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Abstlract 

This report covers SELinux in theory and in practice. 

It consists of an overview of SELinux and the results of 

our practical work of developing a customized policy 

for the ping command. The report confirms the 

effectiveness of SELinux and shows that by now SELinux 

has even become fairly easy to configure.  

1. Introduction 

Mandatory access control (MAC) is known as a 

strong means for protecting confidentiality and integrity 

of data. Developed for the use in high-end systems that 

deal with very sensitive information, MAC was used 

exclusively in such systems for a long time. In 

mainstream operating systems the strongest access 

control was discretionary access control (DAC), like the 

well-known Unix DAC with users, groups and rwx 

permissions.  

With the release of SELinux by the NSA in 2000, 

MAC is starting to become common even in mainstream 

operating systems as Linux. Introducing MAC into 

Linux is clearly a gain of security. However, SELinux is 

often criticized to be too complex to use. In fact, one 

must have a very good knowledge about SELinux in 

order to configure it correctly. 

Section 2 provides necessary background information. 

The theoretical part is completed by section 3, which 

describes the SELinux policy. The practical part starts with 

a general description of what you have to do in order to run 

SELinux. It is followed by a section about our project of 

developing a customized security policy for the ping 

command on a given system. Finally section 6 gives our 

conclusions about SELinux and this project.  

2. Background 

In this section we give some background information 

that can be useful for understanding SELinux. We use 

the terms subject and object as they are commonly used 

in the context of computer security. Thus we refer to 

subjects as entities that can perform actions, which are 

usually processes and to objects as entities that access is 

performed on like for example files, directories or 
network_sockets. 

2.1 Multilevel Security 

Every organization and business wishes to secure its 

information especially such information whose leakage 

results in greater loss. However they are not willing to 

lose any of their information but they tolerate the leakage 

of little and some non critical information. This issue 

becomes more significant for the defense community, 

where the loss of sensitive information always result in 

huge loss, so such organizations never tolerate even a 

small information leakage. So as a remedy to this multi 

level security (MLS) technique is introduced in which 

both people and information is categorized into different 

levels of trust and sensitivity. The level of trust that is 

given to user is termed as “clearance level” and the level 

of trust given to the information is termed as 

“classification level”. There are four different types of 

classification levels, namely: Unclassified, Confidential, 

Secret and Top Secret. So now in order to access the 

classified information user is first required to establish 

his trustworthiness  by earning clearance to some security 

level, for instance if user succeeded to earn Secret 

clearance then he is entitled to view any of the 

information with the Secret tag. 

2.2 Access Control  

Access control refers to the mechanism that is used to 

permit or deny the right of an individual or application 

to perform some actions. It works by comparing the 

identity of an individual or application with an access 

control database. Access Control systems include File 

permissions (such as create, read, edit or delete on a file 

server), Program permissions (such as the right to 

execute a program on an application server) and Data 

rights (such as the right to retrieve or update 



information in a database). In the following we will 

discuss various techniques of access control. 

2.2.1 Discretionary Access Control 

Discretionary access control (DAC) is an access policy 

determined by the owner of the object. The owner decides 

whether to grant or reject access to the object along with 

the privileges. 

2.2.2 Mandatory Access Control 

Mandatory access control is an access policy established 

by the operating system. Both subjects and objects are 

assigned security attributes which are used to determine if a 

subject may access an object. The rules defining which 

accesses are allowed are stored in the security policy. This 

policy cannot be changed by the users and on every access 

the operating system enforces all policy rules to be fulfilled. 

This means for example that, unlike in DAC, users cannot 

grant privileges to other users.  

2.2.3 Role Based Access Control 

Role Based Access Control (RBAC) is another type of 

access control.  It is also called as role based security. 

This type of access control is used to restrict system 

access to authorized users only. In RBAC each user is 

associated with a certain role and on the basis of those 

roles all the access decisions are made. 

