
A Phase Space Analysis of Network Protocols

Tobias Blom
Institution for Computer Science

Linköping University
Linköping Technical University

tobbl213@student.liu.se

Charles Hamel
Institution for Computer Science

Linköping University
Linköping Technical University

chaha936@student.liu.se

Abstract

We investigate the problem of a third party being able
to interfere into a TCP connection between two hosts by
exploiting the predictability of the sequence number gener-
ation mechanism used by one of the hosts.

This paper is largely based on a previous work published
in 2001 by Michal Zalewski. The original paper introduced
the notion of Spoofing Set and described a method to build
them by Phase Space Analysis in three-dimensional space.
We extend this method by analyzing using a higher number
of dimensions in order to reveal further weaknesses in the
Pseudo Random Number Generators used in modern oper-
ating systems and embedded systems.

Our goal is to determine if in fact this ability to use
higher dimensions is valuable from a practical point of view.
We have found that in some cases, this gives a 50% increase
in attack success probability. These results are tighly re-
lated to the specific PRNG used and thus no general con-
clusion can be made on the practical value of this method.

1 Introduction

The security of some protocols that the internet relies
on, such as TCP and DNS depends on random number gen-
eration. In the case of TCP, preventing blind connection
spoofing relies on the randomness of the initial sequence
number (ISN). In DNS, spoofing is also prevented through
the randomness of the query ID. A few years ago, a tech-
nique known as delayed coordinates was applied to attempt
prediction of ISNs, and it was found that many implemen-
tations of TCP were very vulnerable to this kind of attack.

1.1 Goal

The practical goal of this paper is to investigate if some
previously untested network equipment and embedded sys-

tems, such as PDAs, network attached printers and others,
are vulnerable to a similar attack described in the earlier
papers. We will in present our results on the analysis of se-
lected network devices and their TCP/IP stack with special
attention to their implementation of their pseudo-random
number generator (PRNG). These devices are potentially
much more vulnerable than the commonly used operating
systems, mainly because the number of design constraints
involved in their development, for example, the embedded
processor might not be fast enough to compute good quality
random numbers. We will also include the analysis of some
current operating systems to hopefully confirm that they are
no more vulnerable.

The theoretical aspect of our paper comes from the study
of various aspects related to chaotic system analysis. In
particular, we will study a phase-space reconstruction tech-
nique called delayed coordinates and its different parame-
ters. We will base our research on the previous work done
by Michal Zalewski [10], but will consider other implemen-
tations in hope of increasing the statistical value of the ex-
periment. Our implementation will give us the ability to
evaluate the method by extending it to n dimensions, or even
suggest the optimal number of dimensions using a tech-
nique called false nearest neighbor.

1.2 Structure

The first part of this paper covers the basic principles
needed to understand the method used for analysis, and it
will also give a good description of the parameters influenc-
ing the results.

The second part will cover the tools used over the course
of the research, followed a survey of several TCP/IP im-
plementations, from modern operating systems to embed-
ded systems that we have studied. We will conclude by
analysing the effect of different parameters on probability
of success of such an attack.

2 Methods and tools

This section will cover the background theory of the de-
layed coordinates method, with a discussion about the dif-
ferent parameters that effect the quality of the phase space
reconstruction, such as: Embedding time delay, Embedding
dimensions and the number of samples used for the recon-
struction. It also covers a description of the original tools
that were used as well as the new ones we created or altered
in order to modify the embedding parameters.

2.1 TCP/IP sequence numbers

The TCP/IP protocol relies on a three way handshake
process to establish a new connection [9]. This first step of
this process occurs when a client wants to establish a new
connection to a host on a specific port. It sends a packet
with the SYN Flag along with the Initial Sequence Num-
ber (ISN), a 32-bit random number to the host. This packet
is then acknowledged by the host which in turns generates
its own random number (Acknowledgement Number), and
sends it to the client. If the client receives a packet contain-
ing the ISN, it replies with a final acknowledgment to the
host, containing the Acknowledgement number, and at this
point the connection is established.

Sequence numbers are used to keep track of each packet
and thus ensure session integrity in TCP connections. In or-
der to protect against connection hijacking or data injection
by a third-party host, the ISN generated by either the host
or the client must be as unpredictible as possible.

