
Firewall implementation and testing

Patrik Ragnarsson, Niclas Gustafsson

E-mail: ragpa737@student.liu.se, nicgu594@student.liu.se

Supervisor: David Byers, davby@ida.liu.se
Project Report for Information Security Course

Linkpings universitetet, Sweden

Abstract

Almost every machine on the internet today is pro-
tected by a firewall. Many of them are misconfigured
which is seldom discovered due to poor testing. This ar-
ticle summarizes our experiences in setting up and test-
ing our own firewall, as well as performing a penetra-
tion attack from an external machine to find misconfig-
urations. The article also describes the tools we have
used and how we used some of them.

1. Introduction

Today almost every network is protected by a fire-
wall and people tend to heavily rely on them for security.
However studies have shown that firewalls are very of-
ten misconfigured. One big reason for this is that they
are often not tested thoroughly enough. This results in a
situation where many people believe that their systems
are protected, but in fact they are not. We believe that
the problem is that today there are no good ways to sys-
tematically test the configuration of your firewall.

The purpose of this article is to present our experi-
ences in assessing the security of a firewall that is pro-
tecting the most common internet services.

We start by explaining the steps in setting up and
configuring our firewall, we then proceed into the test-
ing of our firewall. Our configuration is then exposed
to penetration testing. Our findings from testing and at-
tacking are then summarized. The report ends with our
conclusions and experiences from assessing the security
of firewalls.

2. Setup

To simulate a real network set up without actually
having several physical servers we have been using vir-
tual Linux machines. Our networks consisted of 10 vir-
tual machines, each running its own service. Three ma-

chines where placed in a demilitarized zone (DMZ) net-
work, five was placed in a local area network (LAN),
one machine acted as an external host (representing the
internet) and one machine connected all these subnets
and acted as a firewall.

2.1. LAN

The local area network was supposed to simulate
an office network running internal services and worksta-
tions. The hosted services were web server, name server
and mail server. One of the workstations utilized net-
work address translation (NAT).

2.2. DMZ

Separated from the office network was the demilita-
rized zone. It housed the same services as the LAN, but
accessible from external sources. The reason for sep-
arating networks in this manner is to keep external at-
tackers limited to this subnet hence away from the LAN
machines.

2.3. Firewall

Connecting all of our subnets was the firewall and
routing machine. Iptables served as firewall software.
The firewall was configured according to requirements
given to us, these requirements can be found in Ap-
pendix A.

3. Firewall configuration

Our general design philosophy when configuring
our firewall was to drop all traffic as default and make
exceptions for the services running. The only excep-
tion to this was the local area network, from which we
allowed any outbound traffic apart from the traffic we
specifically blocked. A complete list of our firewall con-
figuration can be found in Appendix B.

Figure 1. Overview of the network

3.1. Name server

The external name server running in the DMZ was
supposed to be reachable from external sources, this was
done by allowing udp packets on port 53 to pass through
to the name server. The same name server was also sup-
posed to be able to query the internal LAN name server,
this was allowed in the same way. The external name
server should also be able to respond to queries, this was
obtained by allowing any outgoing udp packets. Since
the external name server might need to query other name
severs on the internet, udp packets on port 53 from the
external name server to an external source on the inter-
net was also allowed.

3.2. Mail server

To make the external mail server reachable from the
internet, tcp traffic on port 25 was opened. The same
port was also opened between the DMZ and the LAN, to
allow the external server to connect to the internal. Hosts
on the LAN was not supposed to be able to connect to
any other mail server than the internal one, therefore all
outgoing traffic on port 25 from the LAN was blocked,
with the mail server as an exception.

3.3. Web server

The only requirement regarding web servers was
that the external web server on the DMZ should be view-
able from the internet. This was obtained by allowing
tcp traffic on port 80 to be able to pass through from the
internet to the web server in the DMZ.