In RBAC each user is granted a membership to 

certain roles based on operations which he is authorized 

to perform. The operations that user is permitted to 

perform is determined by his role. In other words the 

access policy is defined for each role and on the basis of 

which a user is allowed or restricted to access a certain 

resource. RBAC also allowed to reap the benefits of least 

privileged access i.e. Access policy is written in such a 

way that the user can be given no more privilege that is 

necessary to perform the operation for which the user is 

entitled to perform. 

2.3 Why is MAC necessary? 

DAC alone is not effective enough in protecting the 

system from the effects of exploited vulnerabilities in 

application software. This can be illustrated by the 

example of the ping command on a Linux operating 

system. Since ping needs to create raw sockets, which 

only the superuser root is allowed to do, ping must be 

run by the user root. But ping is a useful command that 

also normal users should be able to run. Hence ping is a 

setuid executable, enabling a normal user to run the 

ping command, which then effectively runs under the 

superuser root. If this command contains a vulnerability, 

an attacker can (for example by a buffer overflow attack) 

gain access to the system as root.  

The standard way to prevent such kinds of attacks 

has been to try to eliminate vulnerabilities from 

software, but as long as software is written by people, 

there will always be bugs or vulnerabilities in software. 

Mandatory access control with SELinux, in contrast, 

offers a totally different way of preventing such attacks. 

If it is properly configured, it can confine a command to 

the least privilege, so that an exploitation of 

vulnerability in software can cause no harm on the 

operating system.  

2.4 SELinux Architecture 

SELinux is an implementation of the FLASK 

architecture that has been developed to simplify the 

application of MAC. The main feature of the FLASK 

architecture is the separation of the policy enforcement 

from the access decisions. Access decisions are made 

according to security attributes of subjects and objects, 

the so called security contexts. We will explain this 

security context in more detail in section 3.3. A simple 

layout of the FLASK architecture is shown in Figure 1. 
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The policy enforcement server catches the access that 

a subject attempts to perform on an object and gathers 

their security contexts. These security contexts are 

passed to the security server that makes the decision. To 

speed up this process the access vector cache (AVC) is 

placed between policy enforcement server and security 

server. After the security server has made the decision, 

the result is put into the AVC where it can be retrieved 

by the policy enforcement server. Then the policy server 

applies this decision by granting or denying the access, 

whereas in the latter case an avc: denied log message is 

created.  

It should be noted that SELinux does not replace the 

standard Linux DAC, but is rather placed after the DAC 

checks. This means that an access that is denied by the 

DAC is not checked by SELinux and hence no log about 

this denied access is produced.  

3. SELinux Policy 

In this section we describe the main concepts of the 

SELinux policy. The SELinux policy is quite well 

documented Stephen Smalley's SELinux policy guide [1] 

and in the Red Hat SELinux user [2], so the information 

in this section is based on these two sources. In SELinux 

every subject and object has a security context, which 

describes its security attributes that are used for access 

decisions. The most important part of the security 

context is the type attribute which is used for type 

enforcement. Closely related to type enforcement is 

domain transition, which is the change of a subject's 

type in its security context. Besides, at least two other 

components of the security context, user and role, are 

used to make access decisions more fine-grained.  

3.1 Security Context 

The security context is assigned to every subject and 

object. It is made up of four components, which are user, 

role, type and an MLS component. The single 

components are divided by colons, so an example 

security context can look like; 
 

system_u:object_r:etc_t:s0. 

 

In the following sections we will further explain the 

purpose of the user, role and type component. If MLS is 

not used, the fourth component is not necessary and is 

always set to s0. Since MLS was not part of the project, 

we will not consider this component in our further 

investigations.  

As mentioned before, every subject and object has a 

security context. For files on a file system with extended 

attributes like ext3 the security context is stored directly 

in the inode. For new objects or subjects a security 

context is created according to a global policy 

determined in different files in the directory 

/etc/selinux/default/context/. For example a new file 

created in /etc/ usually gets the security context 
system_u:object_r:etc_t:s0. 

3.2 Type Enforcement  

The main concept for access decisions in SELinux is 

type enforcement. In the traditional type enforcement 

model each subject is assigned a domain and each object 

is assigned a type. An access is granted if there exists a 

rule that allows subjects of the given domain to access 

objects of the given type.  