The original RFC TCP specification [3] did not spec-
ify any requirement about the randomness of the initial se-
quence numbers. Thus, this aspect was often neglected by
the system developers, resulting in implementations pro-
ducing easily predictable sequence numbers.

In 2001, Michal Zalewski published a paper [10] review-
ing PRNG implementations used in network operating sys-
tems at that time. Many of them were found to be vulnerable
to blind-spoofing attacks, where an attacker could guess the
ISN and interfere with the connection. The same author one
year later published a follow-up report showing the progress
made by operating system vendors. In many cases, the soft-
ware providers had reacted promptly to the problem and that
resulted in a much minute attack probability.

2.2 Phase space analysis

A phase space is a representation of all the possible states
of a system, either linear or dynamic systems.

The generation of random numbers, such as in a good
ISN generator is of the latter kind. In order to construct
the phase space of a particular system we need to acquire a
series of measurements at successive time intervals, called

a time series. According to Thomas Scheriber, one of the
authors of the TISEAN (TIme SEries ANalysis) package,

“A time series can then be thought of as a
sequence of observations performed with some
measurement function. Since the (usually scalar)
sequence in itself does not properly represent the
(multimensional) phase space of the dynamical
system, one has to employ some technique to
unfold the multidimensional structure using the
available data” [7]

This is what we intend to do by using the following meth-
ods.

2.2.1 Delayed coordinates

One of the most important methods used to reconstruct the
phase space of a system is known as the “method of de-
lays”. The goal is to extract the hidden dependencies in
subsequent ISNs generated by a host. This method suggests
that we can achieve this goal by using previous samples of
the sequence as additional coordinates in the space (thereof
called the delayed coordinates).

The original paper suggests to use the first-order differ-
ence between samples in order to focus on the variation be-
tween samples, and not their absolute value. This method
proved to be quite successful since many PRNGs are based
on repetitive counter or time based algorithms, thus subse-
quent numbers are often only incremented. Supposing s a
series of n subsequent ISN samples from a host, we can use
the following equations to obtain a set of data points in the
phase space.

z[n] = s[n− 2]− s[n− 3]
y[n] = s[n− 1]− s[n− 2]
x[n] = s[n− 0]− s[n− 1]

This method can be generalized to n dimensions. The-
oretically, increasing the number of dimensions could pro-
vide deeper insight into dependencies between previous val-
ues. The original author suggested the use of three dimen-
sions mainly because this was an ideal choice for visualiza-
tion purposes [10]. Authors of the TISEAN package argue
that the ideal choice of the number of embedding dimen-
sions depends heavily on the application at hand. We will
try to determine this in our analysis.

2.2.2 Attractors

Using the set of the (x, y, z) data points calculated previ-
ously, we can plot the phase space and get a visual rep-
resentation of the complex behaviour of the random sys-
tem. The fact that each and every point relies on current

and previous values, potentially enables us to reveal pat-
terns that would have gone unnoticed with a linear represen-
tation. These patterns created are called Attractors. Often
unique, these abstract shapes in space illustrate where there
are higher densities of data points, giving clues to flaws in
the underlying PRNG algorithm.

Other than the number of embedding dimensions, we
suggest the accuracy of the attractor also depends on the
number of samples used in its creation. The original paper
used the arbitrary number of 50,000 samples to reconstruct
the phase spaces. This paper will try to determine the effect
of increasing this number.

2.2.3 Spoofing set

The goal of the attacker is to be able to predict the next ISN
from the host. Since the TCP/IP packet structure reserves
32 bits for the sequence number field, an attacker could
flood the host using 232 packets and achieve his goal. For-
tunately, considering the minimum size of a SYN packet,
which is 40 bytes, such an attack would represent 160 giga-
bytes of data transmitted in a short period of time, which is
still hardly achievable with current technology.

Our goal is to build a set of ISN values that are the most
probable of occurring, the choice of the size of this set is
arbitrary but is directly related to the amount of bandwidth
available to the attacker. The original paper suggested a size
of 5,000 packets, considering the bandwidth improvement
of consumer-grade internet connections in the recent years,
a bigger spoofing set can be considered and this paper will
explore this possibility.

