.internic.net’s” address was actually the address of
the AlterNIC web server. The web site that user reached
was plainly the AlterNIC’s not the InterNIC’s. Imagine
users typing in their credit card numbers and expiration
dates is a more swear case.

1.1 What is DNS?

DNS system provides a mechanism of conversion with
double functionality [2]: It translates both host name to IP
addressees and IP addresses to host names. It has three
major components:
• The first category contains:
 - The Domain Name Space and
 - The resource record, that are specifications for a
tree structured name space and the data associated with
these names.

• Name Servers are server programs which maintain
the information about the DNS tree structure. A name
server may cache information about any part of the
domain tree, but in general it has complete
information about a specific part of the DNS. This
mean the name server has authority for that sub
domain of the name space-therefore it will be called
authoritative.

• Resolvers are the server programs that extract the
information from name servers in response to the
client requests.

1.2 DNS Security Threats.

It is known that DNS is weak from several aspects [2].
Using the Domain Name System we face the problem of
trusting the information that came from a non
authenticated authority, the name based authentication
process, and the problem of accepting additional
information that was not requested and that may be
incorrect.

“Many of the classic security breaches in the history of
Computers and computer networking have had to do, not
with fundamental algorithm or protocol flaws, but with
implementation errors. While we do not intend to demean
the efforts of those involved in upgrading the Internet
protocols to make security a more realistic goal, we have
observed that if BIND would just do what the DNS
specifications say it should do, stop crashing, and start
checking its inputs, then most of the existing security
holes in DNS as practiced would go away.” - Paul Vixie,
founder of ISC and main programmer of BIND.

1.2.1 Denial of Service Techniques

In DoS attacka a legitimate user is prevented from using a
service through some illegal means e.g. by flooding a
network to increase network traffic load or disrupting
connection between two machines. Basically there are
three modes of DoS attack [3].

1.2.1.1 Consumption of scarce resources
Generally the computers and the network itself need
resources to operate properly if these resources are not
available accordingly than the overall functionality gets

mailto:davby@ida.liu.se
http://www.internet.net/
http://www.internic.net's/

affected. E.g. DoS attack against network connectivity,
bandwidth consumption and consumption of Other
Resources like printers, tape devices, deny of service
from other limited resources important to the operation of
organization are all lies under this category.

1.2.1.2 Destruction or Alteration of Configuration
 information.

Alteration or destruction of the configuration information
may result in partially or totally breakup of operations
and thus an attacker may stop a user from using computer
or network.

1.2.1.3 Physical Destruction or Alteration of Network
 Components.

This mode of attack includes the threat against physical
security including all the components of computer and the
network.
Like all internet resources DoS attack is also a threat for
DNS servers. It is possible to send a large number of
queries to DNS servers from spoofed sources to raise a
condition of DoS so that the server’s network uplink
becomes congested or the DNS server response time
becomes severely degraded.
One dangerous technique similar to the one used in Smurf
attack. In this technique a DNS server can be used for
amplification of attack traffic by creating small request
packets to generate large responses from the queried
server e.g. request for a zone transfer for small request
large reply. If a name server allows zone transfers from
just about anyone, it is possible for an attacker to spoof a
large number of small zone transfer requests using source
addresses on a specific victim network. In this case the
DNS server will then amplify the traffic sent to it as it
returns the significantly larger zone-transfer reply packets
to the alleged requestor.
Another potential DoS attack related to DNS may lead
due to the nature of recursive lookups. If sending a large
number of requests for domains guaranteed not to be
cached at a particular name server. In this case for each
small query packet sent, the resolving name server will
have to perform at least one recursive lookup per packet.
This could lead to severe service degradation if a
coordinated attack could be launched from numerous
sources in a Distributed Denial of Service (DDoS)
scenario.