In SELinux the domain of a subject and the type of 

an object both correspond to the type component of the 

security context. By convention every type ends in _t, 

like etc_t, which is the type of files in /etc or user_t 

which is a commonly used domain in certain SELinux 

policies. Compared to the standard type enforcement 

model, the type enforcement mechanism of SELinux is 

extended. SELinux additionally uses security classes and 

permissions for those classes that allow a finer access 

control. The security classes group subjects or objects 

into certain classes, examples for security classes are 

file, dir, tcp_socket for objects or process for subjects. 

Every class is assigned permissions that determine the 

actions that can be executed on subjects or objects of the 

respective class. The file class, for example, has 

permissions like create, read, write or execute, whereas 

the process class has permissions like transition, which 

means the process transitions into another domain, or 

sigchld. Please note that the term permission does not 

mean that classes are granted these permissions 

automatically, it rather describes actions that can be 

permitted by explicit allow rules in the policy. An allow 

rule always has the following form: 
 

allow source_type target_type:class permission; 

 

A rule that allows the type passwd_t to read and write 

files of the type shadow_t looks as follows: 
 

allow passwd_t shadow_t:file {read write}; 

 

One can see here that the two permissions can be 

grouped together in curly braces instead of writing two 

different rules. This is also possible for the types and 

class.  

3.3 Domain Transition 

When a process is started, it inherits the domain of 

the process that has created it. In order to be run in its 

own domain confining the process, a domain transition 

has to take place. To allow a domain transition three 

rules are required. These rules become obvious in the 

following example. A user runs its shell in the domain 



user_u. When he executes the passwd command, it 

should transition to the domain passwd_t. The executable 

file of the passwd command has the type passwd_exec_t. 

Then the following three rules allowe the domain 

transition: 
 

allow user_t passwd_exec_t:file {getattr execute}; 

allow passwd_t passwd_exec_t:file entrypoint; 

allow user_t passwd_t:process transition; 

 

The first rule allows processes in the domain user_t 

to execute files of the type passwd_exec_t, which means 

that the user is allowed to execute passwd in his shell. 

The second rule specifies an entry point. This means 

that the domain passwd_t can be entered by executing a 

file of the type passwd_exec_t. Finally the last rule 

allows a domain transition from the user_t domain to 

the passwd_t domain. Note that all three rules are 

necessary for the domain transition to be allowed.  

However, these rules only allow a domain transition; 

they do not automatically make the process change its 

domain. For this purpose an explicit type_transition 

rule is required:  
 

type_transition user_t passwd_exec_t:process passwd_t; 

 

Since domain transition is very often necessary, there 

exist, as for many other often used groups of rules, 

macros that simplify creating domain transition rules. 

Using these macros the rules for the type transition can 

be written in the following way: 
 

domain_entry_file(passwd_t, passwd_exec_t) 

domain_auto_trans(user_t,passwd_exec_t,passwd_t) 

3.4 Users and Roles 

Besides type enforcement, SELinux also uses users 

and roles to make access decisions. Users can be 

considered similar to the Linux users, however users in 

SELinux are not identical to Linux users. Linux users 

are rather mapped to SELinux users. Common SELinux 

users are root or user_u. Except for root every SELinux 

user ends on _u by convention. The purpose of these 

different users is to further refine the access decisions 

based on type enforcement. The distinction between 

different users makes it possible to restrict a domain to 

special users.  

However, the decision, if a user may access a domain 

is not made directly dependent on the user. For this 

decision an additional layer, the role is used. Every 

SELinux user can have different roles and for every 

domain there must be defined which roles may access it. 

As for types and users, there also exist naming 

conventions for roles, which is that all roles end in _r.   

4. SELinux in Practice 

Here we describe how SELinux can be used and 

configured in practice. Since we only ran SELinux on 

Debian lenny during our project, we mainly concentrate 

on how to deploy SELinux on a Debian system. 

