
Static Techniques for Vulnerability Detection

Kamran Zafar Asad Ali
����������	
���������	������	

������	������������������� ��
����!��
!��

���������

"#	 �$�	 ����	 %�	 ����	 �$�	 ���#���&�	 #'	 (
������	 ��&
�	
�#'����	 ��	 (�&#����	 �#�	 ���	 �#�	 �����'�&���!	 ���&�	
�$��	����	 ��&$��)
��	���	�##��	���	(
���	(�	�����#���	
���	����&$��	�#	����	�$�	�#'����	��&$������	��&
��	
���	 �#	 �#��&�	 �#'����	 �#����	 '#�	 ����&�#
�	
���	
���	 ����&���!	 �*������	 �#�
��#�	 '#	 ����&����	 �#'����	
�
����(�������	 ��	�#�	 ���	�
&$	 �
���#�$�	��	 �$��	���	
�#�������	 �#��	(��&$��!	 +�	 �$��	 ��#�	��	���&
��	�#��	
��&$��)
��	���	 �##��	 '#	�
����(�����	����&��#�	���	�#�	
���	&#��	#'	�#��	�##��	���	��&$��)
�!			

	
� �����������

Software vulnerabilities provide a way to an attacker as
vulnerabilities are the well-known and well understood
flaws by the carelessness of developer of the software. For
example buffer overflow and format string vulnerabilities
are most common and well known class of vulnerabilities.
In order to identify these vulnerabilities a comprehensive
analysis is required to develop some standard solutions
against vulnerabilities.

According to statistics from CERT coordination center at
Carnegie Mellon University, CERT/CC, in year 2004
more than ten new security vulnerabilities were reported
per day in commercial and open source software (see
Figure 1) [1]. In addition, the 2004 E-Crime watch survey
respondents say that e-crime cost their organizations
approximately $666 million in 2003 [2].

As vulnerability refers to a weakness in software now the
question arises that what is a weakness of software? The
main reason of vulnerability is due to carelessness of a
software developer an attacker can take benefit from this
carelessness and execute commands on the system or
bypass some access control. There exist many software
tools and techniques to discover and to remove
vulnerabilities. We have studied 2 known vulnerabilities
Buffer overflow and Format string; techniques and tools
for their detection.

Vulnerability exists at least to some extent in every
software, we cannot neglect it. What we can do is to
detect and prevent and/or remove vulnerability present in
soft ware.

There are two main approaches to detect or prevent
vulnerabilities. Some tools are applied directly to the
source code so they either solve or at least warn about
presence of vulnerabilities in the source code. These tools
are called static tools e.g. ITS4 and Splint. The other types
of tools are dynamic tools that check the software at
runtime against any known vulnerability e.g. ProPolice
and CERD.

Huge amount of vulnerabilities exist in each domain
(Operating System, Databases, Network Applications etc)
of computer world. So it is not viable to coup with all
these in this report and it is rather a big task. From all the
domains we have seen so far most common vulnerabilities
are Buffer overflow and Format String vulnerabilities. In
rest of our report we will focus on these two
vulnerabilities and the techniques and tools detecting
these vulnerabilities.

	
	������
We will discuss some techniques and tools implementing
these techniques for detection of Buffer overflow and
Format String vulnerabilities. We will also consider
approaches like modified kernels and shell codes. We will
give a description of static techniques for detection of the
above said vulnerabilities. The static tools are applied to a
program’s source code.

	
�����������
The rest of this paper is organized as follows. ����� �
illustrates a description of buffer overflow and format
string vulnerabilities; how they subsist and how an
attacker can take benefit from these vulnerabilities. In
����� � we look at static techniques and tools for
vulnerability detection. How different tools can be used to
handle these vulnerabilities and working of each tool. In
������ we present a comparison of tools and techniques,
detecting the vulnerabilities. We present a comparison of
tools based on the techniques used in tools to detect
vulnerabilities. This part shows comparison of static
technique and tools. ����� � concludes our work and
suggestions.

�
� ��������������������������

In computer world the term buffer overflow has become
much illustrious among computer security. Almost all
Buffer overflows are due to the weakly build software
programs.

Vulnerabilities in software can be viewed as mistakes
made by the developers or a weakness due neglection of
aspects like no checks on stack boundaries etc. Mistakes
and weaknesses exist in the code as the developers were
unaware of vulnerability creation at the time of
development. In particular the misuse of unsafe and error-
prone features of the C programming language, such as
pointer arithmetic, lack of a native string type and lack of
array bounds checking [4]. Figure2 [15] shows
relationship between the attack and attacker’s knowledge.