Increasing the size of the spoofing set should intuitively
increase our chances of guessing the next ISN, since adding
possible values to the spoofing set will increase the proba-
bility that one of them is a correct guess of the next ISN.
As stated above, there is a practical upper limit to the size
of the spoofing set, but as network bandwidth and computer
processing power steadily increase, we can increase the size
of the spoofing set and analyze the effect of this.

2.2.4 Building a spoofing set using attractors

We can now use the attractor to build a good spoofing set;
first, we must realize that the higher density areas in the
phase space indicate a higher probability of finding the sys-
tem in this state. These are the areas where we have a higher
chance of guessing the right number. The key is in the set
of equations given above, notice that the x coordinate of a
point in space depends one the current ISN value s[t] and
the previous value s[t − 1]. Thus if we were an attacker
whose intention was to guess s[t], the ISN value at the at-
tack time.

This attacker would first have to query the host to get
three subsequent samples s[t − 1], s[t − 2], and s[t − 3].

Using these numbers, he could then calculate the y and z
coordinates, putting a m− 1 dimensional restriction on the
possible values of the x coordinate. In the case of a three
dimensional phase space, this would visually trace a line
L, perpendicular to the x plane. In the case where m, the
number of embedding dimensions is greater than three, L
would be a plane, and the number of subsequent samples
would be m.

Now that we have a set of possible x values, those that
intersect with L. We can then manipulate the above equa-
tion to find suitable candidates for the spoofing set.

s[t] = x[t]− s[t− 1]

Using the set of probable x values obtained at the pre-
vious step, and by knowing the previous number in the se-
quence, s[t− 1] we can include the value of s[t] as a candi-
date in our spoofing set.

If we cannot find any points in the attractor intersecting
with our restriction L, we use the generally accepted as-
sumption about attractor that “if a sequence exhibits strong
attractor behaviour, then future values in the sequence will
be close to the values used to construct previous points in
the attractor”. Thus we introduce the R1 parameter, this
initial, empirically selected radius reprensents the allowed
distance from our restriction L within which we accept can-
didate values.

The size of R1 is to be chosen so that we can generate a
non-empty spoofing set, i. e. it should not be too small but
at the point that a spoofing set can be generated, there is no
point in trying to increase the size of R1 any more.

In order to acheive the desired size of spoofing set, we
need to introduce another parameter, R2. Still using the
same reasoning, we assume that points close to our candi-
dates also have a probability of being the next in the se-
quence. Thus, for every c candidate in the spoofing set, we
include all the integer values from c−R2 to c + R2.

2.2.5 False nearest neighbors

A method to determine the minimum number of embedding
dimensions in a phase space was suggested by Kennel et al.
[6], a method called the false nearest neighbor method. This
method relies on the fact that when decreasing the num-
ber of dimensions in the phase space, some data points that
were distant in upper dimensions now look like neighbors
by being projected in lower dimensions.

For example, suppose two points (x, y, z) in space, p1 =
(1, 1, 1) and p2 = (2, 2, 101). The distance between those
two points is described by equation 1:

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 =

√
10002 (1)

If we decrease the phase space to two dimensions, then this
distance becomes

√
2. Thus, p2 now looks like a neigh-

bor point of p1, but it is a false neighbor, thus the method’s
name. In this lower dimension, p2 could possibly become
a candidate in the spoofing set if indeed p1 was included in
the intersection of the attractor and the restriction L. We in-
tend to test this method in our analysis in order to determine
the ideal embedding dimension.

2.3 Tools

The tools used in our analysis come from a variety of
sources. First, we have used the false_nearest and delay
tools from the TISEAN package. In addition, we have used
the tools provided by Michal Zalewski, the author of the
original paper on the topic. Parts of the original code has
been modified for the purpose of this report, details are pro-
vided in section 4.

For collecting and recording sequence numbers a num-
ber of standard network tools and shell scripts were used.
The command tcpdump was used to record the SEQ pack-
age received from the target device, and the command nc
(netcat) was used to make a connection to the target com-
puter. In general a nmap scan was performed to gather more
information about the inspected device.

To visualize the delayed vectors, gnuplot was used to
generate a 3D plot.

3 Vulnerability survey

This is the result of our work, presented with graphs from
three dimensional delay vector analysis and data from the
tools used, each device listed separately.