Sometimes we also refer to fedora because fedora is the 

distribution with the biggest out of the box support for 

SELinux.   

4.1 Installation and Basic Configuration 

In contrast to fedora, SELinux is usually not 

automatically installed on a Debian system. In order to 

use SELinux on Debian lenny with the targeted policy, 

the packages selinux-basics and selinux-policy-default 

have to be installed. After that selinux-activate needs to 

be run to configure the boot manager and PAM and to 

create the file /.autorelabel. After a reboot the file 

system will be relabeled according to the information in 

/.autorelabel and after that SELinux should be running 

in permissive mode. This means access which is not 

allowed by the policy will not be blocked, but only 

logged. If forbidden accesses should be blocked SELinux 

must run in enforcing mode. During runtime the mode 

can be set via the command setenforce, where setenforce 

1 changes to enforcing and schanges to permissive.  

The basic configuration is done in the file 

/etc/selinux/config. There one can determine in which 

mode SELinux should boot, if it should be enabled and 

which policy is used.  

4.2 Targeted and Strict Policy 

The first time after the release of SELinux, 

configuring the policy was very complex and difficult. 

Hence effort has been made to simplify this by 

developing the reference policy. Due to its modular 

design the reference policy has simplified policy 

configuration considerably. Today it is available in two 

versions, the targeted and strict policy.  

The special feature of the targeted policy compared to 

the strict policy is the unconfined_t domain. Processes 

that run in this unconfined_t domain do not have many 

access restrictions and effectively run as if they would do 

without SELinux. In fact, most processes run in the 

unconfined_t domain and by default only some targeted 

daemons run in their own domains. This really 

simplifies the work for the administrator, who does not 

have to configure the SELinux policy for every 

application he wants to use on the system. However, the 

administrator is not restricted to having only some 

targeted daemons confined by running in their own 

domain. For every application that he can define its own 

domain, write a policy module for this application and 



load this module into the policy. Thus starting from a 

fully functional system, a policy with all desired 

confinements can be developed.  

In contrast to that the strict policy requires own 

domains for every process. Since we did not use the 

strict policy through our project and Linux distributions 

like Debian lenny or fedora only offer the targeted policy 

by default, we concentrate on the targeted policy. 

4.3 Developing a Customized Policy Module 

Under the Targeted Policy 

Under the targeted policy an application can easily be 

confined by developing a policy module for this 

application. At this place we give a step by step guide 

that describes how a customized policy module can be 

developed. How this is used in practice will be described 

in detail in section 5.2.  

The first step of policy module development for an 

application myapp is to create the files myapp.te and 

myapp.fc. The myapp.te file should contain the new type 

definitions, probably these will be myapp_exec_t for the 

executable file and myapp_t for the domain, and the 

appropriate domain transitions. If at this point further 

necessary rules are already known, they can also be put 

into myapp.te. The myapp.fc file is used to describe the 

file contexts that have to be added to the policy. Every 

line in the myapp.fc must consist of three columns. The 

first column contains the file that should get a new 

security context. This is probably the executable file of 

the application and perhaps additional files. The second 

column usually contains --, which means that all kinds 

of files are considered in the file context. Finally, the 

third column contains the desired security context.  

With these two files a first version of the policy 

module can be compiled. On Debian lenny a suitable 

makefile can be found under: 
 

/usr/share/selinux/default/include/Makefile. 

 

after executing make: 
 

-f  /usr/share/selinux/default/include/Makefile, 

 

the module can be loaded with 
 

make load -f usr/share/selinux/default/include/Makefile 

 

For the first use of the module, the security contexts 

still have to be applied to the files mentioned in 

myapp.fc. This is done with the restorecon command. 

Now SELinux should be run in permissive mode to get 

logs about possible access denials for the application. 