Figure 2 from [15] Attacks Vs Intruder knowledge

Locating the factors that cause the existence of
vulnerability is very important. To accomplish this task a
deep analysis is required in order to detect attacks against
vulnerabilities. Vulnerabilities in software are the main
source that make the software risky and provides an
attacker a line of attack.

�
	� �!!�������!����
In software buffer overflows are considered as prime
source of vulnerabilities. For example, the CodeRed worm
that caused an estimated global damage cost $2.1 billion
in 2001 exploited a buffer overflow in Windows [3]. In
addition report, on the basis of CERT (Computer
Emergency Response Team) advisories, that “buffer
overruns account for up to 50% of today’s vulnerabilities,
and this ratio seems to be increasing over time [3].

�
	
	� �!!���
A buffer is a temporary memory area normally with fixed
size; used to hold some inputs or outputs. These inputs or
outputs are used to communicate with the outside devices
or with the processes inside the computer/operating
system. �

�
	
�� �!!�������!���
Usually boundary checks are ignored for fixed size
buffers. So when a process starts to store data further than
the boundaries/capacity of buffer, the extra data then
overwrites the adjacent memory locations and overflow
the buffer. This condition is referred to the term buffer
overflow. In this condition a process may produce
incorrect results or crashes. An attacker can use this flaw
of buffers to execute malicious code or make a program
error prone. When buffer overflow occurs, a type-safe
language or a language with explicit bound checking
throws an exception. But in unsafe language like C/C++
buffer overflow exception is not thrown because they
allow buffers to be overflowed [10].

An attacker can take benefit from this vulnerability by
first finding some way of injecting data in buffers to
overflow. Then the attacker execute arbitrary code e.g.
�"������� and gain access of administrative privileges.

A shellcode is a small piece of machine code written in
assembly language. Shell codes can be used by an
unauthorized person to launching shells with command
lines of operating system. This will allow an attacker to
type commands just like a regular authorized user or even
as a system administrator. Shell code are mostly used to
exploit buffer overflows and format string vulnerabilities
[16].�
�
�
��#�$��������%�������������&��
Format string vulnerability allows an attacker to alter the
control flow of an application by using string formatting
library features to access other memory space.
Vulnerability occur when user-supplied data is used
directly as formatting string input for certain C/C++
functions for example fprintf, printf, sprintf, setproctitle,
syslog, ...) [5]. A format string is a way of telling the C

compiler how it should format numbers when it prints
them [6]. By a format string attack an attacker can execute
arbitrary code and read the values of the stack.

�
�
	�#�$���!��������
A format function takes variables arguments as a format
string e.g. %s, %d etc.

Example printf(“Home Address : %s ”, C - 90)
The output would be Home Address: C – 90

In this case as user supplied data is included in printf
function as a format specification string, so this constitutes
a format string bug. This leads to information disclosure
and potentially the execution of arbitrary code. Normally,
the format string is stored on the stack [7], so we can use
the format string itself to supply arguments that the printf
function will use when evaluating format specifiers.

�
� '��"��(������'����

Basically the techniques for detecting and/or removing
vulnerabilities lie in two categories, Static and Dynamic.
First we will give the overview of both techniques i.e.
static & dynamic and then we will give a description of
how these techniques detect, prevent or remove
vulnerabilities.
�
�
	����������)&��$���'��"��(�����
In �����&	 �
����(����� ����&��#� technique source code is
analyzed in order to find vulnerabilities. The source code
is checked against the known vulnerabilities and a tool
implementing static technique detects the existing
vulnerability. The two main drawbacks of this approach is
that someone has to keep an updated database of
programming flaws to test for, and since the tools only
detect vulnerabilities the user has to know how to fix the
problem once a warning has been issued [8]. In static code
analysis source code is checked before compilation,
against known vulnerabilities. The static code analysis
technique address problems like array bound check, un-
initialized variables, unreachable code, syntax problems,
undeclared variables, parameter type mismatch, uncalled
function and procedure, non-usage of function results and
misuse of pointers [9].

,�����&	 �
����(����� ����&��#� technique [8] is a run
time technique that detects and/or removes vulnerabilities
and attacks by changing functionality of a system or run
time environment in order to prevent vulnerabilities and
attacks. In this technique typically a program is terminated
in case if a vulnerability is detected, this technique also
cope with bugs that are known already and this dynamic
technique is useless if an attacker attack using some other
way.

