
TDDC03 Projects, Spring 2007

Best Practices for Software Security

by

Adeel Jameel
(adeja691@student.liu.se)
Ansar-Ul-Haque Yasar

(ansya448@student.liu.se)

Supervisor: Shanai Ardi

mailto:(adeja691@student.liu.se)
mailto:(ansya448@student.liu.se)


Best Practices for Software Security

Adeel Jameel and Ansar-Ul-Haque Yasar
Linköping University, Sweden

Email:{adeja691,ansya448}@student.liu.se

Abstract

With the growth of software flaws there is a rise
in the demand of security embedding to achieve
the goal of secure software development in a
more efficient manner. Different practices are in
use to keep the software intact. These practices
also meant to be scrutinized for better results on
the basis of the level of security, efficiency and
complexity they are providing. It may also be
weighted on the basis of Confidentiality,
Integrity and Availability (CIA). Software
security is a step by step procedure which can
not be achieved just at a specific level but it
should be taken into account from the beginning
of the Software Development Life Cycle (SDLC).
In this paper, we have taken into account some
of the best practices for secure software
development and categorized them based on the
phases in software development lifecycle. The
results enable us to draw a clear picture of the
best practices in software development which
will enable a developer to follow them on a
particular SDLC phase.

1. Introduction

With increasing technologies there is a more
excess to the software which is a threat to the
security of software. Hidden attacking factors
from inside or outside the organization are
increasing day by day. Intrusion and malicious
software not only cause a financial loss but also
the loss of credibility and integrity of
organization data.

Software security issues directly affect the
Confidentiality, Integrity and Availability (CIA).
Security is not a feature it’s a property of
software which has to be taken care of during the
complete software lifecycle. So the security
model, which has to be implemented, must
consider these issues effectively and efficiently.
If the software is not secure, then all its
operations are exposed to attacks.

As mentioned software security spread covers
the whole Software Development Life Cycle

phases. Each of the phases should be carefully
observed for building secure software.

2. Background

While coding software every coder make some
coding mistakes unintentionally, which introduce
the majority of software vulnerabilities. Some of
the examples of such vulnerabilities can be
buffer overflows, integer overflow, format string
vulnerabilities etc. Vulnerabilities in software
can be classified as in figure 1.

Figure-1: Summary of Vulnerability Types Found.
[10]

“Software security is really risk management”.
So the risk must be analyzed first i.e. the analysis
have to be made to evaluate the situations in
which a specific or set of attacks initiate [3]. This
can make easier to respond in a known situation.
Risks can be appeared due to architectural
problem or faults in implementation.

Software security practices involve dealing with
risks associated with the operations and the
effects of errors and vulnerabilities. The main
aim of security for software is just to fall safely
and decently in case of any crash with less or no
damage done to the confidentiality integrity and
availability.

Before going into any further details, the goals of
software security must be clearly kept in the
mind. Goals of security can be categorized as

mailto:Email:{adeja691,ansya448}@student.liu.se


prevention, traceability and auditing, monitoring,
privacy and confidentiality, multilevel security,
anonymity, authentication, and integrity [3]. Any
practice for software security can be weighted on
the basis of achieving the above mentioned
goals. The security countermeasures depend on
the analysis of the threats and the vulnerabilities.

The threat analysis, the analysis of potential risks
threatening the assets, must be practiced while
planning the features and architecture the
software. Threat analysis if performed with care
and potential threads to the product can stabilize
the system progress in the worst situation as
well.

The response to the thread after the analysis is
dependent on the scale of the risk incurring the
thread. Once the threats are identified, there are
three commonly recognized approaches [1]:

- Mitigation of the risk. The risk in this case is to
be considered the harmful beyond the safety
level so there is a response needed to reduce the
risk up to a standard level.
- Acceptance i.e. the threat is accepted with its
risk but not tackling the risk as it is but different
plan of action designed to overcome the risk
indirectly.
- Insurance this refers to as we redirect the
vulnerability of a risk to a third party.

Similar to threat analysis for avoiding the
potential problems we would also like to discuss
about the basic principles for secure software
according to John Viega and Gary McGraw[3]:

i. Secure the Weakest Link.
ii. Practice defense in depth.
iii. Fail Securely.
iv. Follow the principle of least privilege.
v. Compartmentalize.
vi. Keep it Simple.
vii. Promote privacy.
viii. Remember that hiding secrets is hard.
ix. Be reluctant to trust.
x. Use your community resources.

Viega and McGraw have explained that
developers can avoid 90% of the problems using
these principles [3].