1.2.1.3 Recent DNS Denial of Service Attacks.

The following are the two most popular DNS attacks that
occurred in past few years.

i. DDoS Attack (February 7, 2007)

In February 2007, five of the root names servers are
affected by a DDoS world wide, two of which stops

responding to the queries of up to 90%, according to the
RIPE NCC (Réseaux IP Européens Network
Coordination Centre)[4][5]. The attack started at 10:30
UTC and lasted for five hours. None of the root name
server was crashed. Also the internet service was not
disrupted due to the working of other name servers
including RIPE NCC managed-k root.
The botnets (malicious softwares) responsible for these
attacks were originated form Asia-Pasific region but it
was published most about South Korea. The term botnet
mean here is a collection of software “rebots” or “bots”
that runs automatically and collectively to flood the
targeted systems. The botnets are actually collection of
compromised computers also called zambie computers
running softwares , usually installed using Trojan horses,
worms and backdoors under a common command and
control infrastructure.
The term botnet can also be used to refer any group of
bots such as Internet Relay Chat (IRC). The botnet
controllers establishes their own infrastructure for
creating the kind of attacks (flooding to name servers)
.They organize, e.g., IRC servers, command and controls
servers, set of protocols to communicate etc.
Internet relies on the thirteen root name servers deployed
world wide and they are organized as A to M. To ensure
stability and availability the control of these thirteen name
servers are not held by a single organization.

ii. DDoS Attack (21-Oct-2002)

This attack was occurred in October 2002 and lasted for
one hour [6][5]. This was the second major failure of root
name servers after one happened in April 1997 due to
technical problem and affects the whole internet service
badly instead of particular websites. All thirteen root
name servers were affected simultaneously.
The attack volume was 50 to 100 Mbits/sec per root
servers, with a total volume of 900Mbits/sec. The attack
traffic was contained ICMP, TCP SYN, fragmented TCP
and UDP. The source was randomized and generated
automatically in a particular network at the time of attack.
Impacts of Attack.
Some root name servers were continuously unreachable
in many part of the internet world due to heavily created
congestion in the network while others were responding
continuously to their queries. This is due to the successful
overprovisioning of host resources. Many valid queries
were unreachable to some root name servers and hence
were not responded. Several root name servers were
continuously reachable from all monitoring points for the
entire duration of the attack due to the successful
overprovisioning of the network resources. Although the
attacks was present for one hour but there was not any
report for end user error condition. There was a minor

delay for some lookups, this due to the efficient design of
DNS protocol.

1.2.2 Local Query Interception and Response
 Spoofing (DNS Hijacking)

A user submits many queries to a server; these queries are
recursive queries that should fail, cause the server to do
the more work. It is possible for an attacker to intercept
the queries and beat the name server’s response by
sending a spoofed response with their own information.
This kind of attack can occur if an attacker can see the
DNS queries on the network being sent by clients to a
DNS server. This attack results in a race condition if the
attacker resides on the same LAN as a victim. As the
legitimate server may not be on the same LAN or may
need to perform a number of recursive queries to return a
result, which will slow it down considerably.
Response spoofing is a DNS attack that involves
intercepting and sending a fake DNS response to a user.
This attack forwards the user to a different address than
where he wants to be [7]. DNS hijacking is effective if
the attacker can observe the victim DNS query traffic. In
most case the DoS attack to DNS server is unnecessary as
the fake DNS reply usually come before the true one from
the DNS server. However, the attacker needs to be close
to the victim or the DNS server so as to observe the DNS
query traffic. Man in middle attack is an example of DNS
hijacking. Figure below describes the DNS hijacking
scenario [8].

1.2.3 DNS Cache Poisoning

Cache poisoning attacks whereby the cache of the DNS is
deliberately contaminated by an attacker. This is done by
using DNS Transaction ID predication or Recursive
queries. This attack is more dangerous as the attackers do
not need to be positioned near the name server to observe
the replies. In case of DNS cache poisoning it is possible
for an attacker to make a legitimate DNS server to cache
falsified information, which the attacker will supply. The
figure [9] below describes the scenario of cache poising
very simply:
A user types a website into the browser and asks the DNS
server for the address and then server takes the user to the
desired website.