�
In the following section we have presented 5 static
techniques and description of the tools which are using
these techniques for detection of buffer overflow and
format string vulnerabilities.

�
	
	���������$���"��%�
This technique tries to find all occurrences of strcpys
followed by all sprintfs in the source code. This technique
is adopted by a tool %����which performs simple string
matching. This technique checks all the calls to strcpy() to
determine either they are safe or not. Lacking a proper C
parser, a pattern matching tool is unable to tell apart
comments from real code and is easily fooled by
unexpected white space and macros [11].
Since grep is only performing simple string matching, its
false positive rate can be quite high [10]. %��� searches
the input files for lines containing a match to a given
pattern list. When it finds a match in a line, it copies the
line to standard output [17]. Another tool that implement
this technique is Flawfinder[13] which detects
vulnerability by using pattern matching technique. This
tool analyzes the source code and scans it to figure out
buffer overflow and format string vulnerabilities by using
its database for C/C++ functions and produce a list of
flaws sorted by risk level. The Flawfinder 0.19
vulnerability database contains 55 C security bugs [8].

�
	
��*�+���������&���������
Lexical analysis builds a token stream of the code in order
to make a distinction between variables of a function and
to identify arguments of a function. These tokens are then
matched with existing vulnerabilities. Lexical analysis
improves the accuracy of pattern matching, because a
lexer can handle irregular whitespace and code formatting.
Lexical analysis techniques are fast and simple, but their
power is very limited since they do not take into account
the syntax or semantics of the program.
Unfortunately, the benefits of lexical analysis are small
and the number of false positives reported by these tools
is still very high [8].

Tools like RATS[10] and ITS4[8,19] follow this
technique. ITS4 scans the code, performs a lexical
analysis and build a token stream of the source code. It
has the ability to analyze other languages as well as C.
This tool has a modular design which allows for
integration in various development environments by
replacing its front-end or back-end.

�
	
������������
Annotation is the information about a particular point in
the document. In a source code annotations are the
comments given by the developer which are used by static
analyzers to analyze the code, for example;
 Strcpy(char *s1, char *s2)
 -��#����#� /* maxSet(s1) >= maxRead(s2) */
This annotation is used to ensure that s1 must be big
enough to hold all characters from s2. This technique is
used to check buffer overflow and format string
vulnerabilities. This technique is implemented in a tool
SPLINT [8], which performs a static analysis on syntactic
level by using programmer provided semantic comments
and uses a program’s parse tree. This tool can be used to
detect problems such as NULL pointer dereferences
unused variables, memory leaks and buffer overruns [11].
 �
�
	
��������%��
This technique parses the source code and builts an
abstract syntax tree representation of the code. The
abstract syntax tree allows us to analyze not only the
syntax, but also the semantics of a program. This task is
performed by compiler. To be able to correctly parse and
analyze a wide range of programs, a static analysis tool
needs a parser compatible with at least one of the major
compilers. Integrating with a compiler frontend will
ensure this compatibility. For this reason most of the
advanced analysis tools on the UNIX platform utilize the
GCC (GNU Compiler Collection) frontend, which is
freely available under the GPL (General Public License)
license. Lexical analysis tools can be confused by a
variable with the same name as a vulnerable function, but
AST (Abstract Syntax Tree) analysis will accurately
distinguish the different kinds of identifiers. The pattern
matching approach can be significantly improved by
matching AST trees instead of sequences of tokens or
characters. On the AST level macros and complicated
expressions are expanded which can reveal vulnerabilities
hidden from lexical analysis tools. [11]. This technique
makes a fairly complete and easy to navigate
representation of a program. This technique is used in one
of the earliest C static source analysis tools, lint [20].
�
�
	
��'&���(����!�����
Jeffrey Foster [21] has described type qualifiers, a
lightweight, type-based mechanism, to improve the quality
of software. Type qualifiers are lightweight annotations
for specifying program properties. According to the
author In particular, type qualifier systems, when applied
to type-safe languages, are sound, meaning that programs
with valid qualifier annotations do not violate the
semantics of the qualifiers. This assurance enables the
programmer to use type qualifiers to eliminate whole
classes of bugs from their program. In his system user-

defined type qualifiers are added by annotating the source
code and detecting type inconsistencies by type qualifier
inference. This technique is implemented in a tool
Cqual[21] for adding user-defined flow-insensitive and
flow-sensitive type qualifiers to C to find format string
and buffer overflow vulnerability.