The input parameters Dimensions, R1, and Spoofing set
are chosen and varied in the different test cases. Parameters
Average R2 and Average N are calculated in the analysis
process, and points to the quality of the result of the test,
and the parameter Probability is the goal function in all of
the tests.

Dimensions (n) : Number of embedding dimensions used
for phase space reconstruction

R1: Maximum allowed distance from L, the restric-
tion plane

Spoofing set (ss): Number of sequence numbers in the
spoofing set

Average R2: Proposed radius of second guess

Average N: Average number of the guess set obtained

Probability: The probability of guessing the correct se-
quence number

3.1 Operating systems

3.1.1 Windows 2000 SP3

Figure 1. Windows 2000 SP3

Dimensions: 3 4 5 6
R1: 20,000 20,000 20,000 20,000
Spoofing set: 5,000 5,000 5,000 5,000
Average R2: 1 1 2 8
Average N: 42,132 20,640 25,617 6,464
Probability: 2% 5% 11% 15%

Dimensions: 3 4 5 6
R1: 20,000 20,000 20,000 20,000
Spoofing set: 20,000 20,000 20,000 20,000
Average R2: 4 8 12 49
Average N: 42,132 20,640 25,617 6,464
Probability: 3% 15% 45 % 55 %

Windows 2000 with Service Pack 3 is an excellent ex-
ample that shows the effect of different parameters on the
probability of success of the attack. First, observe the be-
haviour when we increase the number of dimensions from
3 to 6 using a spoofing set size of 5,000 to 20,000, in every
case, the probability increases almost linearly according to
the number of dimensions. Using a spoofing set of 5,000,
the probability goes from 2% for 3D to 15% for 6D. A more
drastic example comes when using a spoofing set of 20,000
packets, then it goes from 3% for 3D to 55% for 6D. Also
note the effect of the spoofing set size, the larger it is, the
higher is the probability. Comparing the result from a 6D
5,000 packets spoofing set to a 6D 20,000 packets set, we
see that the probability more that doubles, going from 15%
to 55%.

Dimensions: 3 4 5 6
R1: 1,000 1,000 1,000 1,000
Spoofing set: 20,000 20,000 20,000 20,000
Average R2: 232 5,625 9,374 9,999
Average N: 1,456 33 13 11
Probability: 55 % 40 % 4 % 1 %

Another important fact to notice in this particular case is
the effect the parameter R1 has on the results. For instance,
when using a spoofing set of 20,000 and R1 of 1,000, we
achieve a very respectable 55% success rate, in 3D. If we
augment R1 to 20,000, using the same spoofing set size, we
obtain a much lower probability of 3% (Upper figure). On
the other hand, we can see that using a 6D phase space re-
construction, the effect of this same increase has the inverse
effect, the probability goes from a mere 1% to 55% (Upper
figure). This last effect is easily explainable by considering
equation 1.

We see that increasing the number of dimensions adds
to the distance from the L restriction, thus augmenting the
R1 allows a greater number of candidate values to be con-
sidered. In order to explain the sudden decrease observed in
3D, note that the Average N increases from 1,456 to 42,132.
This means that at least half of the N candidates must be
eliminated in order to fit the specified 20,000 spoofing set
size. We can relate to this phenomenon as “having too many
good choices”.

3.1.2 Windows XP SP2

Figure 2. Windows XP SP2

Dimensions: 3 4 5 6
R1: 1,000 1,000 1,000 1,000
Spoofing set: 10,000 10,000 10,000 10,000
Average R2: 4,999 4,999 4,999 4,999
Average N: 11 10 10 10
Probability: 0% 1% 1% 6 %

Dimensions: 3 4 5 6
R1: 10,000 10,000 10,000 10,000
Spoofing set: 10,000 10,000 10,000 10,000
Average R2: 4,210 4,096 4,354 4,624
Average N: 15 15 14 12
Probability: 35% 17% 10% 13%

Dimensions: 3 3 3
R1: 10,000 10,000 10,000
Spoofing set: 5,000 10,000 20,000
Average R2: 2,072 4210 8567
Average N: 15 15 15
Probability: 19% 35% 50%

The first table shows the positive effect increasing the
number of dimensions has on the attack’s success proba-
bility. This only seems valid for low values of R1, if we
compare the results of Table 1 to Table 2, where R1 goes
from 1,000 to 10,000, the effect is reversed, just as it was
the case with Windows 2000 SP3. The last table shows that
increasing the spoofing set size results in almost linear im-
provement of the attack feasibility.

