

TDDC03 Projects, Spring 2006

Java Permissions -- Are they all created equal?

Pierre-Emmanuel Bourgué

Jean-Sébastien Susset

Supervisor: Almut Herzog

 1

Java Permissions -- Are they all created equal?

Pierre-Emmanuel Bourgué Jean-Sébastien Susset
Linköpings universitetet, Sweden

Email: {piebo882, jeasu165}@student.liu.se

Abstract

The paper concerns the classification of Java
permissions according to their severity. It provides both
technical comments and tips for average users, and also
a collection of codes showing the dangerousness of these
permissions. Finally, the classification gives good
support to compare the various permissions

1. Introduction

In Java, some sensitive actions may require special
rights, called permissions, from the user in order to be
executed. Applets always need these permissions, but
applications only need them if the user has asked for a
high level of security (SecurityManager enabled).

The difficulty for a user is to know which

permissions are necessary so that a given application
can run, what a given permission really allows to the
code, what are the risks for the user’s system when
granting a given permission to a code…etc.

In order to help users, we rank and comment all the
Java permissions both with technical details and user-
friendly hints explaining what the permission allows
the code to do. Finally, we have implemented code
examples showing these risks in a more concrete
manner by exploiting security flaws created when
granting permissions.

2. Background

Here are some reminders about security concepts
which are used afterwards.

Bishop [1] defines the three following principles of
security:

- Confidentiality is the concealment of information
or resources.

- Integrity refers to the trustworthiness of data or
resources, and it is usually phrased in terms of
preventing improper or unauthorized change.

- Availability refers to the ability to use the
information or resource desired.

DoS : Attempt to block availability [1].
According to the Java website [2]:
 - A permission represents access to a system

resource.
- Security policy file: The policy file(s) specify what

permissions are allowed for code from specified code
sources.

3. Solution and Analysis

Java permission can have at most two parameters: a
target name and optionally a list of one or several
actions.
Here is an example for FilePermission:

permission java.io.FilePermission "/tmp/abc",
"read";

There are two types of permissions:

- Predefined permissions (Java2 Permissions)
that we worked on;

- User-defined permissions i.e. customized
permissions developed for a particular goal.

One can create a new permission by extending the

Permission class or one of its subclasses
(BasicPermission, SocketPermission…etc.). A user-
defined permission can be added to the policy file as
any other native permission. Sometimes, the class of
this permission is loaded at runtime from a distant
host, so when the security policy is initialized the
permission is “unresolved”. In this case, the
UnresolvedPermission is needed.

The user-defined permissions are at least as

dangerous as the permissions they extend. First, there
are risks due to the parent permissions (cf.
classification). Second, there are new threats due to
the re-implementation, possibly by a hacker, of native
methods and the development of new methods,
possibly malicious.

The enclosed documents constitute the completion
of our work. It contains a technical comment and a
user-friendly hint for each permission/target name.
This tip is intended to help an average user so that he
can take the decision to grant or not the given
permission. The technical comment especially
explains the ways a malicious code could exploit the
permissions to improve its attack (directly or
indirectly).

The methodology we used in the exploit code

development is to show the execution of a single
code in two cases: when the policy file is empty and
when the given permission (and possibly others if it
is really necessary for the demonstration) is granted.

 2

The code simulates a typical attack that hacker could
perform exploiting the given permission.

3.1. Evaluation

Classify the Java permissions by their severity is a
bit tricky. Indeed, many parameters have to be taken
into account:

- What are the priorities in the user’s security
policy? It can be confidentiality, integrity and/or
availability. However, it is often impossible to enforce
them simultaneously. So, a choice must be done by the
user (person or company) depending on what he thinks
to be the worst for him/his company. It may be DoS,
the leak of confidential data, or the corruption of data;

For example, if a company gives top priority to the
integrity and availability of data at the expense of the
confidentiality, the security policy will be very strict on
permissions which may cause DoS but will be looser
on those which may facilitate leak of data.