Local DNS server makes it faster; they store the addresses
in cache so that, the requests don’t go to the internet
every time. If the request is not in the cache the local
DNS server forwards the request to the internet's DNS.
Cache poisoning attack is:
1. A hacker sends a request to a local DNS [9].

2. The query is then forwarded to the internet’s DNS [9].

3. And the attacker then floods the Local DNS with
 fake reponses [9].

Figure 1. Cache Poisoning attack Scenario

The local DNS server finds the malicious site in its cache
and forwards the user to the malicious site.
In more technical terms the above scenario can be
described as [10] a DNS query is sent over the
connectionless UDP protocol. With each request a UDP
response is associated via the source and destination host
and port (UDP properties), and via the 16 bit transaction
ID value. Assuming that an attacker knows that a DNS
query for a specific domain is about to be sent, from a
specific DNS server/resolver, the attacker can trivially
predict the source IP address, the destination IP address
and the destination UDP port (53 – the standard UDP port
for DNS queries). The attacker needs additional 2 data
items – the source UDP port, and the DNS transaction ID,
to be able to blindly inject his/her own response (before

the target server’s response – typically DNS server use
the first matching response and silently discards any
further responses).
Deficiencies causing attacks
There exist some deficiencies in the DNS protocol and
defects in common DNS implementations that facilitate
DNS cache poisoning attack. The following are examples
of these deficiencies and defects [11]:
Insufficient transaction ID space
It is possible for an attacker to attempt to successfully
predict the transaction ID field (consist of 16 bits)
described in the DNS protocol specification. On average
an attacker required 32,768 attempts to successfully
predict the ID. If smaller number of bits for this
transaction ID are selected than an attacker require fewer
attempts to predict the ID.
Multiple outstanding requests
Multiple requests for the same resource record (RR) is a
vulnerability caused by some implementations of DNS
services. This vulnerability generates multiple
outstanding queries for that RR. As a result of this
vulnerability, it is possible for an attacker to apply a
'birthday attack' technique to dramatically improve the
probability of a successful DNS spoofing attack. When
performed against a caching name server, this can result
in cache poisoning.

1.2.4 Follow-On (Enabling) Attacks

It is important to illustrate the situations that could arise
in case of attack on DNS in any form.
The attacker can make an effective DoS attack against
both the requesting party as well as the service provider
by making the selected destination pointing to an offline
or nonexistent address.
An attacker can make a fake site and redirect the
legitimate user to this malicious site e.g. in case of online
banking website if an attacker successfully redirect the
user to the fake site then he/she can steal the user’s
confidential data like passwords, credit card numbers etc.
It can also be case, in which an attacker could proxy
connections and serves as a man-in the- middle to capture
all the data exchanged between the client and the bank’s
website, including login information, etc, and would not
even need to construct a fake site.

2 DNS Security.

Protecting these kind of attacks require security [1][8].
DNS security comes in several flavors- the queries,
responses and other messages your name servers sends
and receive.
You can secure your name server, refusing queries, zone
transfer requests, and dynamic updates from unauthorized

addresses, for example. You can even secure zone data by
digitally signing it.

2.1 TSIG
BIND 8.2 introduced a new mechanism for securing DNS
messages called transaction signature, or TSIG for short.
TSIG uses share secrets and a one- way hash function to
authenticate DNS messages, particularly responses and
updates. TSIG is relatively simpler to configure, light
weight for resolvers and name servers to use, and flexible
enough to secure DNS messages (including zone transfer)
and dynamic updates.
With TSIG configured, a name server or updater adds a
TSIG record “signs” the DNS message, providing that the
message’s sender had a cryptographic key shared with the
receiver and that the message was not modified after it
left the sender.
There is no provision that has been made to distribute the
share secret keys. It is up to the Network Administrator
that he configures the Domain Name Server and client
using some kind of mechanism known as sneakers-net
until a secure automatic mechanism for key exchange is
available.