3.4. ICMP

We decided to block all ICMP traffic to our subnets,
however we did decide to open up a few types of ICMP
packets directed at the firewall itself. The ones we de-
cided to open up was ping and traceroute. It might be
arguable if these should be open, since they might be
use for several different attacks, but we felt that it did
more good than harm.

3.5. Other

Other exceptions added to the firewall was tcp pack-
ets on port 22 from inside the LAN, directed at the fire-
wall itself. This is of course to allow ssh connections
to the firewall itself, this is mainly for when configuring
the firewall. We also allowed the Routing Information
Protocol (RIP), this was done by accepting udp packets
on port 520. All traffic from the firewall, to the firewall
was also opened up.

4. Tools

These are the tools we used for testing our firewall.
Some of them where used solely to verify that specific
rules worked, others where used in a more general way
to find mistakes in our configuration.

4.1. ping

Before blocking ping-packets to the LAN and
DMZ, ping was used for verifying reach-ability and that
our machines where up and running. We found ping
very useful during the initial phase of setting up the fire-
wall, but it was not used very much in the later stages of
testing.

4.2. telnet

Telnet was used to test the connection to our mail
servers. We simulated real SMTP conversations. Telnet
is very useful, but yet simple to use, to test almost any
service.

4.3. tcpdump

tcpdump is used to dump all traffic on a network in-
terface. It is possible to filter traffic in many ways, i.e.
on protocol, host or port. We used it to see how far our
traffic got when setting up the firewall rules. Using tcp-
dump we could see if we had blocked a certain service
by mistake.

4.4. traceroute

We used traceroute to determine the route a packet
travels across our networks. It was mainly used to test
if we had correctly blocked the traceroute ICMP-traffic
targeted at our subnets. We also used traceroute when
we discovered a routing problem in our firewall, caused
by a poorly written iptables rule regarding RIP traffic.

4.5. dig

dig is used to query DNS servers. We used it to test
that our rules worked in the right way. We also used it
to test the reachability of the DNS server of the other
group.

4.6. nmap

nmap is a very powerful port scanner. It can scan
specific hosts or entire networks. nmap includes a lot of
different types of scans, for example ”TCP SYN scan”
or ”SYN Stealth Scan”. nmap is also good at determine

which operating system and software is running on tar-
geted hosts. We used nmap to scanned the two subnets
(LAN and DMZ) to find hosts online, and to find open
ports on the hosts. It was also used to scan the firewall
of the other group.

5. Testing

The goal when testing our own firewall was mainly
to verify that the iptables rules worked as intended. We
had a list of all the requirements and all of our rules and
simply tested them one by one. When testing a service
we connected to machines on all three subnets (external,
DMZ and LAN). From these machines we tested if the
service was usable or not using the appropriate tool de-
scribed above. If the test corresponded to the firewall re-
quirements we marked it as ”ok”, if it did not we started
working on that rule again, and repeated the test. Using
this method we where able to verify that all of our fire-
wall rules worked and what was supposed to be blocked
was blocked. We hoped that any mistakes we had made
would be discovered by the other group while penetra-
tion testing our firewall. The requirements can be found
in Appendix A.

6. Penetration Testing

We started the penetration testing against the other
group by port scanning their firewall using nmap with
default settings. The default scan in nmap is a ”TCP
SYN scan”, it sends a SYN packet to the host on a
specific port and if a SYN-ACK packet is returned, the
port is open. This does not work if the target host have
blocked the ICMP echo-request/response (ping) pack-
ets, which the other group had. We where then forced
to use the ”SYN Stealth Scan” with ICMP pings turned
off. This gave however no results, neither did any of the
other scans we did of the firewall. We concluded that the
firewall itself was not penetrable at this stage and moved
on to the other machines.

