
Mandatory Access Control & SELinux

Daniel Estor Muteer Arshad

Email: {danes231,mutar655}@student.liu.se

Supervisor: David Byers, {davby@ida.liu.se}

Project Report for Information Security Course

Linköpings universitetet, Sweden

Abstlract

This report covers SELinux in theory and in practice.

It consists of an overview of SELinux and the results of

our practical work of developing a customized policy

for the ping command. The report confirms the

effectiveness of SELinux and shows that by now SELinux

has even become fairly easy to configure.

1. Introduction

Mandatory access control (MAC) is known as a

strong means for protecting confidentiality and integrity

of data. Developed for the use in high-end systems that

deal with very sensitive information, MAC was used

exclusively in such systems for a long time. In

mainstream operating systems the strongest access

control was discretionary access control (DAC), like the

well-known Unix DAC with users, groups and rwx

permissions.

With the release of SELinux by the NSA in 2000,

MAC is starting to become common even in mainstream

operating systems as Linux. Introducing MAC into

Linux is clearly a gain of security. However, SELinux is

often criticized to be too complex to use. In fact, one

must have a very good knowledge about SELinux in

order to configure it correctly.

Section 2 provides necessary background information.

The theoretical part is completed by section 3, which

describes the SELinux policy. The practical part starts with

a general description of what you have to do in order to run

SELinux. It is followed by a section about our project of

developing a customized security policy for the ping

command on a given system. Finally section 6 gives our

conclusions about SELinux and this project.

2. Background

In this section we give some background information

that can be useful for understanding SELinux. We use

the terms subject and object as they are commonly used

in the context of computer security. Thus we refer to

subjects as entities that can perform actions, which are

usually processes and to objects as entities that access is

performed on like for example files, directories or
network_sockets.

2.1 Multilevel Security

Every organization and business wishes to secure its

information especially such information whose leakage

results in greater loss. However they are not willing to

lose any of their information but they tolerate the leakage

of little and some non critical information. This issue

becomes more significant for the defense community,

where the loss of sensitive information always result in

huge loss, so such organizations never tolerate even a

small information leakage. So as a remedy to this multi

level security (MLS) technique is introduced in which

both people and information is categorized into different

levels of trust and sensitivity. The level of trust that is

given to user is termed as “clearance level” and the level

of trust given to the information is termed as

“classification level”. There are four different types of

classification levels, namely: Unclassified, Confidential,

Secret and Top Secret. So now in order to access the

classified information user is first required to establish

his trustworthiness by earning clearance to some security

level, for instance if user succeeded to earn Secret

clearance then he is entitled to view any of the

information with the Secret tag.

2.2 Access Control

Access control refers to the mechanism that is used to

permit or deny the right of an individual or application

to perform some actions. It works by comparing the

identity of an individual or application with an access

control database. Access Control systems include File

permissions (such as create, read, edit or delete on a file

server), Program permissions (such as the right to

execute a program on an application server) and Data

rights (such as the right to retrieve or update

information in a database). In the following we will

discuss various techniques of access control.

2.2.1 Discretionary Access Control

Discretionary access control (DAC) is an access policy

determined by the owner of the object. The owner decides

whether to grant or reject access to the object along with

the privileges.

2.2.2 Mandatory Access Control

Mandatory access control is an access policy established

by the operating system. Both subjects and objects are

assigned security attributes which are used to determine if a

subject may access an object. The rules defining which

accesses are allowed are stored in the security policy. This

policy cannot be changed by the users and on every access

the operating system enforces all policy rules to be fulfilled.

This means for example that, unlike in DAC, users cannot

grant privileges to other users.

2.2.3 Role Based Access Control

Role Based Access Control (RBAC) is another type of

access control. It is also called as role based security.

This type of access control is used to restrict system

access to authorized users only. In RBAC each user is

associated with a certain role and on the basis of those

roles all the access decisions are made.

In RBAC each user is granted a membership to

certain roles based on operations which he is authorized

to perform. The operations that user is permitted to

perform is determined by his role. In other words the

access policy is defined for each role and on the basis of

which a user is allowed or restricted to access a certain

resource. RBAC also allowed to reap the benefits of least

privileged access i.e. Access policy is written in such a

way that the user can be given no more privilege that is

necessary to perform the operation for which the user is

entitled to perform.