2.1.1 One-Way Hash Functions

It is also called a cryptographic checksum or message
digest that computes a fixed-sized value based on
arbitrary input. This is calculated by a mathematic
formula call One-Way Hash Function. TSIG provide
authentication and data integrity by using it. The output
depends on the each and every bit of output, if there is
change in a single bit in input the resulted output will also
change. It is computationally infeasible to reverse the
function and find an input that produces a given hash
value.
TSIG uses a one way hash function called MD5. In
particular it uses a variant of MD5 called HMAC-MD5. It
generates a 128-bit hash value that depends not only on
the input but also on a key.

2.1.2 The TSIG Records

TSIG is a “meta-record” that never appear in zone data
and is never cached by the resolver or name server. A
signer adds TSIG records in a DNS message and the
receiver removes the record and verifies it before doing
anything further. A TSIG record is calculated over the
entire DNS message means that the resulted hash value in
calculated on the entire DNS message, and additional data
are fed into the HMAC-MD5 algorithm to generate the
hash value. The hash value is keyed with a secret share
between the signer and verifier. That proves that the DNS

message is signed by the holder of a share secret and that
it was not modified after it.

2.1.3 Configuring TSIG

There are one or more keys which are configured on
either end of the transaction before using the TSIG for
authentication.
For example, if we want to use TSIG to secure zone
transfer is between the master and slave name servers for
movie.edu, we need to configure both name server with
common key:

Key-terminator-wormhole.movie.edu. {
 Algorithm hmac-md5;
 Secret “skrkc4twy/cIgIykQu7JZA==”;
};
terminator-wormhole.movie.edu. is the name of the key
and is encoded in the DNS message in the same way as
the domain name. The TSIG RFC 2845 suggests, name
the key after two hosts that use it and it also suggests that
use different keys for each pair of hosts. If the keys are
not same at both sides of the system it will generate the
error message like:

Nov 21 19:43.00 wormhole named-xfer [30326]: SOA
TSIG verification from server
[192.249.249.1], zone movie.edu: message has BADKEY
set (17).

Algorithm is now hmac-md5. The secret is base 64
encoding of the binary key. BIND 8.0 and BIND 9.0
introduces dnssec-keygen for generating the base 64 –
encoded key. Key generated method using dnssec-
keygen is:

dnssec-keygen –a HMAC-MD5 –b 128 –n HOST
terminator-wormhole.movie.edu.
Kterminator-wormhole.movie.edu.+157+28446

The option –a take the argument name of the algorithm
that is HMAC-MD5 and use with the key, -b take the
length of the key as its argument that is 128-bits long. –n
takes an argument HOST, the type of key to generate.
The last argument is name of the key.

2.1.4 Using TSIG

Once the configuration has been done successfully with
TSIG keys, we should then configure them using these
keys. BIND 8.2 and later version uses TSIG to secure
queries, responses, zone transfer and dynamic updates.
The work in the configuration is to configure the server
statement’s key sub statement, which tells a name server
to sign queries and zone transfer requests sent to a
particular name server. This server substatement, for
example, tells the local name server,
wormhole.movie.edu, to sign all such request sent to

192.249.249.1(terminator.movie.edu) with the key
terminator-wormhole.movie.edu.

Server 192.249.249.1 {
Keys {terminator-wormhole.movie.edu. ;};
} ;

Now, on terminator. movie.edu, we can restrict zone
transfers to those signed with the terminator-
wormhole.movie.edu key:

Zone “movie.edu” {
 Type master;
 File “db.movie.edu”;
 Allow-transfer {key terminator-
wormhole.movie.edu. ;};
};
Terminator.movie.edu also signs zone transfer, which
allows wormhole.movie.edu to verify it.
Similarly dynamic updates are also restricted using TSIG
by using the allow-update and update-policy
substatement.