3.1.3 Windows Vista

Figure 3. Windows Vista

According to areport on Windows Vista Network Attack
Surface Analysis [4], Vista has reimplemented the ISN gen-
erator in accordance to the RFC 1948.

From the above figure, and from the results gathered
from our tools, we can conclude that Windows Vista is not
vulnerable to a blind-spoofing attack.

3.1.4 MacOS X 10.4.9

Figure 4. Mac OS X 10.4.9

Our tests show that the ISN generator used in MacOS X
is not vulnerable to a blind-spoofing attack. All of our at-
tempts have resulted in a 0% percent success rate.

3.2 Embedded systems

3.2.1 Apple AirPort Express

Running: Apple embedded
OS details: Apple Airport Express WAP v6.3

Figure 5. AirPort Express

Dimensions: 4 5
R1: 10,000 100,000
Spoofing set: 5,000 5,000
Average R2: 2,367 2,336
Average N: 11 12
Probability: 0% 0%

The AirPort Express is a common wireless access point
by Apple [1]. According to nmap it runs Apple embedded
OS.

Based on our analysis, we should mention that there are
similarities between the Mac OS X’s ISN generator output
and the one found in the AirPort Express.

3.2.2 FON 2100 (Firmware version 0.7.1 r3)

Running: Linux 2.4.X|2.5.X|2.6.X, Belkin embedded
Firmware version 0.7.1 r3

Figure 6. FON Wireless AP

Dimensions: 4 5
R1: 10,000 100,000
Spoofing set: 5,000 5,000
Average R2: 80 8
Average N: 422 3,807
Probability: 0% 0%

This device is a wireless access point sold by FON Wire-
less. It’s according to nmap running some flavor of Linux.

The quality of the ISN generation is high, and although
the graph does look trivial, we were never able to guess the
correct sequence number.

3.2.3 Linksys WAP54G

Running: Linux 2.4.X|2.5.X|2.6.X
OS details:
Linux 2.4.0 - 2.5.20,
Linux 2.4.18 - 2.6.4 (x86),
Linux 2.4.19 w/grsecurity patch,
Linux 2.4.20 - 2.4.22 w/grsecurity.org patch,
Linux 2.4.22-ck2 (x86) w/grsecurity.org and HZ=1000 patches

Figure 7. Linksys WAP54G

Dimensions: 4 5
R1: 10,000 10,000
Spoofing set: 5,000 10,000
Average R2: 89 172
Average N: 400 372
Probability: 0% 0%

The same goes for the Linksys WAP54G, running Linux
with a good ISN generator output.

3.2.4 D-Link WBR-1310

Running: Linux 2.4.X, Maxtor Linux 2.4.X
OS details: Linux 2.4.20 - 2.4.32, Linux-based embedded device (Linksys
WRT54GL WAP, Buffalo AirStation WLA-G54 WAP, Maxtor Shared
Storage Drive, or Asus Wireless Storage Router)

Figure 8. D-Link WBR 1310

Dimensions: 4 5
R1: 10,000 10,000
Spoofing set: 5,000 10,000
Average R2: 87 217
Average N: 315 293
Probability: 0% 0%

Yet another access point running Linux, with the same
results as previously mentioned.

3.2.5 SMC

Running: SMC embedded
OS details: SMC Barricade DSL Router/Modem/Wireless AP
Runtime code version: V1.07.2
Model: SMCWEBT-G

Figure 9. SMC Wireless AP

Dimensions: 3
R1: 10
Spoofing set: 50
Average R2: 0
Average N: 148
Probability: 100%

This is a very basic wireless access point by SMC Net-
works. It runs some sort of embedded OS, we can see that
the ISN generation is very weak. In fact, it is based on a
simple 16 bit counter. This device could easily be used to
perform an idle portscan [5] by an attacker.

The fact that this device has implemented a trivial ISN
generator does not actually mean that it’s trivial to attack.
The device also gives the user the choice of WPA2 encryp-
tion on the wireless interface, meaning that an attack like
this is not possible unless the WPA2 encryption first is by-
passed.

Still, the device is vulnerable both if no, or simple en-
cryption on the wireless is first breached, or if the attacker
tries an attack on the administrative interface, a web server
available only through the wired network interface.