2.3 Why is MAC necessary?

DAC alone is not effective enough in protecting the

system from the effects of exploited vulnerabilities in

application software. This can be illustrated by the

example of the ping command on a Linux operating

system. Since ping needs to create raw sockets, which

only the superuser root is allowed to do, ping must be

run by the user root. But ping is a useful command that

also normal users should be able to run. Hence ping is a

setuid executable, enabling a normal user to run the

ping command, which then effectively runs under the

superuser root. If this command contains a vulnerability,

an attacker can (for example by a buffer overflow attack)

gain access to the system as root.

The standard way to prevent such kinds of attacks

has been to try to eliminate vulnerabilities from

software, but as long as software is written by people,

there will always be bugs or vulnerabilities in software.

Mandatory access control with SELinux, in contrast,

offers a totally different way of preventing such attacks.

If it is properly configured, it can confine a command to

the least privilege, so that an exploitation of

vulnerability in software can cause no harm on the

operating system.

2.4 SELinux Architecture

SELinux is an implementation of the FLASK

architecture that has been developed to simplify the

application of MAC. The main feature of the FLASK

architecture is the separation of the policy enforcement

from the access decisions. Access decisions are made

according to security attributes of subjects and objects,

the so called security contexts. We will explain this

security context in more detail in section 3.3. A simple

layout of the FLASK architecture is shown in Figure 1.

SUBJECT
(Application,

Process)

SUBJECT
(user)

OBJECT
(device)

OBJECT

(file)

context (a,b)

Policy

Enforcement

Server Security

Server

AVC

context (a)

context (b)

Figure 1 FLASK Architecture [2]

Binary Policy

(matrix)

The policy enforcement server catches the access that

a subject attempts to perform on an object and gathers

their security contexts. These security contexts are

passed to the security server that makes the decision. To

speed up this process the access vector cache (AVC) is

placed between policy enforcement server and security

server. After the security server has made the decision,

the result is put into the AVC where it can be retrieved

by the policy enforcement server. Then the policy server

applies this decision by granting or denying the access,

whereas in the latter case an avc: denied log message is

created.

It should be noted that SELinux does not replace the

standard Linux DAC, but is rather placed after the DAC

checks. This means that an access that is denied by the

DAC is not checked by SELinux and hence no log about

this denied access is produced.

3. SELinux Policy

In this section we describe the main concepts of the

SELinux policy. The SELinux policy is quite well

documented Stephen Smalley's SELinux policy guide [1]

and in the Red Hat SELinux user [2], so the information

in this section is based on these two sources. In SELinux

every subject and object has a security context, which

describes its security attributes that are used for access

decisions. The most important part of the security

context is the type attribute which is used for type

enforcement. Closely related to type enforcement is

domain transition, which is the change of a subject's

type in its security context. Besides, at least two other

components of the security context, user and role, are

used to make access decisions more fine-grained.

3.1 Security Context

The security context is assigned to every subject and

object. It is made up of four components, which are user,

role, type and an MLS component. The single

components are divided by colons, so an example

security context can look like;

system_u:object_r:etc_t:s0.

In the following sections we will further explain the

purpose of the user, role and type component. If MLS is

not used, the fourth component is not necessary and is

always set to s0. Since MLS was not part of the project,

we will not consider this component in our further

investigations.

As mentioned before, every subject and object has a

security context. For files on a file system with extended

attributes like ext3 the security context is stored directly

in the inode. For new objects or subjects a security

context is created according to a global policy

determined in different files in the directory

/etc/selinux/default/context/. For example a new file

created in /etc/ usually gets the security context
system_u:object_r:etc_t:s0.

3.2 Type Enforcement

The main concept for access decisions in SELinux is

type enforcement. In the traditional type enforcement

model each subject is assigned a domain and each object

is assigned a type. An access is granted if there exists a

rule that allows subjects of the given domain to access

objects of the given type.

In SELinux the domain of a subject and the type of

an object both correspond to the type component of the

security context. By convention every type ends in _t,

like etc_t, which is the type of files in /etc or user_t

which is a commonly used domain in certain SELinux

policies. Compared to the standard type enforcement

model, the type enforcement mechanism of SELinux is

extended. SELinux additionally uses security classes and

permissions for those classes that allow a finer access

control. The security classes group subjects or objects

into certain classes, examples for security classes are

file, dir, tcp_socket for objects or process for subjects.