2.2 Securing Name Server

BIND 4.9 introduced several important security features
that help to protect name server [1]. These features are
particular important if name server is running one the
internet, but they are purely useful on internal name
servers. Here we will discuss the following:

2.2.1 BIND Version

The BIND versions using to protect your name server
also is a critical and affects your name server’s security.
All versions before BIND 8.2.3 are susceptible for
various kinds of DNS attacks. There is another issue
related to the security: if an attacker know which version
of BIND you are using then he can make attack according
to that. Some earlier version of BIND name server replies
to client with the information that was enough to now
about the BIND name server version. BIND versions 8.2
and later address this problem in their implementation.
The syntax of the reply query of these recent versions is,
for example:

Options {
 Version “None of your business”

};
But the message is still a tip that there is latest version of
the BIND is in practice.

2.2.2 Restricting queries

The idea behind DNS was to make information available
for all over the internet to the desired users. In the very
earlier version of the BIND, administrator has no way to

look up names on their name server. BIND 8 and 9 allow-
query sub statement so that you can apply IP address-
based access control to queries. This also allows to access
particular zone’s data.
It allow which ip address is allowed to send queries to the
server.
Restricting All Queries
The global form of allow-query substatement looks like
this:
 Options {
 address_match_list;
};
So to restrict the name server to answering queries from
three different networks are for example:
 Options {
 allow-query {192.249.249/24; 192.253.253/24;
 192.253.254/24;};

Although it is import to limit who can query your name
server but it is also important to ensuring that only slaves
name servers can transfer zone from your name servers.
Remote hosts can only look up records for domain names
they already know. If ensuring is not define well then any
remote user can transfer zone data and can list all records
in the zones.

};
Restricting queries in a particular zone
BIND 8 and 9 allow using access control list to a
particular zone. The format of this would be like, for
example:

acl “HP-NET” {15/8 ;}

Zone “hp.com” {
 type slave;
 file “bak.hp.com”;
 masters {15.255.152.2;};
 allow-query {“HP.NET”};
};

Any kind of authoritative server, master or slave can
apply access control list. Zone-specific access control is
more permissive and always takes precedence over global
access control lists. If zone-specific access control list is
not implementing then global access control will be
applied.
In BIND 4.9 this functionality is provided by the
secure_zone record. It collectively limits queries for
individual records and zone transfer also. The major
drawback of BIND 4.9 is that it is used only for
authoritative zones. There have no mechanism for
restricting who can send your server queries for data in
zones your server is not authoritative for. To use
secure_zone includes one or more special TXT records in
the zone data on the primary master name server. The
TXT include:
 Address: mask
Or
 Address: H
In the first form, address is the dotted-octet form of the IP
network which you want to give access the particular
zone and mask is a network mask of that network.

In the second form address is that particular IP address to
which you want to give access to zone and H is
equivalent to the mask 255.255.255.255; each bit in the
32-bit address is checked. Similarly BIND 4.9 also
increases the load of writing very much queries to restrict
access to information for particular hosts in the network.
Each host is separately restricted like:
 secure_zone IN TXT “ IP address:mask ”

2.2.3 Preventing Unauthorized zone transfer

BIND 8 and 9 allow-transfer substatement and 4.9’s
xfrnets allows implementing access control lists on zone
transfers. Allow-transfer restricts particular zone when
used as a zone substatement, and restricts all zone
transfers when used as options substatement. It takes an
address match list as arguments. In BIND 8 and 9 zones
transfer is allowed from any IP address by default and
hackers can easily take the advantages of it, they can
transfer the zone from the slave servers. Therefore allow-
transfer property must be disabled for it by ensuring
allow-transfer {none}.
BIND 8 and 9 allow applying a global access control list
to zone transfer. This make it possible to implement zone
transfers that don’t have explicitly defined access control
list defined as zone substatements. For example to limit
all zone transfers to internal IP addresses:
 Options {
 allow-transfer {address; address; address};
 };

2.2.4 Running BIND with Least Privileges

Running a network sever such as BIND as the root server
can be dangerous. This often happens in implementations
of BIND. If hackers find flaws in the system and get
access to it, then he can enjoy the root users privileges
and exploits accordingly. This will allow them to execute
command, read and write files to perform his desired
functions.
BIND 8.1.2 and later versions allows changing the user
and group privileges the name server uses to run. This is
known as least privilege for that particular configured
server: the minimum set of requirements it need to
complete the job. It also include an option to chroot () the
name server.
The command line options that allow these features to
implement are:
-u specifies the username the name server changes to
after

 starting, e.g., named –u bin.
-g specifies the group or group id the name sever changes
 after starting, e.g., named –g other.
-t specifies the directory for the name server to
 chroot() to.