2.1 Theoretical Methods

Methods like CIA, Risk Management and
Formal Methods like Team Software Process

(TSP), CLEANROOM Software Engineering
(CRSE), Correctness-by-Construction (CC),
Incremental Development (ID), Function Based
Specification & Design (FBSD), Threat
Modeling (TM), Attack Trees (AT) and Attack
Patterns (AP) deal with the theoretical analysis.
These methods may help implementing a
particular practice for software security. We have
not taken the theoretical methods into account
for our analysis later on.

2.2 Practical Methods

We have assumed methods like automated
verification and validation tools like ITS4,
flawfinder, RATS, ESC/Java, PREfast, Rational
Rose, Unified Modeling Language (UML) and
SLAM as the practical methods. These methods
may help implementing a particular practice for
software security. We have shown a relationship
of these methods with the best practices in a
table later on in this paper.

3. Analysis and Comparison of the
Best Practices

In this paper we have chosen three example set
of best practices [1,2,11] and classify them based
on the phases in software development process
that these practices are applied.

3.1 Best Practices - Group 1

The first set of best practices we discuss here are
introduced by Redwine and Davis [2]. These
practices are:

i. Abuse Cases
ii. Security Requirement
iii. Risk Analysis
iv. External review
v. Risk-based security tests
vi. Static analysis
vii. Risk Analysis
viii. Penetration testing
ix. Security breaks

SDLC can be subdivided into some of the self-
explanatory subgroups i.e. software artifacts
according to the activities performed during that
period. Software artifacts, as explained by [4],
are Requirements and use cases, Design, Test
plans, Code, Test results, and Field Feedback.
At each specific artifact there are some software
security practice are applied to build secure



software. These can be summarized using the
figure [2] below.

Figure – 2: Best Practices for Software Security are
represented by the Arrows for a Specific Software
Artifact [2].

For each security artifact the practices need to be
well understood and implemented in order to get
the proper appropriate quality results.

At the requirement and use cases artifact the first
practice is abuse cases which mainly focusing on
the actions of the system in the presence of
attack. At this point all the possible cases must
be considered for which the system may work
abnormally and marching to other steps after this
consideration.

After considering the abuse cases the next
practice is security requirements i.e. to think
about the security parameters that the system
requires working securely. These may be
practical, basic characteristics and features [2].

While at designing phase, a consistent approach
is required as this phase mainly building the
logical base of the whole software. Risk analysis
requires all the known risk associated with any
action or the attack must be clearly considered
and a proposed plan of actions should be
documented properly. Risk must be identified
and the scale of its effect must be considered at
this point so that the response associated with
that risk can be clarified. Taking external help
mostly helps positively as they may be the
potential user with some practical knowledge.
Clearly defined test plans on the basis of already
considered risk are one of the best practices
which enable the designer to justify his
approach.

Majority of vulnerabilities are common and
traceable so while coding there is a need of tools
which act in a static or predefined way - static
analysis tools. But not all the risks can be
predefined so code review is not enough and

further risk analysis is required on the basis of
test results. There must be a continuous process
defined through which testing of software
security make possible.

Nothing is perfect in the world and software is a
part of this world. There are always some
security breaks. A feedback system should be
planned such that after deployment enhance the
database of known risks and propose solutions
for future products [2].

3.2 Best Practices – Group 2

The second set of best practices we discuss here
are introduced by P. Razvan [1]. These practices
are:

i. Relevancy and Weakest Links
ii. Clarity
iii. Quality
iv. Involve all Stakeholders
v. Technology Processes
vi. Fail Safe Operation
vii. Defense in Depth
viii. Principle of Appropriate Privileges
ix. Interacting with Users
x. Trust Boundaries
xi. Third-Party Software
xii. Manipulation of Sensitive Data
xiii. Attack First. On Paper!
xiv. Think “Outside of the Box”
xv. Be Humble
xvi. Declarative vs. Programmatic
xvii. Reviews are Your Best Allies

Relevancy and Weakest Links concept relates to
protect the related information and to secure the
places which may be more prone to attacks.

Clarity says that the solution we provide should
be clearly defined in every aspect.

Quality should be maintained in terms of the
systems as well as the security features.

Involve all Stakeholders is a good concept of
involving everyone who is some how related to
the system being developed.

Technology Processes are related to each other
and a technology should be able to invoke a
process.

Fail Safe Operation is a concept of system or
software being able to recover from the errors.



Defense in Depth means that to implement the
defensive measures in a multi-layered
environment.

Principle of Appropriate Privileges refers that
everyone should be given privileges to operate
the system accordingly as we also had to
consider the development phase and not only the
final product [1].

Interacting with the Users is an important
practice to be considered as users tend to make
mistakes and we can learn from them to develop
countermeasures.