- From one people to another, the definition of a
level of gravity varies a lot. It is quite a subjective
feeling. Where does high level of severity finish and
where does medium level of severity begin?

- The consequences of granting a Java permission
often depend on the granting or not of other
permissions. The number of possible scenario is as
huge as the number of permissions, not counting the
user-defined permissions.

In each level of severity, the Java permissions cause
the three criteria to be no longer maintained. The
severity of this flaw is assessed at a level according to
the type (common, confidential, secret…etc.) and the
quantity/range of data that can be accessed or corrupted
(disclosure of information), the damage and
consequences of the attack (e.g. DoS) on the
system/user’s business …etc.

We classified permissions into three different levels

of dangerousness: high, medium and low severity.

High:

- Those which may obtain directly or indirectly
all the privileges or at least a lot more than
they should have had;

- Those which can reach critical data and
methods without restrictions, e.g. protected
variables, native classes or external libraries;

- Those which can do a important DoS
(possibly tricky and silent), by controlling the
user’s data and resources and damaging the
user’s system;

- Those which can retrieve very critical and
secret data that can possibly be re-used in
future attacks;

- Those which are necessary for the other
permissions to be really dangerous, e.g.
SocketPermission;

- Those which severely fool the user and may
cause important repercussions in the future.

Medium:

- Those which cause quite important but
obvious DoS (the user will be able to fix the
problem or the DoS will probably not be
able to damage the system very long);

- Those which can fool the user in a smaller
proportion or less slyly than in the highest
level;

- Those which can modify properties of the
security configuration, but which cannot
obtain more permissions anyway;

- Those which can retrieve information about
the security policy that can be useful to
prepare a future attack;

- Those which can access the user’s data
without being able to change it;

- Those which can obviously retrieve
confidential data.

Low:

- Those which can do small DoS;
- Those which can retrieve basic system

properties without being able to use them
immediately;

- Those which can hide the hacker’s traces
(Logging).

4. Conclusions

Our classification contains user-friendly hints
whose goal is to explain in a simple and colourful way
to users the risks to grant permissions to codes. These
tips could be used for this purpose in a user interface.

Besides, the classification gives an overview of the
severity of each action according to its threats for the
user, thus permitting a comparison between the
permissions.

5. References

[1] Matt Bishop, Introduction to computer security,
Addison-Wesley, 2004.

[2] Permissions in the Java TM 2 Standard Edition
Development Kit (JDK)
http://java.sun.com/j2se/1.5.0/docs/guide/security/per
missions.html, spring 2006

 3

High severity

java.security.AllPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

none

Grant the code with all the
permissions. That will help the code
a lot to pirate the user's system. See
below to have details about the
other permissions.
So, Confidentiality, Integrity and
Availability are no longer ensured.

Granting this permission allows the
code to do what it wants on your
system.

The exploit code displays one
system property (os.name) and
creates a file.

java.lang.RuntimePermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

createClassLoader

Grant this permission gives ALL
the permissions to the code. Indeed,
a malicious code could make use
ClassLoader to give it all the rights.
So, Confidentiality, Integrity and
Availability are no longer ensured.

Granting this permission may allow
a hacker to grant himself all the
rights he needs before attacking
your system.

An exploit strategy would be to
create our own subclass of
ClassLoader and then use it to load
malicious classes granted with
adequate permissions.

createSecurityManager
Granting this permission allows to
create a new SecurityManager and
use it to replace the former one. The

Granting this permission allows a
malicious code to change your
security policy. This is very

The exploit code uses a system
manager that does not check
permissions before the execution of

 4

new SecurityManager can be
malicious and bypass the check
permission mechanism. If the
security manager does not check the
permissions, it has the same
consequences than granting “All
permission”.
So, Confidentiality, Integrity and
Availability are no longer ensured.

dangerous because a hacker could
grant himself privileges in order to
do more damage on your computer.

a file.

setSecurityManager

Granting this permission allows
setting the SecurityManager,
replacing the former one. The
SecurityManager can be malicious
and bypass the check permission
mechanism. If the security manager
does not check the permissions, it
has the same consequences than
granting “All permission”.
So, Confidentiality, Integrity and
Availability are no longer ensured.