2.2.5 Split-Function Name Servers

Name servers perform two functions: answers remote
name servers iterative queries and other answer local
resolver’s recursive calls. If the separation has to be made
for these two name servers than the risks of attacks can be
reduced efficiently. There are two types of separation can
be made.
Delegated name server Configuration
These name severs appears in the NS records delegate
zone to name servers who take care of the nonrecursive
queries on the internet. For this it must be assured that the
name server must not be receive any recursive call. It
could also be configured to response nonrecursively even
on recursive calls.
Resolving name server configuration
Unlike delegating name server, resolving name servers
can not restrict recursive calls. So some configuration is
to make to allow the recursive queries. Name servers are
configured to response queries from their own resolver
name servers and deny any other query which is not from
our own IP addresses.
BIND 8 and 9 allow this that which IP addresses can send
queries to our network. BIND 4.9 allows this via the
secure_zone TXT record.

2.3 DNS and Internet Firewalls

The DNS was not designed to work with internet
firewalls. It’s a testimony to the flexibility of DNS and of
its BIND implementation that you can configure DNS to
work with, or even through, an internet firewall [1].
Despite that it also requires a deep knowledge of DNS
and BIND’s most obscure features.

2.3.1 Internet firewall software
In order to configure BIND with firewall it is important to
know about the capabilities of current firewall. Because
firewall’s capabilities influence the choice of DNS
architecture and determine how you implement it. The
two most implemented firewall softwares are:
Packet filters
Packet filtering firewalls operates at network layer and
transport layer of TCP/IP protocol stacks (layer 3 and 4 of
OSI network layer Model). Packets are routed based on
the packet-level criteria like transport protocols (TCP or
UDP), Source and destination IP address, source and
destination ports.
In the context of DNS, packet filtering firewalls can be
configured so that it can selectively allow internal
network systems and the host on the internet to

communicate. Some packet-filtering firewalls also allow
the arbitrary numbers of name servers to query at the
internet but does not allow vice versa. All router based
internet firewalls are packet-filtering firewalls.
Chechpoint’s Firewall-1,Cisco’s PIX, and Sun’s
SunScreen are popular commercial packet- filtering
firewalls.
Application gateway
Application gateways firewalls operate at the application
layer of OSI reference model. They sense the application
protocols in the same way, a server for that particular
application would. An FTP application gateway, for
example, can make the decision to allow or deny a
particular operation.
The major drawback when working with the application-
based gateways is that they handle only TCP-based
application protocol. And off course DNS uses UDP-
based, and there is not application gateway for DNS. As a
result your internal host will not be able to directly
interact with the name server at the internet.

2.3.2 Internet Forwarders

Internet forwarders take the responsibility to
communicate between the internal networks hosts and
rest of the internet. They limit the danger of bidirectional
DNS traffic. In any application gateway firewalls, the
only host that can communicate with the name servers at
the internet is Bastion host, as depicted in the Figure
below.

Figure 2.1. A small network, showing the bastion
host

When an organization has a larger architecture and have a
few name servers inside the network, packet-filtering
firewalls can be used. The firewalls administrator can
configure it so that small set of internal name servers can
communicate with internet name servers. The figure
below shows this scenario. All the internal name servers
can query to internet name server without doing any
major configuration.