3.2.6 Axis 2100

Device type: Web camera
Running: Linux 2.0.X
OS details: Linux 2.0.34-38

Figure 10. Axis 2100 Web camera

Dimensions: 4 4 4 5 5
R1: 100 1,000 10,000 100 10,000
Spoofing set: 5,000 5,000 5,000 5,000 5,000
Average R2: 2,481 2,309 2,163 2,481 2,159
Average N: 13 28 32 13 33
Probability: 22% 86% 87% 26% 87%

The Axis 2100 is a network-attached camera with an in-
ternal web server with FTP upload capabilites. It is running
Linux kernel 2.0.

The above table shows the effect of increasing the size
of R1, allowing more candidates to be considered in the
spoofing set. It also shows that increasing the number of
dimensions results in the inclusion of candidates previously
unconsidered in lower dimensions, providing a 4% proba-
bility increase in 5D.

3.2.7 Linksys PPS1UW

Running: Linksys embedded
OS details: Linksys EtherFast Print Server

Figure 11. Linksys PPS1UW

Dimensions: 3
R1: 10
Spoofing set: 10
Average R2: 3
Average N: 18
Probability: 100%

The Linksys PPS1UW is a wired/wireless USB print
server from Linksys. As seen on the graph, its ISN gen-
erator is trivial. One particular feature of this generator is
that in most cases, its output is 0.

3.2.8 HP LaserJet 2100 Printer

Running: HP embedded
OS details: HP printer w/Jet Direct

Figure 12. HP LaserJet 2100

Dimensions: 3
R1: 10
Spoofing set: 10
Average R2: 0
Average N: 18
Probability: 100%

This printer implements a trivial ISN generator, based on
a simple 16 bit counter, but it sends each number four times
- there is no entropy at all.

3.2.9 Palm Tungsten T (m550)

Device: Palm Tungsten T (m550)
Running: PalmOS software v.5.0
PPP NetIF v.8.0
Connected through Softick PPP 2.33

Figure 13. Palm OS

Dimensions: 4 5
R1: 10,000 10,000
Spoofing set: 5,000 10,000
Average R2: 87 217
Average N: 315 293
Probability: 0 % 0%

We have installed an FTP server on the handheld in order
to extract ISNs from it. The device is connected through a
Windows XP machine running Softick PPP 2.33 [8]. Note
that we actually do not know if the packets are in any way
altered when passing through the host machine, and if in
this case we reveive incorrect results.

3.2.10 Draytek Vigor 2200e

Running: Draytek embedded
OS details: Draytek Vigor 2200e DSL router v2.1a

Figure 14. Draytek Virgo 2200e

This DSL router from Draytek [2], a Dutch company, has
an interesting ISN generator pattern, widely scattered but
still regular and ordered. This suggests a statistical bias of
some kind. Despite this apparent weakness, we were unable
to make a guess, even with very large values of R1.

Dimensions: 5 6
R1: 10,000 10,000
Spoof set: 10,000 20,000
Average R2: 0 0
Average N: 0 0
Probability: 0% 0%

4 Implementation

The original paper included a set of tools to accomplish
all the tasks necessary to gather and analyze the data. The

basic limitation of these tools was that they were specif-
ically designed to work with 3-dimensional phase spaces.
One of the goals of this paper was to explore if increasing
the number of dimensions used for the phase space recon-
struction would have any effect on the probability of guess-
ing the next sequence number.

Most of the work has been done on the guess3d tool, now
appropriately renamed guessnd. The first enhancement was
related to the number of sequence numbers that can be used
to reconstruct the phase space. This number is now arbitrary
large.

The second enhancement is that it can now reconstruct
the phase space in n dimensions, allowing us to observe the
complex behavior of the PRNG at a deeper level, possibly
revealing further hidden dependencies on time or other en-
vironmental factors.

In order to gather an ISN sequence from a target host,
we used the original script provided by Zalewski using tcp-
dump to gather the SYN packages and requesting them by
a network call using netcat.

The next step in the process is to visualize the data we
gathered. We created a tool called delayvector which com-
putes the n-dimensional vectors from the linear ISN se-
quence. The resulting points can then be plotted using gnu-
plot.