This technique is implemented in a tool BOON [8] used to
detect buffer overflow vulnerability. This tool first
analyzes the strings variables. Then checks the variables
according to the allocated size and number of bytes
currently in use. This tool parses the code and reports any
detected vulnerabilities.

�
	
,�)���-!�������&�����
Data-flow analysis is a traditional compiler technique for
solving buffer overflow and format string problems and
can be used as a basis of vulnerability detection systems
[11].

�
��#����"������"��(�����
��$����.
�/�&��� 0��1 presented a technique, automatic
compiler-based approach for detecting buffer overflow
and format string vulnerability. Their system uses a
configurable and scaleable whole-program dataflow
analysis engine driven by high-level programmer-written
annotations. According to them this system automatically
detects all known errors in five medium to large C
programs without producing any false positives. They cast
vulnerability detection as a dataflow analysis problem
which their compiler solves using a configurable dataflow
analysis engine.

2�����)�� 0��1 presented a technique that statically
uncovers all string manipulation errors. They implemented
this technique in a tool CSSV (3 �tring �tatic �erifier)
that statically uncovers all string manipulation errors. This
technique performs a static analysis to detect all string
runtime errors with just few
false alarms. They implemented this technique in different
phases to detect vulnerabilities.

4"�� ���%�� 0	51 presented a technique for statically
scanning security-critical C source code for
vulnerabilities. Their scanning technique stakes out a new
middle ground between accuracy and efficiency. Their
method is efficient enough to offer real-time feedback to
developers during coding while producing few false
negatives. This method is also simple enough to scan C++
code despite the complexities inherent in the language.
Using ITS4 they found new remotely exploitable
vulnerabilities in a widely distributed software package as
well as in a major piece of e-commerce software.

)����� *���"����� 0	61� have presented a technique to
mitigate buffer overflow vulnerabilities by detecting likely
vulnerabilities through an analysis of the program source
code. Their approach exploits information provided in
semantic comments and uses lightweight and efficient
static analyses. Their approach is implemented by
extending the LCLint annotation-assisted static checking
tool. Their tool is built upon LCLint. Their technique
exploits semantic comments .���#����#��/ that are added
to source code and standard libraries.

In the above section we have presented some static
detection techniques for buffer overflow and format string
vulnerabilities. Next section of this report contains a
comparison of different techniques. ��

�
� 3$���������7���������

Static analysis techniques have several advantages over
run-time techniques. Static techniques find errors by
analyzing the source code and do not require running the
program. They do not incur run-time overhead and they
narrow down the vulnerabilities specific to the source
program being analyzed, yielding a more secure program
before it is deployed [10]. However, a pure static analysis
can produce many false alarms due to the lack of
vulnerabilities related information. As static techniques
detect known vulnerabilities.

In table 1 we gave a comparison of tool and techniques
bases upon the use of a technique in a tool.

We have discussed 10 techniques out of them 6
techniques are adopted by a tool and 4 techniques are not
yet commercially implemented in a tool.

�

�

�

�

���

�

�

�

�

Table 1: comparison of tools and techniques

The comparison given in table 1 presents the particular
techniques used by a particular tool. From this result we
concluded that most of the tools used the technique that

performs analysis of a program source code and exploits
information provided in semantic comments,
implementing ���#����#�	technique.

Tools like SPLINT and the tools presented by Nurit
Dor[24], John Viega[10], David [18] are using annotation
technique. Splint is the only tool that can distinguish
between safe and unsafe calls to strcat() and strcpy() [8].
Splint is using annotation technique which implicates that
this technique has a good possibility to accurately detect
security bugs with a low rate of false positives. Therefore
this approach is used by many people given in section 3.2;
they have used annotation technique in their tool along
with some enhancement to make it more powerful.

The technique presented by Dor [23] in their tool is
statically detecting string errors for buffer overflow and
format string vulnerabilities. Their technique is also
handling multilevel pointers and structures. According to
them their technique is detecting all C security
vulnerabilities in a precise manner where as other
techniques like Lint is not performing this task
successfully.

J. Viega [11] have presented a technique for static
analysis of C/C++ source codes. They implemented their
technique in ITS4. According to them the parsing model
of ITS4 makes it poorly suited for highly accurate static
analysis. But with their technique implemented in the
same tool makes the tool efficient for static analysis of the
program. With their technique ITS4 is scanning large
programs efficiently and achieving adequate results.