Figure 2.2. A small network, showing select

internal name server

Drawbacks of Forwarders
If a corporate has a large business and have a business
spread over continents with thousand of hosts and many
of the name servers also, further more all of the
organization’s name severs don’t have direct access to
internet and relying only on the forwarders to resolves all
the queries and connection to the internet can introduce
the following disadvantages.
1. Single point of failure
If the forwarder fails, the resolvers could not be resolves
internet domain names and internal domain names.
2. Concentration of load
Forwarders always has to accommodate a huge load
balance due to huge network and a lot of name servers
and because the queries are recursive etc.

2.3.3 Internal roots

Internal root severs solves the problem of scalability by
implement as many as possible internal root name servers.
Inside of the organization they just know about the
namespaces of their own network.
Implementing this architecture there are certain benefits
of distributed the load, redundancy and efficient
resolution. But it is not without its cost, there will need a
lot of efforts to configure to many internal roots name
servers.
Therefore if an organization has very large networks and
hosts, than implementing many of them as roots name
servers as forwarders could be a good solution.

2.3.4 A Split Namespace

Unfortunately BIND does not support automatic filtering
of zone data. Many organizations create split namespaces
manually, in which the only internal hosts know about the
real namespace and the translated versions of it that is
called shadowing would be available to the rest of the
internet. Shadowing namespaces performs mapping of
name-to-address and address-to-name of those name
servers that are accessible through the firewalls.

3 The DNS Security Extensions

TSIG is well suited to securing the communications
between two name servers and between an updater and a
name server [1] [12]. However it won’t protect if one of
the names severs is compromised. The most common way
to deal with key management problems like these is to use
public key cryptography.

3.1 Public key cryptography and digital Signatures

In public key cryptography two keys are used for
encryption and decryption of the message, e.g., public
key and private key and an asymmetric algorithm is used
to exchange the keys. When a user wants to send the
message to the recipient, he encrypts the message with the
public key and then sends the encrypted message to the
other counterpart. If the recipient has kept his private key
private then only he would decrypt the message. As a
response the recipient can also encrypt the message by
using his private key and send it to someone. If the
receiver succeeded to decrypt it by attempting it by the
public key, and the sender also did not reviled his private
key to anyone then he will perform his task successfully.
It also proves that the message is not decrypted in transit.
Encrypting large amount of data with an asymmetric
algorithm is very slow and time consuming than
encrypting with the symmetric encryption algorithm. But
when public key encryption is used for authentication, not
for privacy then the whole message’s hash function is to
be taken and instead of whole message to be encrypted,
the hash value is encrypted using private key that
represent the whole message. Then the digital signatures
are attached to the hash value to get the sign message.
The receiver of the message can also verify the message
by decrypting the digital signature with his/her public key
to get the one hash value. Meanwhile he can also run the
message to his/her own copy of the hash function. If the
hash values are match, then message is authenticated.
This whole method of signing and verifying is described
in the Figure below:

Figure 3. Signing and verifying a message

3.2 The key record

In DNS Security Extension or DNSSEC the key record is
used to advertise the public key of a zone that will be
attached to domain name of that particular zone. The
private key of the zone must be stored somewhere in a
file of a name server’s files system. The key record is not
only limited to store the zone’s public key but many other
cryptographic key can also be stored in it.

3.3 The SIG record

As the key record is used to store the zone’s public key,
then a new record to store the private key’s signature is
needed. Therefore SIG record is used to store the digital
signatures of private keys on an RRset, which is a group
of resource records that have the same owner class and
type. The RRset class accommodates many of records
types and saves time.

3.4 The NXT record

The next record solves the problem of signing negative
responses. If there receive a query to look up domain
name that does not exists in the secure zone’s area, then if
the zone were not secure it will simply response with a
message “no such domain name exists ” in the response
code. These response codes are signed by the NXT
record.
NXT record also bridges the gap between two
consecutive domain name systems, so that which domain
name comes after the other. To maintaining the order of
different domain names is an issue that always need to
taken seriously.