Finally, to determine the vulnerability of the different
implementations, we wrote a simple shell script. Its role
is to automate the testing process by launching different in-
stances of the slightly modified calprob tool, varying the
number of dimensions, spoofing set size and R1.

5 Risk analysis

After further research, it seems that the risks associated
with an attacker being able to perform a successful ISN
blind spoofing attack against a modern operating system is
still present today. Some operating system vendors, such
as Microsoft have implemented the RFC 1948 resulting in
a 0% attack probability on Windows Vista. Unfortunately,
their previous attempt, Windows XP with Service Pack 2
still remains much vulnerable to this kind of attack.

In our opinion, the strenght of this method comes from
the fact that it uses the difference between subsequent ISN
values in order to build the attractor, not the absolute values,
capturing the behavioral pattern of the ISN generator. Thus
an attacker could potentially acquire a set of ISN from an-
other similar system and use that information to make pre-
diction on the actual victim. It is also important to consider
that in real life, the probabilites of success for a DoS attack
againts a weak ISN generator would be even greater since
any traffic within the TCP/IP Window Size is accepted by a
remote host, potentially ranging from−216to +216from the
next ISN [10]. In the real world, a sucessful blind-spoofing

attack could result in altered email commucation, malicious
code injection into HTTP requests, firewall rule bypassing
or in a more general sense, every network protocol on top
of TCP utilizing plain-text commucation [11].

6 Conclusion

The initial goals of this paper were to first investigate the
vulnerability of a selection of embedded devices against an
ISN blind spoofing attack. The second important goal was
to discover if using a higher number of embedding dimen-
sions in the phase phase reconstruction would help improve
the attack success probability. We have been able achieve
both of the goals using empirical tests.

Regarding embedded devices, most of them were found
to be running a Linux 2.2 or 2.4 kernel, implementing one
of the best ISN generator, as found in the original paper.
Exceptions made of the SMC WEBT Access point and HP
LaserJet 2100 which clearly proved that some manufactur-
ers negliged this aspect of the design.

We would have liked to test devices based on the Vx-
Works operating system and industrial control units but
were unable to get access to any of them.

We have also been able to quantify the effect of differ-
ent parameters, including the number dimensions, on the
probility of success of the attack. First, when attacking a
weak ISN generator implementation, the spoofing set size
has a linear improvement effect on the probability. Sec-
ond, we have found that increasing the number of dimen-
sions in the phase space reconstruction rarely produces bet-
ter results than when using a 3-dimensional reconstruction.
When it does increase the probability, it is tightly related to
the R1 parameter, which can, in turn, be ajusted differently
and give equivalent results in 3-dimensional space.

An important note to make is that the results are highly
dependent on the particular ISN generator under study, we
cannot make general conclusions on whether or not increas-
ing the number of dimensions is desirable for all implemen-
tations, we can only conclude that it has the potential to
affect the attack success, positively or negatively.

7 Acknowledgements

Thanks to David Byers at IDA, LiTH for the help, guide-
lines, and the time spent in the lab to make the test devices
work.

References

[1] http://www.apple.com/.
[2] http://www.draytek.com/.

[3] Rfc 793: Transmission control protocol.
http://www.ietf.org/rfc/rfc793.txt, September 1981.
DARPA Internet Program.

[4] J. Hoagland. Windows vista network attack surface anal-
ysis. http://www.symantec.com/avcenter/reference/Vista_
Network_Attack_Surface_RTM.pdf.

[5] Insecure.org. http://insecure.org/nmap/idlescan.html.
[6] Kennel, Brown, and Abarbanel. Determining embedding di-

mension for phase-space reconstruction using a geometrical
construction, 1992.

[7] T. Scheriber. http://www.mpipks-dresden.mpg.de/ tisean/.
[8] Softick. http://www.softick.com/ppp/.
[9] Wikipedia.org. Tcp three way handshake.

http://en.wikipedia.org/wiki/Transmission_Control_
Protocol#Connection_establishment/.

[10] M. Zalewski. Strange attractors and tcp/ip sequence number
analysis. http://lcamtuf.coredump.cx/oldtcp/tcpseq.html.

[11] M. Zalewski. Strange attractors and tcp/ip
sequence number analysis, one year later.
http://lcamtuf.coredump.cx/newtcp/.