Every class is assigned permissions that determine the

actions that can be executed on subjects or objects of the

respective class. The file class, for example, has

permissions like create, read, write or execute, whereas

the process class has permissions like transition, which

means the process transitions into another domain, or

sigchld. Please note that the term permission does not

mean that classes are granted these permissions

automatically, it rather describes actions that can be

permitted by explicit allow rules in the policy. An allow

rule always has the following form:

allow source_type target_type:class permission;

A rule that allows the type passwd_t to read and write

files of the type shadow_t looks as follows:

allow passwd_t shadow_t:file {read write};

One can see here that the two permissions can be

grouped together in curly braces instead of writing two

different rules. This is also possible for the types and

class.

3.3 Domain Transition

When a process is started, it inherits the domain of

the process that has created it. In order to be run in its

own domain confining the process, a domain transition

has to take place. To allow a domain transition three

rules are required. These rules become obvious in the

following example. A user runs its shell in the domain

user_u. When he executes the passwd command, it

should transition to the domain passwd_t. The executable

file of the passwd command has the type passwd_exec_t.

Then the following three rules allowe the domain

transition:

allow user_t passwd_exec_t:file {getattr execute};

allow passwd_t passwd_exec_t:file entrypoint;

allow user_t passwd_t:process transition;

The first rule allows processes in the domain user_t

to execute files of the type passwd_exec_t, which means

that the user is allowed to execute passwd in his shell.

The second rule specifies an entry point. This means

that the domain passwd_t can be entered by executing a

file of the type passwd_exec_t. Finally the last rule

allows a domain transition from the user_t domain to

the passwd_t domain. Note that all three rules are

necessary for the domain transition to be allowed.

However, these rules only allow a domain transition;

they do not automatically make the process change its

domain. For this purpose an explicit type_transition

rule is required:

type_transition user_t passwd_exec_t:process passwd_t;

Since domain transition is very often necessary, there

exist, as for many other often used groups of rules,

macros that simplify creating domain transition rules.

Using these macros the rules for the type transition can

be written in the following way:

domain_entry_file(passwd_t, passwd_exec_t)

domain_auto_trans(user_t,passwd_exec_t,passwd_t)

3.4 Users and Roles

Besides type enforcement, SELinux also uses users

and roles to make access decisions. Users can be

considered similar to the Linux users, however users in

SELinux are not identical to Linux users. Linux users

are rather mapped to SELinux users. Common SELinux

users are root or user_u. Except for root every SELinux

user ends on _u by convention. The purpose of these

different users is to further refine the access decisions

based on type enforcement. The distinction between

different users makes it possible to restrict a domain to

special users.

However, the decision, if a user may access a domain

is not made directly dependent on the user. For this

decision an additional layer, the role is used. Every

SELinux user can have different roles and for every

domain there must be defined which roles may access it.

As for types and users, there also exist naming

conventions for roles, which is that all roles end in _r.

4. SELinux in Practice

Here we describe how SELinux can be used and

configured in practice. Since we only ran SELinux on

Debian lenny during our project, we mainly concentrate

on how to deploy SELinux on a Debian system.

Sometimes we also refer to fedora because fedora is the

distribution with the biggest out of the box support for

SELinux.

4.1 Installation and Basic Configuration

In contrast to fedora, SELinux is usually not

automatically installed on a Debian system. In order to

use SELinux on Debian lenny with the targeted policy,

the packages selinux-basics and selinux-policy-default

have to be installed. After that selinux-activate needs to

be run to configure the boot manager and PAM and to

create the file /.autorelabel. After a reboot the file

system will be relabeled according to the information in

/.autorelabel and after that SELinux should be running

in permissive mode. This means access which is not

allowed by the policy will not be blocked, but only

logged. If forbidden accesses should be blocked SELinux

must run in enforcing mode. During runtime the mode

can be set via the command setenforce, where setenforce

1 changes to enforcing and schanges to permissive.

The basic configuration is done in the file

/etc/selinux/config. There one can determine in which

mode SELinux should boot, if it should be enabled and

which policy is used.

4.2 Targeted and Strict Policy

The first time after the release of SELinux,

configuring the policy was very complex and difficult.

Hence effort has been made to simplify this by

developing the reference policy. Due to its modular

design the reference policy has simplified policy

configuration considerably. Today it is available in two

versions, the targeted and strict policy.

The special feature of the targeted policy compared to

the strict policy is the unconfined_t domain. Processes

that run in this unconfined_t domain do not have many

access restrictions and effectively run as if they would do

without SELinux. In fact, most processes run in the

unconfined_t domain and by default only some targeted

daemons run in their own domains. This really

simplifies the work for the administrator, who does not

have to configure the SELinux policy for every

application he wants to use on the system. However, the

administrator is not restricted to having only some

targeted daemons confined by running in their own

domain. For every application that he can define its own

domain, write a policy module for this application and

load this module into the policy. Thus starting from a

fully functional system, a policy with all desired

confinements can be developed.