Granting this permission allows a
malicious code to change your
security policy. This is very
dangerous because a hacker could
grant himself privileges in order to
do more damage on your computer.

Not implemented.

loadLibrary.{library name}

Allow the code to load native code
libraries. Because they do not
prevent malicious behaviour at this
level, a malicious code may use this
opportunity to pirate the user’s
system.
For instance, a malicious code may
use native methods to explore the
user’s computer, to make the
system misbehave or simply corrupt
existing data.
So, Confidentiality, Integrity and

Granting this permission allows the
code to access powerful but unsafe
system operations that could
damage your computer.

An exploit strategy would be to
load a native library (.so on a Unix
station and .dll on a Windows
station) and use its methods to
launch the execution of a program
or disturb the system by destroying
some processes.

 5

Availability are no longer ensured.
Threats: espionage and DoS.

accessClassInPackage.
{package name}

Allow the code to load classes from
packages that it normally can not
reach. These classes could help a
malicious code to attack the user’s
system.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: espionage and DoS.

Granting this permission allows the
code to access powerful but unsafe
operations that could damage your
computer.

Not implemented.

defineClassInPackage.
{package name}

Allow the code to add new classes
in any package. As system packages
have special rights, adding a class in
such a package will also give the
malicious class these permissions
and help the code to attack to attack
the user’s system.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: espionage and DoS.

Granting this permission allows the
code to define new operations,
possibly malicious, in some places
that your system considers as
trustworthy. This is dangerous
because your system will then trust
the hacker’s operations and do not
check their severity.

Not implemented.

accessDeclaredMembers

Allow the code to access variables
and methods regardless of their
protection level (public, protected
or private. So, a malicious code
may access private variable of well-
known classes and bypass the
protections, e.g. allowed values.
This can help a hacker to pirate the
user’s system in a better way.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: DoS and espionage.

Granting this permission allows the
code to access data and operations
in the application without any
restrictions. This could cause the
application to misbehave.

A possible exploit strategy could be
to access protected variables and to
change their values regardless of the
original restrictions (via accessors).
Cf. ReflectPermission.

 6

getClassLoader

Allow the code to retrieve the class
loader of the calling class.
A malicious code can then load
forbidden classes (distant classes
for instance) that is classes that this
ClassLoader also manages.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: DoS and espionage.

Granting this permission allows a
hacker to use some system actions
that he should never have the right
to access. A hacker could use such
operations to do more damage on
your system.

Not implemented.

setContextClassLoader

Allow the code to change “which
ContextClassLoader is used for a
particular thread, including system
threads”.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: DoS and espionage.

Granting this permission allows a
hacker to use some system actions
that he should never have the right
to access. A hacker could use such
operations to do more damage on
your system.

Not implemented.

setIO

Allow to route the information from
the standard input, output and error
streams to other destinations.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: Espionage, fool user and
DoS.

Granting this permission may allow
a hacker to control the input
(keyboard) and output (screen or
file) of your computer. This is
dangerous because a hacker could
spy your inputs and deny you
access to the screen, for example.

Possible exploit strategies would be
for instance:
- to deny the user access to the input
and output of his computer by
routing them in hidden destinations.
- to steal confidential information
(password, industrial secrets…)
from the input.

writeFileDescriptor

Allow the code to access
FileDescriptors and to write in the
associated files. A malicious code
may insert a huge amount of data
(possibly corrupted by viruses) in
the user’s disk.
So, Confidentiality, Integrity and
Availability are no longer ensured.

Granting this permission allows an
attacker to write into your files or
other communication channels like
your internet connections. This is
very dangerous because an attacker
may be able to write viruses on your
disk.