6.1. SYN Stealth Scan

A ”SYN Stealth Scan” of their subnet
(10.19.2.0/24) revealed two machines with open
ports, 10.19.2.10 had port 80 open, 10.19.2.11 had port
25 open. We knew from setting up our own network that
these where their public web and mail servers. We then
accidentally ran a ”TCP connect() scan” on their subnet
from our host machine running all the virtual servers
and it revealed something interesting. We discovered
another mail server 10.19.2.141 with port 25 open, this
was not discovered during our initial port scan from our

own virtual machine. We tried to connect to the mail
server using telnet, and it succeeded. We where not
able to find a way to exploit this, but it was clearly a
misconfiguration.

Now that we had the IP addresses of three of their
machines, we decided to try source address spoofing at-
tacks. These are performed by pretending to be some-
one else (hopefully someone with access to the targeted
host) while scanning and trying to connect. We started
by performing the same port scans we previously had
tried, but with the built-in spoofing function of nmap.
We also configured an alias on our network interface to
use the spoofed IP as our own. Neither of these two
ways of spoofing gave us anything new.

6.2. UDP scans

We also tried running UDP scans on the whole sub-
net, in hope to find open UDP ports. UDP scans works
by sending empty UDP headers to ports. ICMP port un-
reachable error (type 3, code 3) is returned for closed
ports, ICMP unreachable errors (type 3, codes 1, 2, 9,
10, or 13) is returned for filtered ports and a UDP packet
is returned for open ports (or no packet at all).

This proved to be way to time consuming because
of the targeted systems limiting the ICMP error mes-
sage rate[1], only allowing a small number of ports be-
ing scanned per second, therefore the scanning was hor-
ribly slow. A nice feature with nmap tough, is that it
detects the rate limit and slows down the scanning, so
no unnecessary network traffic is sent.

7. Conclusion

When we started this project our goal was to come
up with some kind of formal method for testing and as-
sessing the security of a firewall. During the project we
have realized how complicated testing a firewall really
is. Firewall configurations differ so much from each
other that coming up with one formal method for test-
ing them all would be very hard.

We feel that the most important thing when testing a
firewall is knowledge. Knowledge of how the protocols
work, knowledge of the tools you are using and knowl-
edge of the network you are trying to protect. With this
knowledge, testing the firewall rules you have written
should be pretty straight forward, but time consuming.
One could make this process easier by writing a script
which automates the process for future uses, but this
script would still be restricted to that machine and that
network.

8. Related work

8.1. Firewall Testing, 2005

A diploma thesis[2] written by Gerhard Zaugg.
This is a very extensive paper on the creation of a fire-
wall testing tool. It contains a lot of information about
firewalls in general and about tools and protocols used
while testing. Even though a part of the thesis is about
the implementation of the testing tool, information in
great detail can be found in the article. The topic of this
thesis might differ a bit from ours but a lot of the tools
and protocols are the same. The article describes these
topics in a much lower-level and a more detailed way
than we do. His conclusions are are about his own tool
and therefore it is hard to compare them to ours.

8.2. A Quantitative Study of Firewall
Configuration Errors, 2004

This is an IEEE article[3] written by Avishai Wool
at Tel Aviv University. Avishai Wool have been lead-
ing the development of Firewall Analyzer software
(www.algosec.com) for several years. In this arti-
cle his focus is on Check Points FireWall-1 product
(www.checkpoint.com). During two years, he have col-
lected data from 37 firewalls. He has then analyzed the
data and compiled the 12 most common misconfigura-
tions.

In the end of the article, Avishai Wool investigate
how different operating system and different firewall
versions correlate to the 12 missconfigurations. A last,
he draws the conclusion that smaller rule sets leads to
less misconfigurations.

References

[1]: Request for Comments: 1812, Requirements
for IP Version 4 Routers (section 4.3.2.8 Rate Limiting)

[2]: Gerhard Zaugg. Firewall Testing, 2005
[3]: Avishai Wool. A Quantitative Study of Firewall

Configuration Errors, 2005

Appendix: A

Firewall requirements

Description
General policy

1 Hosts on the Internet MUST NOT initiate connections to hosts on the LAN or DMZ,
other than explicitly provided by this policy.