These denial messages can be used to add further allow 

rules to the myapp.te file to give the application the 

needed privileges. The allow rules can either be created 

manually from the log messages or by using the 

audit2allow tool, which can automatically create allow 

rules from the logfile. With the updated .te file the 

module can then be recompiled and the application be 

run with the updated policy. Now there might be new 

access denials, which can be treated in the same way as 

before. This whole procedure of running the application, 

looking at the log files, adding new rules to the .te file 

and recompiling the policy module should be repeated 

until the application runs as it is supposed to be. At that 

point SELinux can be switched into the enforcing mode 

again. 

5. A Customized Policy for ping 

This section covers the results of our practical work 

with SELinux. Our task was to develop a customized 

policy for a modified ping command on a given system. 

The policy should effectively prevent successful attacks 

on this ping command.  

5.1 Initial Situation 

The system we worked on was Debian lenny run in a 

UML virtual machine. On this system the modified ping 

command was installed under the name pong with the 

executable /bin/pong. The modification to the ordinary 

ping command was a vulnerability in then handling of 

the -I option that can be exploited to get a root shell. By 

running an exploit according to given instructions we 

could confirm the vulnerability. 

The basic SELinux packages were already installed, 

the only new package we installed was selinux-policy-

default. We installed this package to replace the 

deprecated policy packages that Debian had offered until 

etch.  

5.2 Development of the Policy for the pong 

Command 

In developing the policy for pong we proceeded as 

described previously. We started with the minimal 

policy that provides a transition of pong to the pong_t 

domain on running. Our initial pong.te file looked the 

following: 
 

policy_module(pong,1.0.0) 

######################################## 

# 

# Declarations 

# 

type pong_t; 

type pong_exec_t; 

role unconfined_r types pong_t; 

require 

{ 

type unconfined_t; 

} 

domain_type(pong_t) 

domain_entry_file(pong_t, pong_exec_t) 

domain_auto_trans(unconfined_t,pong_exec_t,pong_t) 



 

First our new types for pong are defined. This is 

necessary for being able to use them. pong_exec_t is the 

type that the executable /bin/pong is to be labeled with 

and pong_t is the domain that pong should run in.  After 

that we allow the role unconfined_r to transition to the 

domain pong_t. The last 3 lines take care of the domain 

transition. First it is announced that the type pong_t is a 

domain. This is necessary because the policy checker, 

who is called on compiling the policy, only allows 

transitions to domain types. Then the following two 

lines allow the transition and request an automatic 

transition to the domain pong_t.   

Besides, the pong.fc file is needed to set up the correct 

security context. It only contains the following line: 
 

/bin/pong    --    

gen_context(system_u:object_r:pong_exec_t,s0) 

 

After compiling this first version of the module and 

loading it, we could start the actual policy development. 

With SELinux running in permissive mode we executed 

pong. The logs of denied accesses in the pong_t domain 

showed us which permissions pong needs and we could 

use this to write the actual policy. After some evaluating 

and testing we got a policy that allows pong to operate 

and at the same time prevents pong from causing harm 

to the system when its vulnerability is attacked. The 

policy has the following allow rules. First pong needs to 

be allowed to be used capabilities in order to be run with 
setuid. 

 
# use capabilities 

allow pong_t self:capability { setuid net_rawnet_admin}; 

 

The following three rules allow pong to read 

configuration files. The first rule allows pong to search 

the /etc directory, the second rule allows to read 

standard configuration files in /etc and the third rule 

allows to read network related configuration files like 
/etc/resolv.conf  
 

# accessing configuration files, e.g. /etc/resolv.conf 

allow pong_t etc_t:dir search; 

allow pong_t etc_t:file { read getattr }; 

allow pong_t net_conf_t:file { read getattr }; 

 

The following rules allow pong to use shared 

libraries. 
 

# use libraries 

allow pong_t ld_so_cache_t:file { read getattr }; 

allow pong_t lib_t:dir search; 

allow pong_t lib_t:file { read getattr execute}; 

allow pong_t lib_t:lnk_file read; 

 

Since pong writes output to the terminal, we have to 

allow this, which is done with the following rules. 

Besides, we allow pong to be terminated with Ctrl+c 

over the terminal, which is done in the third rule.  
 