A possible exploit code would be to
write into a file, via its file
descriptor, a huge amount of data in
order to overload the user’s disk.

 7

Threats: Espionage and DoS.

java.security.SecurityPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

setPolicy

A security policy states which
permissions are granted, to who and
in which situations. This permission
allows the code to replace the
existing security policy by another
one.
A malicious code may create its
own security policy and grant itself
all the permissions in order to make
the maximum possible damage on
the user’s system.
So, Confidentiality, Integrity and
Availability are not granted
anymore.
Threats: espionage, fool users, DoS.

Granting this permission allows the
code to grant itself the privileges it
needs. This is very dangerous
because malicious code may use
that to make damage on your
computer.

Not implemented

setSystemScope

Allow to change the system scope.
A system scope is the mapping
between trustworthy real world
object (people, company) and their
own public key. It can add
certificates that the system should
not be trusted.
Integrity and confidentiality and
availability are no longer ensured.

Granting this permission allows
your application to execute
untrustworthy code by artificially
granting them a certificate.
Hackers’ attack can be facilitated by
granting this permission.

Not implemented

 8

Threats: Espionage, fool users,
DoS.

setSignerKeyPair A malicious code can change users’
keys pair with weaker pair. So, it
can use it to eavesdrop more easily
data communication.
The target of this attack is the
confidentiality of the user’s data.

Allow this permission can endanger
the confidentiality of your signed
messages. Hackers can eavesdrop
more easily your transmission.

Not implemented

setIdentityPublicKey

Allow the code to modify the public
key of a trusted Identity (person or
company).
A malicious code may replace the
current public key by its own one.
So, applets or applications signed
by the hacker’s private key will
obtain all the permissions granted
for the former trusted Identity. The
hacker may use them to damage the
system or spy the user’s data.
So, Confidentiality, Integrity and
availability are no longer ensured.
Threats: espionage, DoS and fool
users.

Granting this permission allows the
code to usurp the identity of
someone you trust by another
identity, possibly malicious. Thus,
you may be fool by a hacker,
thinking he is a trustworthy person.

Not implemented

addIdentityCertificate

Allow the code to add a new
certificate to a given Identity. If it is
a trusty Identity, with a known
public key, the certificate must
contain the same public key.
Otherwise, the public key in the
new certificate will from then also
be the Identity’s public key (cf.
setIdentityPublicKey possible

Granting this permission allows the
code to add a new certificate,
possibly created by a hacker, to an
existing contact. This could give the
hacker your trust.

Not implemented.

 9

damage threats).
A malicious code may prepare a
future attack with a signed applet or
application using this certificate and
use the corresponding privileges to
pirate the system in a better way.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: Espionage, fool users,
DoS.

getSignerPrivateKey

A malicious code can retrieve the
private key of the current user. If
you allow this permission to a
malicious server, the code can send
the key and hackers can use it to
usurp your identity and decrypt
your confidential data.
So, the integrity availability and
confidentiality is no longer ensured
because a private key can be use to
decrypt cipher from public key and
sign your data.
Threat : DoS, espionage

If you grant this permission,
malicious code can usurp your
identity and decrypt your
confidential data.

Not implemented

removeIdentityCertificate

Allow the code to remove a
certificate from an Identity (person
or company).
A malicious code may eliminate a
certificate to deny access or
diminish the privileges of an
Identity.
So, Integrity and Availability are no

Granting this permission allows the
code to remove an existing
certificate proving your trust in a
given contact. Thus, misbehaviours
may happen in your future
transactions.

Not implemented

 10

longer ensured.
Threats: DoS.

java.io.FilePermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

execute

Allow to execute a file.
Granting this permission allows the
code to launch other softwares
without advising you.
These softwares can be malicious.
So, Confidentiality, Integrity and
Availability are no longer ensured,
depending on the nature of the
executable file.

Granting this permission allows the
code to launch other softwares
without any advice. If this software
are malicious your system can be
damaged.