�
� 3����������

It is very difficult that a tool completely detect all the
security vulnerabilities without false alarms. As more and
more software are developing day by day so
vulnerabilities are also growing continuously. Although
significant work is done to cope with buffer overflow and
format string vulnerabilities a satisfactory solution is still
needed. But by recent tools like ITS4, Flawfinder &
SPLINT these vulnerabilities can be handled to some
good extent. Security can be improved if vulnerability
detection tools are used as a part of software development
lifecycle.

We have discussed different static techniques and tools to
detect buffer overflow and format string vulnerabilities,
and compared available static tools based on the technique
they use.

8�!��������

[1]CERT Coordination Center, ‘‘CERT/CC Statistics 98-2004’’
April 2007, http://www.cert.org/stats/cert_stats.html

[2] CSO magazine, U.S. Secret Service, and CERT
Coordination Center. 2004 e-crime watch survey.
http://www.csoonline.com/releases/052004129_release.ht
ml, April 2007.

[3] S. Chaki, S. Hissam; Software Engineering Institute,
Carnegie Mellon University, USA.

[4] A.I SOTIROV.; Automatic vulnerability detection
using static source code analysis; Final thesis Department
of Computer Science in the Graduate School of University
of Alabama. April 2007
Online: http://gcc.vulncheck.org/sotirov05automatic.pdf

 [5] Web Application Security Consortium, April 2007
http://www.webappsec.org/projects/threat/classes/format_
string_attack.shtml

[6] What is a Format String Vulnerability? April 2007
http://www.tech-faq.com/format-string-vulnerability.shtml

[7] Introduction to Format String Bugs; Chapter 4
Page(s): 55-82
http://media.wiley.com/product_data/excerpt/83/0764544
6/0764544683.pdf

[8] J. Wilander, M. Kamkar. A comparative study of
publicly available tools for static intrusion prevention. In
Proceedings of the 7th Nordic Workshop on Secure IT
Systems, Karlstad, Sweden, November 2002.

[9] Code Analysis Steven Lavenhar, Cigital, Inc. U.S
Dept. of Home land security, May 2007.
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-
practices/code/214.html

[10] J. Viega, J. T. Bloch, T. Kohno, and G. McGraw,
.ITS4: A static vulnerability scanner for C and C++ code,.
in 16th Annual Computer Security Applications
Conference. ACM, Dec. 2000

[12] J. Viega, J. Bloch, T. Kohno, and G. McGraw,
"Token-Based Scanning of Source Code for Security
Problems", ACM Transactions on Information and System
Security, Vol. 5, No. 3, August 2002, Pages 238–261.
(About development of ITS4.)

[13] David A. Wheeler. Flawfinder, April 2007
http://www.dwheeler.com/flawfinder/

[14] R. Lippmann, M. Zhivich, T. Leek,; Dynamic buffer
overflow detection. In Proceedings of Workshop on the
Evaluation of Software Defect Detection Tools, june
2005.

[15] McHugh, J.; Christie, A.; Allen, J.; IEEE Software
Volume 17, Issue 5, Sept.-Oct. 2000 Page(s):42 - 51

[16] Introduction to Shellcoding - How to Exploit Buffer
Overflows, 22 April 2007.
http://www.securiteam.com/securityreviews/6Q00L00BFI.
html

[17] Introduction to grep tool, 30 April 2007.
http://www.gnu.org/software/grep/doc/grep_1.html#SEC1

[18]�D. Larochelle, D. Evans.; Statically detecting likely
buffer overflow vulnerabilities. Proceedings of the 10th
USENIX Security Symposium, USENIX: Washington, DC,
2001; Page(s) 177-189.

[19] Secure Software. RATS – rough auditing tool for
security, 01 May 2007.
http://www.securesoftware.com/resources/tools.html.

[20] Lint, a C Program Checker, �!	0!	1#$��#�	
Bell Laboratories Murray Hill, New Jersey 07974

[21] S. Foster. Type Qualifiers: Lightweight
Specifications to Improve Software Quality. PhD thesis,
University of California, Berkeley, Dec. 2002.

[22] S. Z. Guyer, E. D. Berger, and C. Lin. Detecting
errors with configurable whole-program dataflow analysis.
In Proc. Conference on Programming Language Design
and Implementation, Berlin, Germany, 2002.

[23] Dor, N., Rodeh, M., and Sagiv, M. Cssv: Towards a
realistic tool for statically detecting all buffer overflows in
c. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and
Implementation, pages 155–167, June 2003.