Trust Boundaries should be defined to enforce a
reliable security mechanism. Trusted Computing
Base and Trusted Path can be the subpart of this
practice [1].

Third-Party Software which may be used while
development of a totally new system should also
be tested.

Manipulation of Sensitive Data should be
handled with proper care.

Attack First. On Paper! It relates to the concept
of trying to break the security architecture during
the design phase [1].

Think “Outside of the Box” is an important
concept which tells us that we should always try
to find other possible ways of breaking into the
system.

Be Humble is a concept related to continuously
improving the system with time.

Declarative vs. Programmatic is related to the
programming part of the system in which the
security can be enforced either during the
execution or outside of the program control [1].

Reviews are Your Best Allies is very much true
and we should emphasis on design and code
reviews for improvements.

3.3 Best Practices – Group 3

The third set of best practices we discuss here are
introduced by D. Wheeler [11]. These practices
are:

i. Validate All Input
ii. Avoid Buffer Overflow

iii. Secure the Interface
iv. Separate Data and Control
v. Minimize Privileges
vi. Minimize the Functionality of a Component
vii. Configure Safely and Use Safe Defaults
viii. Load Initialization Values Safely
ix. Fail Safe
x. Avoid Race Conditions
xi. Trust Only Trustworthy Channels
xii. Setup a Trusted Path
xiii. Use Internal Consistency
xiv. Self-limit Resources
xv. Prevent Cross Site Malicious Content
xvi. Foil Semantic Attacks
xvii. Be Careful with Data Types
xviii. Carefully Callout to Other Resources
xix. Send Information Back Judiciously

Validate All Input given to a system according to
the rules defined.

Avoid Buffer Overflow as they may cause stack
and heap smashing.

Secure the Interface explains that the interface
should be simple enough to understand.

Separate Data and Control as an illegal
execution may lead to loss of important data.

Minimize Privileges in order to limit the access
as an intruder may able to get some information
misusing the privileges.

Minimize the Functionality of a Component
which we build to avoid misuse.

Configure Safely and Use Safe Defaults refers to
making the initial system secure which can help
to keep it secure while reconfiguration.

Load Initialization Values Safely as many
programs read it to allow their defaults to be
configured [11].

Fail Safe refers to a safe recovery from an error.

Avoid Race Conditions as they may reveal the
shared resources.

Trust Only Trustworthy Channels as others may
transmit unreliable data.

Setup a Trusted Path in order to avoid the
leakage of secure information.



Use Internal Consistency to verify the basic
assumptions we have made.

Self-limit Resources as abnormal termination
may loose some information.

Prevent Cross Site Malicious Content as data
from an unreliable source may lead to leak other
user data.

Foil Semantic Attacks should be avoided as users
may fall for a trap in which they may loose their
personal information.

Be Careful with Data Types as using wrong data
types may trigger buffer overflows.

Carefully Callout to Other Resources states that
some resources like library routines may require
some additional system information to operate.
We should be careful as it may cause data loss.

Send Information Back Judiciously to minimize
feedback for unreliable users.

3.4 Analysis of the Best Practices

In this section we have performed an analysis to
classify the pre-mentioned set of best practices
based on the phases in software development
process that they are applied. The phases we
assume here are based on the phases in
traditional waterfall model: Requirement
analysis, design, implementation, testing and
maintenance. These phases can be more or less
mapped to phases in other process models also.
We are also introducing possible tools that
support each of best practices.

SDLC Phases/
Best Practices Best Practices (BP) Tools Used

Requirement
Analysis

BP1.i*, BP1.ii*,
BP1.iii
BP2.i*, BP2.ii*,
BP2.iii
BP3.iii*, BP3.xvii*

NA

Design

BP1.iii*, BP1.iv*,
BP1.v*
BP2.iii*, BP2.v*,
BP2.vi*, BP2.viii*,
BP2.x*, BP2.xii,
BP2.xiii*, BP2.xiv*
BP3.iii*, BP3.iv*,
BP3.v*, BP3.vi*,
BP3.ix*, BP3.x*,
BP3.xi, BP3.xiii*,
BP3.xviii

Rational
Rose,
UML

Implementation

BP1.vi*
BP2.iii*, BP2.v*,
BP2.vi*, BP2.vii,
BP2.viii*, BP2.xi*,
BP2.xvi*
BP3.i*, BP3.ii*,
BP3.v*, BP3.vii*,
BP3.viii, BP3.ix*,
BP3.xii*, BP3.xiv*,
BP3.xv*

ITS4,
RATS, FF,
PREfast,

ESC,
SLAM

Testing

BP1.vii*, BP1.viii*
BP2.iv*, BP2.xvii
BP3.x*, BP3.xv*,
BP3.xix

ITS4,
RATS, FF

Maintenance

BP1.viii, BP1.ix*
BP2.ix, BP2.xv,
BP2.xvii
BP3.vii, BP3.x*,
BP3.xvi*

ITS4,
RATS, FF

Table - 1: Analysis of the Best Practices.