In contrast to that the strict policy requires own

domains for every process. Since we did not use the

strict policy through our project and Linux distributions

like Debian lenny or fedora only offer the targeted policy

by default, we concentrate on the targeted policy.

4.3 Developing a Customized Policy Module

Under the Targeted Policy

Under the targeted policy an application can easily be

confined by developing a policy module for this

application. At this place we give a step by step guide

that describes how a customized policy module can be

developed. How this is used in practice will be described

in detail in section 5.2.

The first step of policy module development for an

application myapp is to create the files myapp.te and

myapp.fc. The myapp.te file should contain the new type

definitions, probably these will be myapp_exec_t for the

executable file and myapp_t for the domain, and the

appropriate domain transitions. If at this point further

necessary rules are already known, they can also be put

into myapp.te. The myapp.fc file is used to describe the

file contexts that have to be added to the policy. Every

line in the myapp.fc must consist of three columns. The

first column contains the file that should get a new

security context. This is probably the executable file of

the application and perhaps additional files. The second

column usually contains --, which means that all kinds

of files are considered in the file context. Finally, the

third column contains the desired security context.

With these two files a first version of the policy

module can be compiled. On Debian lenny a suitable

makefile can be found under:

/usr/share/selinux/default/include/Makefile.

after executing make:

-f /usr/share/selinux/default/include/Makefile,

the module can be loaded with

make load -f usr/share/selinux/default/include/Makefile

For the first use of the module, the security contexts

still have to be applied to the files mentioned in

myapp.fc. This is done with the restorecon command.

Now SELinux should be run in permissive mode to get

logs about possible access denials for the application.

These denial messages can be used to add further allow

rules to the myapp.te file to give the application the

needed privileges. The allow rules can either be created

manually from the log messages or by using the

audit2allow tool, which can automatically create allow

rules from the logfile. With the updated .te file the

module can then be recompiled and the application be

run with the updated policy. Now there might be new

access denials, which can be treated in the same way as

before. This whole procedure of running the application,

looking at the log files, adding new rules to the .te file

and recompiling the policy module should be repeated

until the application runs as it is supposed to be. At that

point SELinux can be switched into the enforcing mode

again.

5. A Customized Policy for ping

This section covers the results of our practical work

with SELinux. Our task was to develop a customized

policy for a modified ping command on a given system.

The policy should effectively prevent successful attacks

on this ping command.

5.1 Initial Situation

The system we worked on was Debian lenny run in a

UML virtual machine. On this system the modified ping

command was installed under the name pong with the

executable /bin/pong. The modification to the ordinary

ping command was a vulnerability in then handling of

the -I option that can be exploited to get a root shell. By

running an exploit according to given instructions we

could confirm the vulnerability.

The basic SELinux packages were already installed,

the only new package we installed was selinux-policy-

default. We installed this package to replace the

deprecated policy packages that Debian had offered until

etch.

5.2 Development of the Policy for the pong

Command

In developing the policy for pong we proceeded as

described previously. We started with the minimal

policy that provides a transition of pong to the pong_t

domain on running. Our initial pong.te file looked the

following:

policy_module(pong,1.0.0)

Declarations

type pong_t;

type pong_exec_t;

role unconfined_r types pong_t;

require

{

type unconfined_t;

}

domain_type(pong_t)

domain_entry_file(pong_t, pong_exec_t)

domain_auto_trans(unconfined_t,pong_exec_t,pong_t)

First our new types for pong are defined. This is

necessary for being able to use them. pong_exec_t is the

type that the executable /bin/pong is to be labeled with

and pong_t is the domain that pong should run in. After

that we allow the role unconfined_r to transition to the

domain pong_t. The last 3 lines take care of the domain

transition. First it is announced that the type pong_t is a

domain. This is necessary because the policy checker,

who is called on compiling the policy, only allows

transitions to domain types. Then the following two

lines allow the transition and request an automatic

transition to the domain pong_t.

Besides, the pong.fc file is needed to set up the correct

security context. It only contains the following line:

/bin/pong --

gen_context(system_u:object_r:pong_exec_t,s0)

After compiling this first version of the module and

loading it, we could start the actual policy development.