2 Hosts on the DMZ MUST NOT initiate connections to hosts on the LAN or the Inter-
net, other than explicitly provided by this policy.

3 Hosts on the LAN MAY initiate connections to the Internet and DMZ, other than
explicitly prohibited by this policy.
DNS

4 Hosts on the Internet MUST be able to send DNS queries to the external DNS server.
5 Hosts on the DMZ MUST be able to send DNS queries to the internal DNS server.
6 The external DNS server MUST be able to respond to DNS queries.
7 The external DNS server MUST be able to send DNS queries to hosts on the Internet.

Mail
8 Hosts on the Internet MUST be able to connect to SMTP on the external mail server.
9 The external mail server MUST be able to connect to SMTP on the internal mail

server.
10 The internal mail server MUST be able to connect to SMTP on mail servers on the

Internet.
11 Hosts on the LAN other than the internal mail server MUST NOT be able to connect

to SMTP on hosts on the Internet or the DMZ.
Web

12 Hosts on the Internet MUST be able to connect using HTTP to the external web server.
Firewall

13 The firewall MUST be able to communicate with itself.
14 The firewall MUST accept RIP traffic from the Internet.
15 The firewall MUST accept ssh connections from the LAN.
16 The firewall MUST NOT accept any other traffic from the LAN, DMZ, or Internet.

Other
17 The firewall must implement source NAT for LAN hosts in 192.168.12.0/24.
18 IPSec connections MUST be permitted from the Internet to the LAN.
19 Inappropriate ICMP types MUST NOT be permitted from the Internet to the LAN.
20 The firewall MUST prevent source address spoofing from the LAN as much as possi-

ble.
21 The firewall MUST prevent source address spoofing from the DMZ as much as possi-

ble.
22 The firewall MUST prevent source address spoofing from the Internet as much as

possible.
23 The firewall MUST log all attempts of source address spoofing.

Appendix: B

Iptables script

Req. Code
Setting up variables
IPTABLES=”/sbin/iptables”

EXT IF=”eth0”
DMZ IF=”eth1”
LAN IF=”eth2”

DMZ NET=”10.19.7.0/25”
LAN NET=”10.19.7.128/25”

EXT IP=”10.19.0.7”
DMZ IP=”10.19.7.1”
LAN IP=”10.19.7.129”

WEB DMZ IP=”10.19.7.10”
MAIL DMZ IP=”10.19.7.11”
DNS DMZ IP=”10.19.7.12”

WEB LAN IP=”10.19.7.140”
MAIL LAN IP=”10.19.7.141”
DNS LAN IP=”10.19.7.142”
SERVER LAN IP=”10.19.7.143”

NAT LAN IP=”192.168.12.100”
$IPTABLES N LOG SPOOF
$IPTABLES N ICMP PKT IN
$IPTABLES N ICMP PKT OUT
$IPTABLES -A FORWARD -m state –state ESTABLISHED -j ACCEPT
$IPTABLES -A FORWARD -m state –state RELATED -j ACCEPT

4 $IPTABLES -A FORWARD -i $EXT IF -d $DNS DMZ IP -p UDP –dport 53 -j AC-
CEPT

5 $IPTABLES -A FORWARD -i $DMZ IF -d $DNS LAN IP -p UDP –dport 53 -j AC-
CEPT

6 $IPTABLES -A FORWARD -s $DNS DMZ IP -p UDP -j ACCEPT
7 $IPTABLES -A FORWARD -s $DNS DMZ IP -p UDP –dport 53 -o $EXT IF -j AC-