The exploit code executes a chosen
file.

write

Allow to create and modify files.
If a malicious code gets this
permission, it can empty file or
create malicious files.
So, Integrity of files is not ensured.

Granting this permission allows the
code to modify your files and create
new ones in your system.
If your system files are modified,
your computer can misbehave.

The exploit code creates a file on
the computer.

delete
Allow to delete files.
So, Availability is no longer
ensured. Threat: DoS.

Granting this permission allows the
code to delete files on your system.

The exploit code deletes a given
file.

 11

java.net.SocketPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

connect

Allow the code to create a
connection with a given server (or
every server if one use the wildcard
*). Then, the code may send over
this socket some confidential data.
It can also receive malicious data
from the distant host.
However, in order to make damage,
the hacker may need other
permissions (FilePermission,
PropertyPermission...).
So, Confidentiality and Availability
are no longer ensured.
Threats: DoS and espionage (at
least).

Granting this permission allows the
code to connect to a distant
computer. This is dangerous
because the code may connect you
to a hacker’s server.

The exploit code (client-side)
creates a Socket on a distant host
(server-side). Then, it sends
confidential data (a String) and wait
for the answer of the server (a
String).

accept

Allow the code to accept the
creation of a socket and a
connection from a distant host:port.
A malicious distant host may then
send and receive information from
the user’s host. So, if the hacker has
collected confidential data before
(thanks to other permissions like
PropertyPermission,
FilePermission…etc.), he will be
able to send it on his own host.
So, Confidentiality and Availability
are no longer ensured.

Granting this permission allows the
code to accept connection from a
distant computer. This is dangerous
because the code may accept a
connection from a hacker’s server.

A server-side program waits for
connections on a given port. It
accepts the connection from the
client-side program. This client
takes advantage of the server by
sending useless data and wasting its
time. It is an example of DoS. This
would be even worse if the server
was concurrent because many
connections would be able to do
this kind of DoS in the same time,
overloading the server.

 12

Threats: espionage and DoS (at
least).

java.awt.AWTPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

listenToAllAWTEvents

Allow the code to be notified of all
the graphics events on the
computer. A malicious code may be
able to :

- retrieve some confidential
information, e.g. input from
the keyboard.

- Modify current graphics
events into process
(AWTQueue)

- Stop the normal use of the
computer, e.g. by adding
random graphics events

So Confidentiality, Integrity and
Availability are not ensured
anymore.
Threats: espionage and DoS.

Granting this permission allows the
code to spy and control what you do
with your mouse and keyboard. So,
it may steal your passwords.

A exploit strategy would be to add
an AWTEventListener to the
Toolkit. Then, the code can choose
what type of graphics events it
wants to listen (key event, cursor’s
moving, frame’s moving…etc). For
instance, the code will be able to
retrieve each character entered in a
password field, thus obtaining the
user’s password.

accessClipboard

Allow the code to have a read and
write access to the AWT Clipboard.
A malicious code may see the
content of a file you copy/paste for
example. It can also corrupt or erase
the data.

Granting this permission allows the
code to access the data you copy/cut
(file, text…). Thus, you can lose
data that you cut/copied in the
clipboard if a hacker exploits this
permission.

The exploit code scans the
clipboard and shows the first
content being a String or an
InputStreamReader. If you copy a
portion of text in a document and
then run the exploit code, the copied

 13

So Confidentiality, Integrity and
Availability are not ensured
anymore.
Threats: espionage and DoS.

data will be displayed in the
console.

readDisplayPixels

Allow the code to read pixels from
the screen.
A malicious code may be able to
look at the user’s screen and
possibly be aware of confidential
information.
Confidentiality is not ensured
anymore.
Threats: espionage.

Granting this permission allows the
code to watch your screen and thus
spy what you are doing.

Not implemented.