With SELinux running in permissive mode we executed

pong. The logs of denied accesses in the pong_t domain

showed us which permissions pong needs and we could

use this to write the actual policy. After some evaluating

and testing we got a policy that allows pong to operate

and at the same time prevents pong from causing harm

to the system when its vulnerability is attacked. The

policy has the following allow rules. First pong needs to

be allowed to be used capabilities in order to be run with
setuid.

use capabilities

allow pong_t self:capability { setuid net_rawnet_admin};

The following three rules allow pong to read

configuration files. The first rule allows pong to search

the /etc directory, the second rule allows to read

standard configuration files in /etc and the third rule

allows to read network related configuration files like
/etc/resolv.conf

accessing configuration files, e.g. /etc/resolv.conf

allow pong_t etc_t:dir search;

allow pong_t etc_t:file { read getattr };

allow pong_t net_conf_t:file { read getattr };

The following rules allow pong to use shared

libraries.

use libraries

allow pong_t ld_so_cache_t:file { read getattr };

allow pong_t lib_t:dir search;

allow pong_t lib_t:file { read getattr execute};

allow pong_t lib_t:lnk_file read;

Since pong writes output to the terminal, we have to

allow this, which is done with the following rules.

Besides, we allow pong to be terminated with Ctrl+c

over the terminal, which is done in the third rule.

accessing the terminal

allow pong_t unconfined_tty_device_t:chr_file { read

write getattr ioctl};

allow pong_t getty_t:fd use;

allow pong_t unconfined_t:process sigchld;

The following rules are necessary for pong to work

properly. They allow the creation of rawip sockets and

sending and receiving of rawip packets.

sending and receiving ICMP packets

allow pong_t self:rawip_socket { write getopt create

read setopt ioctl bind };

allow pong_t self:packet_socket {read write ioctl bind

create connect getattr setopt};

allow pong_t netif_t:netif { rawip_send rawip_recv

udp_send udp_recv};

allow pong_t node_t:rawip_socket node_bind;

allow pong_t node_t:node rawip_recv;

allow pong_t lo_node_t:node rawip_recv;

Additionally, we allow creation of UDP sockets and

sending and receiving of UDP packets. This is needed if

pong needs to use DNS.

DNS

allow pong_t self:udp_socket { read write create connect

getattr setopt};

allow pong_t node_t:node udp_recv;

allow pong_t dns_port_t:udp_socket recv_msg;

Finally, we allow pong to receive packets that have

not been processed with IPSEC. This must be allowed

since pong does not process its ICMP packets via

IPSEC.

allow receiving unlabeled packets, refers to IPSEC

allow pong_t unlabeled_t:association recvfrom;

With this policy compiled and loaded, we can set

SELinux in the enforcing mode again to show that our

policy is applicable for preventing the vulnerability in

pong from causing harm. But first we demonstrate that

pong can really be exploited to get a root shell.

danes231@pong3:~/

pong/src$ id

uid=15083(danes231) gid=15083(danes231)

groups=15083(danes231)

context=unconfined_u:unconfined_r:unconfin

ed_t:s0

danes231@pong3:~/

pong/src$ /bin/pong I

`cat nopsled shellcode returns`

224.224.224.224

ping: unknown iface

�
�
�
�
�
� 1 � F 1 �
� � � [1 � C � � C
�
� � S

̀ ����/bin/shXAAAABB
BB�
�
sh3.2#

id

uid=0(root) gid=15083(danes231)

groups=15083(danes231)

context=unconfined_u:unconfined_r:pong_t:s

0

Here we can see that a new shell has been started. By

checking the id of the current user, we can confirm that

we have got a root shell. Now we put SELinux in the

enforcing mode. We need to be root for that.

danes231@pong3:~/

pong/src$ su

Password:

pong3:/

home/danes231/pong/src#

setenforce 1

pong3:/

home/danes231/pong/src# exit

Now it is time to test, if SELinux can prevent

successful attacks on the vulnerable pong command. We

run pong with the same arguments that have given us a

root shell before.