# accessing the terminal 

allow pong_t unconfined_tty_device_t:chr_file { read 

write getattr ioctl}; 

allow pong_t getty_t:fd use; 

allow pong_t unconfined_t:process sigchld; 

 

The following rules are necessary for pong to work 

properly. They allow the creation of rawip sockets and 

sending and receiving of rawip packets. 
 

# sending and receiving ICMP packets 

allow pong_t self:rawip_socket { write getopt create 

read setopt ioctl bind }; 

allow pong_t self:packet_socket {read write ioctl bind 

create connect getattr setopt}; 

allow pong_t netif_t:netif { rawip_send rawip_recv 

udp_send udp_recv}; 

allow pong_t node_t:rawip_socket node_bind; 

allow pong_t node_t:node rawip_recv; 

allow pong_t lo_node_t:node rawip_recv; 

 

Additionally, we allow creation of UDP sockets and 

sending and receiving of UDP packets. This is needed if 

pong needs to use DNS. 
 

# DNS 

allow pong_t self:udp_socket { read write create connect 

getattr setopt}; 

allow pong_t node_t:node udp_recv; 

allow pong_t dns_port_t:udp_socket recv_msg; 

 

Finally, we allow pong to receive packets that have 

not been processed with IPSEC. This must be allowed 

since pong does not process its ICMP packets via 

IPSEC. 
 

# allow receiving unlabeled packets, refers to IPSEC 

allow pong_t unlabeled_t:association recvfrom; 

 

With this policy compiled and loaded, we can set 

SELinux in the enforcing mode again to show that our 

policy is applicable for preventing the vulnerability in 

pong from causing harm. But first we demonstrate that 

pong can really be exploited to get a root shell.  
 

danes231@pong3:~/ 

pong/src$ id 

uid=15083(danes231) gid=15083(danes231) 

groups=15083(danes231) 

context=unconfined_u:unconfined_r:unconfin 

ed_t:s0 

danes231@pong3:~/ 

pong/src$ /bin/pong I 

`cat nopsled shellcode returns` 

224.224.224.224 

ping: unknown iface 

� � � � � � � � � � � � � � � � � � � � � � � � 
� � � � � � � � � � � � � � � � � � � � � � � � 
� � � � � � � � � � � � � � � � � � � � � � � � 
� � � � � � � � � � � � � � � � � � � � � � � � 
� � � � � � � � � � � � � � � � � � � � � � � � 
� � � � � � � � � � � � � � � � � � � � � 1 � F 1 � 
� � � [ 1 � C � � C 
� 
� � S 

̀  ����/bin/shXAAAABB 
BB� � � � � � � � � � � � � � � � � � � � � � � 
� 
sh3.2# 

id 

uid=0(root) gid=15083(danes231) 

groups=15083(danes231) 

context=unconfined_u:unconfined_r:pong_t:s 

0 



Here we can see that a new shell has been started. By 

checking the id of the current user, we can confirm that 

we have got a root shell. Now we put SELinux in the 

enforcing mode. We need to be root for that. 
 

danes231@pong3:~/ 

pong/src$ su 

Password: 

pong3:/ 

home/danes231/pong/src# 

setenforce 1 

pong3:/ 

home/danes231/pong/src# exit 

 

Now it is time to test, if SELinux can prevent 

successful attacks on the vulnerable pong command. We 

run pong with the same arguments that have given us a 

root shell before. 
 

danes231@pong3:~/ 

pong/src$ /bin/pong I 

`cat nopsled shellcode returns` 

224.224.224.224 

ping: unknown iface 

� � � � � � � � � � � � � � � � � � � � � � � � 
� � � � � � � � � � � � � � � � � � � � � � � � 
� � � � � � � � � � � � � � � � � � � � � � � � 
� � � � � � � � � � � � � � � � � � � � � � � � 
� � � � � � � � � � � � � � � � � � � � � � � � 
� � � � � � � � � � � � � � � � � � � � � 1 � F 1 � 
� � � [ 1 � C � � C 
� 
� � S 