Legend for Table – 1: Best Practices Group -1 (BP1), Best
Practices Group -2 (BP2), Best Practices Group -3 (BP3),
flawfinder (FF), Unified Modeling Language (UML).

(*) BP must be used otherwise may be used.

3.5 Secure Software Testing

This section includes the testing factors and
experiments which can deduce the desired results
during the project’s development life cycle. The
testing factors [2] are:

i. Penetration testing
ii. Negative tests (fail safe)
iii. Fuzz (Black Box Testing)
iv. Risk Management
v. Ballista (an automated testing tool)

Penetration Testing plays an important part if the
architectural risk analysis is the key factor
behind the tests. It gives the clear picture of the
software being tested in a real world scenario. It
takes the software architecture into account
which helps for a detailed software analysis.

Negative Tests (Fail Safe) deals with testing the
software on negative cases and then try to
understand the ability to recover.

Fuzz Testing is a black box testing that tests the
software with pseudorandom inputs. In order to
automate this black box testing Ballista an
automated tool developed by CMU is being used
[7].



Risk Management is actually not a part of the
testing strategies but it was really important to
mention about it in this paper. It involves threat
identification, asset identification and
quantitatively or qualitatively relating threats to
assets. It may help the testing team to identify
the real threats to software and then can enable
them to rectify them according to the priority.

4. Conclusion and Recommendations

Based on the research for finding best practices
of software security, we classified possible
suggestions for improvement in existing
practices which can make the software
development more secure.

We would conclude that during our analysis of
practices for building secure software, security is
not a single step process; its span is all over the
software development life cycle. Practices are
mainly divided into different modules dealing
with risks, management of risks i.e. identifying
and scaling the risk along with proposing the
plan of action for the specified vulnerability. The
basic aim behind using the best practices is to
provide the flexibility and improvement in the
software quality and performance. Our
classification of the best practices according to
the SDLC phases will enable the stakeholders to
emphasis on the specific practices in a particular
phase.

We would like to recommend that the set of best
practices classified according to the SDLC
phases as mentioned earlier in Table 1 must be
properly documented as a set of rules to be
followed. The standard which may be developed
can help developers to ensure that the best
practices are being followed for a secure
development regardless of the scope of the
software.

We also recommend that any best practices from
the three groups we assumed can be used as a
combination according to the scope of the
software under development.

Emphasis on using the latest Languages which
have a strong structural programming ability
may also be used to overcome weaknesses.

References

[1] P. Razvan, “Best Practices for Secure
Development”, October 2001.

[2] S.T. Redwine, Jr. and N. Davis. “Process to
Produce Secure Software”, Nation Cyber
Security Summit, March 2004.

[3] J. Viega and G. McGraw 2002, “Building
secure software”, Addison-Wesley, ISBN 0-
201-72152-x.

[4] G. McGraw, “On the Horizon: The
DIMACS Workshop on Software Security”,
IEEE Security and Privacy, March/April
2003.

[5] The Ballista Project,
http://www.cs.cmu.edu/afs/cs.cmu.edu/proje
ct/edrc-ballista/www/, visited on 20 April
2007.

[6] JTest,
http://www.parasoft.com/jsp/products/home.
jsp?product=Jtest, visited on 20 April 2007.

[7] SAP Analysis, “Open Source Static Analysis
Tools for Security Testing of Java Web
Applications”, December 2006.

[8] P. Martin and C. Gail, “Concern Graphs:
Finding and Describing Concerns Using
Structural Program Dependencies”, in the
proceedings of ICSE 2002.

[9] H. Michael, “Secure Systems Begin with
Knowing Your Threats – part I”,
http://security.devx.com/upload/free/Feature
s/zones/security/articles/2000/09sept00/mh0
900[2]-1.asp, visited on 20 April 2007.

[10] D. Evans and D. Larochelle, “Reported
flaws in Common Vulnerabilities and
Exposures Database”, IEEE Software,
January 2002.

[11] D.A. Wheeler, “Secure Programming for
Linux and Unix HOWTO”, GNU Free
Documentation License, March 2003.

http://www.cs.cmu.edu/afs/cs.cmu.edu/proje
http://www.parasoft.com/jsp/products/home.
http://security.devx.com/upload/free/Feature