danes231@pong3:~/

pong/src$ /bin/pong I

`cat nopsled shellcode returns`

224.224.224.224

ping: unknown iface

�
�
�
�
�
� 1 � F 1 �
� � � [1 � C � � C
�
� � S

̀ ����/bin/shXAAAABB
BB�
�
type=1400 audit(1241358474.990:38): avc:

denied { search } for pid=1354

comm="pong" name="bin" dev=ubda ino=18294

scontext=unconfined_u:unconfined_r:pong_t:

s0 tcontext=system_u:object_r:bin_t:s0

tclass=dir

type=1400 audit(1241358474.990:39): avc:

denied { search } for pid=1354

comm="pong" name="bin" dev=ubda ino=18294

scontext=unconfined_u:unconfined_r:pong_t:

s0 tcontext=system_u:object_r:bin_t:s0

tclass=dir

type=1400 audit(1241358474.990:43): avc:

denied { search } for pid=1354

comm="pong" name="bin" dev=ubda ino=18294

scontext=unconfined_u:unconfined_r:pong_t:

s0 tcontext=system_u:object_r:bin_t:s0

tclass=dir

^C

danes231@pong3:~/

pong/src$ id

uid=15083(danes231) gid=15083(danes231)

groups=15083(danes231)

context=unconfined_u:unconfined_r:unconfin

ed_t:s0

We see that SELinux already prevents the shellcode

from searching the /bin direcory for a shell. So the

attack is stopped at the first step. If we check the current

user, we see that it is still the user we started pong with.

Finally we want to make sure that pong still can fulfill

its intended tasks.

danes231@pong3:~/

pong/src$ /bin/pong

localhost

PING localhost(127.0.0.1) 56(84) bytes of

data.

64 bytes from localhost (127.0.0.1):

icmp_seq=1 ttl=64 time=0.073 ms

64 bytes from localhost (127.0.0.1):

icmp_seq=2 ttl=64 time=0.057 ms

64 bytes from localhost (127.0.0.1):

icmp_seq=3 ttl=64 time=0.059 ms

^C

localhost

statistics 3

packets transmitted, 3 received, 0%

packet loss, time 2019ms

rtt min/avg/max/mdev =

0.057/0.063/0.073/0.007 ms

danes231@pong3:~/

pong/src$ /bin/pong

www.google.de

PING www.l.google.com(209.85.137.104)

56(84) bytes of data.

64 bytes from mginf104.

google.com

(209.85.137.104): icmp_seq=1 ttl=242

time=35.3 ms

64 bytes from mginf104.

google.com

(209.85.137.104): icmp_seq=2 ttl=242

time=35.2 ms

64 bytes from mginf104.

google.com

(209.85.137.104): icmp_seq=3 ttl=242

time=35.3 ms

64 bytes from mginf104.

google.com

(209.85.137.104): icmp_seq=4 ttl=242

time=35.7 ms

64 bytes from mginf104.

google.com

(209.85.137.104): icmp_seq=5 ttl=242

time=36.6 ms

^C

www.

l.google.com statistics 5

packets transmitted, 5 received, 0%

packet loss, time 4063ms

rtt min/avg/max/mdev =

35.226/35.659/36.637/0.571 ms

This shows that our policy really does what it should.

It grants only those privileges to pong that it really

needs and thus prevents the exploitation of the

vulnerability. At the same time pong can still execute its

desired tasks.

6. Conclusions

In this project we got a picture of SELinux in theory

by studying relevant literature and in practice by

implementing a security policy for lab systems.

Although we only used the basic features of SELinux,

we can say that SELinux provides a significant gain in

security compared to normal Linux.

Furthermore, the well-known criticism that SELinux

be too complex and difficult to configure is in our

opinion no longer applicable. The targeted policy, which

is by default included in Debian, makes it possible to

increase the security of the system bit by bit with the

system always keeping usable.

With this in mind, SELinux can be considered to be

an effective and feasible way of increasing a system's

security.

References

[1] Stephen Smalley, “Configuring the SELinux Policy”,
revised 2005
http://www.nsa.gov/research/_files/selinux/papers/policy
2.pdf

[2] Red Hat SELinux Guide, 2005
http://www.redhat.com/docs/manuals/enterprise/RHE
L-4-Manual/selinux-guide/index.html

[3] Fedora 10, Security enhance Linux User Guide, 2008
http://docs.fedoraproject.org/selinux-user-
guide/f10/en-US/index.html

[4] Red Hat Enterprise Linux Deployment Guide, 2008
http://www.redhat.com/docs/manuals/enterprise/RHE
L-5-manual/Deployment_Guide-en-US/index.html

[5] Chris Runge, “SELinux: A New Approach to Secure
Systems”, 2004
http://www.redhat.com/f/pdf/sec/WHP001USselinux.
pdf

[6] Debian Wiki, SELinux
http://wiki.debian.org/SELinux/Setup

[7] Wikipedia, Mandatory Access Control
http://en.wikipedia.org/wiki/Mandatory_access_contr
ol