CEPT
8 $IPTABLES -A FORWARD -i $EXT IF -d $MAIL DMZ IP -p TCP –dport 25 -j

ACCEPT

9 $IPTABLES -A FORWARD -s $MAIL DMZ IP -d $MAIL LAN IP -p TCP –dport
25 -j ACCEPT

10 $IPTABLES -A FORWARD -s $MAIL LAN IP -o $EXT IF -p TCP –dport 25 -j
ACCEPT

11 $IPTABLES -A FORWARD -s $DNS LAN IP -o $DMZ IF -p TCP –dport 25 -j
DROP
$IPTABLES -A FORWARD -s $WEB LAN IP -o $DMZ IF -p TCP –dport 25 -j
DROP
$IPTABLES -A FORWARD -s $SERVER LAN IP -o $DMZ IF -p TCP –dport 25 -j
DROP

$IPTABLES -A FORWARD -s $DNS LAN IP -o $EXT IF -p TCP –dport 25 -j
DROP
$IPTABLES -A FORWARD -s $WEB LAN IP -o $EXT IF -p TCP –dport 25 -j
DROP
$IPTABLES -A FORWARD -s $SERVER LAN IP -o $EXT IF -p TCP –dport 25 -j
DROP

12 $IPTABLES -A FORWARD -i $EXT IF -d $WEB DMZ IP -p TCP –dport 80 -j AC-
CEPT

13 $IPTABLES -A INPUT -i lo -j ACCEPT
$IPTABLES -A OUTPUT -o lo -j ACCEPT

14 $IPTABLES -A INPUT -i $EXT IF -d $EXT IP -p UDP –dport 520 -j ACCEPT
$IPTABLES -A OUTPUT -o $EXT IF -s $EXT IP -p UDP –sport 520 -j ACCEPT

15 $IPTABLES -A INPUT -s $LAN NET -d $LAN IP -p tcp –dport 22 -m state –state
NEW,ESTABLISHED –j ACCEPT
$IPTABLES -A OUTPUT -p tcp –sport 22 -m state –state ESTABLISHED –j AC-
CEPT

17 $IPTABLES -t nat -A POSTROUTING -s 192.168.12.0/24 -o $EXT IP -j SNAT –to-
source $EXT IP

19 $IPTABLES -A INPUT -p icmp -j ICMP PKT IN
$IPTABLES -A OUTPUT -p icmp -j ICMP PKT OUT

$IPTABLES -A ICMP PKT IN -p icmp –icmp-type echo-reply -j ACCEPT
$IPTABLES -A ICMP PKT IN -p icmp –icmp-type echo-request -j ACCEPT

$IPTABLES -A ICMP PKT OUT -p icmp –icmp-type echo-reply -j ACCEPT
$IPTABLES -A ICMP PKT OUT -p icmp –icmp-type echo-request -j ACCEPT

$IPTABLES -A ICMP PKT IN -p icmp –icmp-type destination-unreachable -j AC-
CEPT
$IPTABLES -A ICMP PKT IN -p icmp –icmp-type time-exceeded -j ACCEPT

$IPTABLES -A ICMP PKT OUT -p icmp –icmp-type destination-unreachable -j AC-
CEPT

$IPTABLES -A ICMP PKT OUT -p icmp –icmp-type time-exceeded -j ACCEPT
20 $IPTABLES -A INPUT -i $LAN IF -s ! $LAN NET -j LOG SPOOF
21 $IPTABLES -A INPUT -i $DMZ IF -s ! $DMZ NET -j LOG SPOOF
22 $IPTABLES -A INPUT -i $EXT IF -s $LAN NET -j LOG SPOOF

$IPTABLES -A INPUT -i $EXT IF -s $DMZ NET -j LOG SPOOF
23 $IPTABLES -A LOG SPOOF -j LOG

$IPTABLES -A LOG SPOOF -j DROP
1,2 $IPTABLES -P INPUT DROP

$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

3 $IPTABLES -A FORWARD -i $LAN IF -o $EXT IF -j ACCEPT
$IPTABLES -A FORWARD -i $LAN IF -o $DMZ IF -j ACCEPT