 14

java.lang.reflect.ReflectPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

suppressAccessChecks

Allow the code to access variable
and method regardless of their
protection level (public, protected
or private). It also permits a code to
modify a “final” variable.
So, a malicious code may access
private variables of well-known
classes and bypass the protections,
e.g. allowed values. This can help a
hacker to pirate the user’s system in
a better way.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: DoS (at least)

Granting this permission allows the
code to access data without any
restrictions.

The exploit code shows that, thanks
to this permission, it is possible to
access a private variable without
passing by its accessors (setXX and
getXX), and so, set value that is
normally not allowed. In this case,
the variable is initialized at 50. The
code set it to -3 when the values are
normally restricted by the accessor
setXX between 0 and 100.

 15

java.net.NetPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

specifyStreamHandler

Allow the code to create an URL
instance and specify its handler.
The handler handles the connection
mechanism for a given protocol.
A malicious code may create its
own handler for a given protocol
and use it to have an easiest access
to some data that it should never
have access otherwise.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: espionage and DoS.

Granting this permission allows the
code to redefine the way you
communicate and access data (http,
ftp, file…). So, a hacker may be
able to access confidential data or
make your communication
misbehave.

Not implemented

 16

javax.net.ssl.SSLPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

setHostnameVerifier

A supposed trusty and secure
connection may become
untrustworthy and insecure if such
permission is given to a malicious
code. Indeed, if there is a mismatch
between a server (contacted via an
SSL connection) and its name in the
certificate, the code may simply
authorize the connection. So, if the
hacker owns this server, he may be
able to use the privileges granted by
the certificate to damage the user’s
system.
So, Integrity is no longer ensured
(also possibly Confidentiality and
Availability, depending on the
certificate).
Threats: fool users (at least).

Granting this permission allows the
code to bypass a so-called secure
connection and so to connect your
computer to a possibly malicious
distant computer. Basically, this
permission authorizes a hacker to
fool the security protections.

The exploit code creates a
HostVerifier whose verification
method always return ‘true’. So,
during the secure connection
handshake, a mismatch between the
name in the certificate and the host
will always be authorized.

 17

Medium severity

java.lang.RuntimePermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

setFactory

Allow the code to create its own
implementation of factories
(SocketFactory,
StreamHandlerFactory …) These
factories are used to create instances
of the corresponding classes. So a
malicious code could implement
factories which creates modified
instances (in comparison with the
original classes - SocketFactory…)
by adding additional operations or
by corrupting the existing ones.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: DoS and espionage.

Granting this permission may allow
a hacker to redefine communication
mechanisms used for network
connections for instance. A hacker
may use this opportunity to snoop
on the data transferred or corrupt it.

An exploit strategy would be to
create a new SocketFactory that can
create a new subclass of Socket.
This class may deal more loosely
with security, network parameters,
e.g. timeout, or compression for
instance. The malicious code could
use this to do DoS on the user’s
connections (random modification
of the timeout for example) or to
copy the data transferred and send it
on a distant host via another socket.

readFileDescriptor

Allow the code to access a
FileDescriptor, and thus, to read the
associated file.
So, Confidentiality is no longer
ensured. Threat: Espionage.

Granting this permission allows an
attacker to read your files or other
communication channel like your
internet connections.

A typical exploit strategy would be
to read the content of a file via its
file descriptor.

exitVM
Allow the code to halt the JVM. So,
Availability is no longer ensured.

Granting this permission allows a
malicious code to halt all the Java

An exploit strategy would be to do
DoS on the user’s system by halting

 18

Threat: DoS. applications currently running on
your system.

the JVM, thus terminating the Java
programs currently running on the
system.

shutdownHooks

Allow the code to control the
shutting down of the JVM.
So, Availability is no longer
ensured. Threat: DoS.

Granting this permission may allow
a hacker to stop the execution of the
application and provoke
inconsistence behaviour

Not implemented.

modifyThreadGroup

Allow the code to add or remove
existing threads inside a group of
threads. It also permits to control
these threads, for example by
modifying their proprieties, by
stopping them…etc.
So, Availability is no longer
ensured. Threat: DoS.