3.5 DNSSEC and Performance

DNSSEC does not come without its cost, it increases the
size of DNS messages and as a result its demand for more
computation power and resources from name servers for
signing zone’s data. Following are the consequences of
these effects:
• Larger messages are a huge load for resolvers and

domain name systems and requires processing when
TCP in place as it already more resource intensive
than UDP.

• Verify zone data also takes time and slow the
resolution process.

• Larger zones mean larger memory consumption and
processing power.

BIND 8 can not fulfill these requirements to signing the
secure zones as it require more then the BIND 8 offers.
BIND 8 motivate towards the development of new and
more capable of DNS server, and take part in the
development of BIND 9.

4 Conclusions

The Domain Name systems are very critical service
providers and every day we rely on it for our different
tasks. The origin of DNS is very long before even when
computer networks are not being used for commercial
application, e.g., e-commerce. DNS vulnerabilities are
appearing frequently as DNS interaction are increase. The
vulnerabilities I have described in this report are even not
new but are good guide to understand the attacks that can
be made against DNSs. The need of authenticating during
zone transfers and between resolving name servers and
clients will eventually necessitate the need of wide spread
DNS Security Extensions. The DNSSEC is a great
achievement towards DNS security with the development
BIND 9. Although DNSSEC requires huge computation
powers and resource to implements it services, is still
being implementing rapidly due the advancement in
network equipments, storage devices and processing
equipments. When implemented properly, offers the
highest level of security and reduces network traffic. In
addition, it reduces storage requirements and enable
efficient mutual authentication.

References
[1] DNS and BIND, Help for System Administrators by,

Paul Albitz & Cricket liu (4th edition) O’REILLY
2001.

[2] DNS Security, Antonio Lioy, Fabio Maino, Marius
 Marian, Daniele Mazzocchi Dipartimento di
 Automatica e Informatica Politecnico di Torino
 Torino (Italy), Terena Networking Conference, 22-25
 May 2000.
[3] CERT/CC Denial of Service Attacks,
 http://www.cert.org/tech_tips
 /denial_of_service.html, April 23, 2009.
[4] RIPE NCC, May 3, 2009,
 http://www.ripe.net/news/global-root-server.html.
[5] DDoS Attacks on Root Nameservers,
 http://en.wikipedia.org/wiki/Distributed
 _denial_of_service_attacks_on_root_
 Nameservers, 4 May 2009.
[6] DoS Attacks, 5 May 2009,
 http://d.root-servers.org/october21.txt,
[7] DNS Spoofing Techniques, April 26, 2009,

 http://www.securesphere.net/download
 /papers/dnsspoof.html.
[8] Practical Domain Name System Security: A
 Survey of Common Hazards and Preventative
 Measures by Nicholas A. Plante. College of
 Computer and Information Science Northeastern
 University, Boston MA, 2003.
[9] DNS Cache Poisoning Attacks, May 1,2009,
 http://www.checkpoint.com/defense/advisories/
 public/dnsvideo/index.html.
[10] BIND 9 DNS Cache Poisoning by Amit Klein.
 http://www.trusteer.com/files
 /BIND_9_DNS_Cache_
 poisoning.pdf, May 4, 2009.
[11] US-CERT Vulnerability Note, May 3, 2009,
 http://www.kb.cert.org/vuls/id/800113.
[12] A New Approach to DNS Security (DNSSEC)
 Giuseppe Ateniese, Department of Computer
 Science and JHU Information Security Institute,
 Johns Hopkins University, 3400 North Charles
 Street, Baltimore, MD 21218, USA, 2001
 ateniese@cs.jhu.edu..
 Stefan Mangard Institute for Applied Information
 Processing and Communications (IAIK)
 Graz University of Technology, Inffeldgasse 16a
 8010 Graz, Austria stefan.mangard@iaik.at

mailto:ateniese@cs.jhu.edu
mailto:stefan.mangard@iaik.at

	Introduction
	It is known that DNS is weak from several aspects [2]. Using
	DNS Security.
	TSIG

	The DNS Security Extensions
	Conclusions
	References