̀ ����/bin/shXAAAABB 
BB� � � � � � � � � � � � � � � � � � � � � � � 
� 
type=1400 audit(1241358474.990:38): avc: 

denied { search } for pid=1354 

comm="pong" name="bin" dev=ubda ino=18294 

scontext=unconfined_u:unconfined_r:pong_t: 

s0 tcontext=system_u:object_r:bin_t:s0 

tclass=dir 

type=1400 audit(1241358474.990:39): avc: 

denied { search } for pid=1354 

comm="pong" name="bin" dev=ubda ino=18294 

scontext=unconfined_u:unconfined_r:pong_t: 

s0 tcontext=system_u:object_r:bin_t:s0 

tclass=dir 

type=1400 audit(1241358474.990:43): avc: 

denied { search } for pid=1354 

comm="pong" name="bin" dev=ubda ino=18294 

scontext=unconfined_u:unconfined_r:pong_t: 

s0 tcontext=system_u:object_r:bin_t:s0 

tclass=dir 

^C 

danes231@pong3:~/ 

pong/src$ id 

uid=15083(danes231) gid=15083(danes231) 

groups=15083(danes231) 

context=unconfined_u:unconfined_r:unconfin 

ed_t:s0 

 

We see that SELinux already prevents the shellcode 

from searching the /bin direcory for a shell. So the 

attack is stopped at the first step. If we check the current 

user, we see that it is still the user we started pong with. 

Finally we want to make sure that pong still can fulfill 

its intended tasks. 
 

danes231@pong3:~/ 

pong/src$ /bin/pong 

localhost 

PING localhost(127.0.0.1) 56(84) bytes of 

data. 

64 bytes from localhost (127.0.0.1): 

icmp_seq=1 ttl=64 time=0.073 ms 

64 bytes from localhost (127.0.0.1): 

icmp_seq=2 ttl=64 time=0.057 ms 

64 bytes from localhost (127.0.0.1): 

icmp_seq=3 ttl=64 time=0.059 ms 

^C 

localhost 

statistics 3 

packets transmitted, 3 received, 0% 

packet loss, time 2019ms 

rtt min/avg/max/mdev = 

0.057/0.063/0.073/0.007 ms 

danes231@pong3:~/ 

pong/src$ /bin/pong 

www.google.de 

PING www.l.google.com(209.85.137.104) 

56(84) bytes of data. 

64 bytes from mginf104. 

google.com 

(209.85.137.104): icmp_seq=1 ttl=242 

time=35.3 ms 

64 bytes from mginf104. 

google.com 

(209.85.137.104): icmp_seq=2 ttl=242 

time=35.2 ms 

64 bytes from mginf104. 

google.com 

(209.85.137.104): icmp_seq=3 ttl=242 

time=35.3 ms 

64 bytes from mginf104. 

google.com 

(209.85.137.104): icmp_seq=4 ttl=242 

time=35.7 ms 

64 bytes from mginf104. 

google.com 

(209.85.137.104): icmp_seq=5 ttl=242 

time=36.6 ms 

^C 

www. 

l.google.com statistics 5 

packets transmitted, 5 received, 0% 

packet loss, time 4063ms 

rtt min/avg/max/mdev = 

35.226/35.659/36.637/0.571 ms 

 

This shows that our policy really does what it should. 

It grants only those privileges to pong that it really 

needs and thus prevents the exploitation of the 

vulnerability. At the same time pong can still execute its 

desired tasks. 

6. Conclusions 

In this project we got a picture of SELinux in theory 

by studying relevant literature and in practice by 

implementing a security policy for lab systems. 

Although we only used the basic features of SELinux, 

we can say that SELinux provides a significant gain in 

security compared to normal Linux.  

Furthermore, the well-known criticism that SELinux 

be too complex and difficult to configure is in our 

opinion no longer applicable. The targeted policy, which 

is by default included in Debian, makes it possible to 

increase the security of the system bit by bit with the 

system always keeping usable. 

With this in mind, SELinux can be considered to be 

an effective and feasible way of increasing a system's 

security. 
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