Granting this permission may allow
an attacker to control the Java
programs that are running on your
computer, for instance by halting
them.

Not implemented.

stopThread

Allow the code to stop a thread of a
java program.
So, Availability is no longer
ensured. Threat: DoS.
Note: Thread.stop() is deprecated
because it is unsafe.

Granting this permission may allow
an attacker to stop the Java
programs that are running on your
computer, or at least disrupt their
behaviour.

A typical exploit strategy would be
to stop one thread of a java
application in order to crash it.
Indeed, they are often many threads
running for a single application.
They are closely bound: if one crash
or do not complete its job, the entire
program will, at least, misbehave.

modifyThread

Allow the code to interrupt and
resume a thread of a Java program.
So, Availability is no longer
ensured. Threat: DoS.
Note: Thread.suspend() is
deprecated because it is unsafe (risk
of deadlocks among others).

Granting this permission may allow
an attacker to stop temporally the
Java programs that are running on
your computer.

Not implemented.

getProtectionDomain
Allow the code to obtain the current
ProtectionDomain. Using the

Granting this permission allows an
attacker to know your security

Not implemented.

 19

getPermissions() method, the code
obtains information about the
security policy for various code
sources. This information may be
used to help the hacker in a future
attack.
So, Confidentiality is no longer
ensured. Threat: Espionage.

configuration and to use that to
prepare an attack in a better way.

java.security.SecurityPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

insertProvider.{provider
name}

A malicious code can add a
provider (at runtime not
permanently). A provider represents
trustworthy security algorithms and
key generation.
So, the SystemManager won't check
the authenticity of the future
algorithm.
So, Integrity is no longer ensured.
Threats: fool users.

Granting this permission
compromise secure connection.

Not implemented

removeProvider.{provider
name}

A malicious code can remove a
trustworthy provider thus attack the
availability of the application
because it could not encrypt or
decrypt cipher with the good
provider.
So the availability is no longer

If you grant this permission, your
application can change the way to
encrypt your data. Thus, the content
of your messages would be
inconsistent.

Not implemented

 20

ensured if the software wants to use
the removed provider
Threads: DoS.

putProviderProperty.{provid
er name}

A malicious code can set other
parameters (key, properties) of an
existing provider. It is an Integrity
attack.
Threat: DoS.

If you grant this permission, your
application can be able to change
the way to encrypt your data.

Exploit strategy: You can add
temporally additional information to
a provider. This information can be
use to cipher in another way. The
permission blocks the call of the
method setProperty(string s, string
t) of the class Provider.

removeProviderProperty.{pr
ovider name}

A malicious code can remove
parameters (key, name) of an
existing provider.
So, the availability is no longer
ensured.
Threat : DoS.

If you grant this permission, your
application can be able to change
the way to encrypt your data.

Not implemented.

clearProviderProperties.{pro
vider name}

A malicious code can remove the
properties of a provider add
previously during the runtime.
So, the availability is no longer
ensured.
Threat: DoS.

If you grant this permission, your
application can be able to change
the way to encrypt your data.

Some softwares place at runtime
some additional information about a
given Provider. These information
can be cleared by the method clear()
of the class Provider.

setIdentityInfo

Allow the code to modify the
information stored about an Identity
(person or company).
A malicious code may corrupt this
information to deny its access or to
fool users.
So, Integrity and Availability are no
longer ensured.
Threats: fool users.

Granting this permission allows the
code to change the information
which describes the contacts you do
business with. This could cause
trouble in your future trades.

Not implemented

setProperty.{key} A malicious code can set a security Granting this permission allows the Not implemented

 21

property. It works only at runtime.
It is not a persistent change.
Applications can be fooled if the
security properties change.
So, Integrity is no longer ensured.
Threats: fool users.

code to change security properties.

getPolicy

This permission allows the software
to know the policy of the security
manager. This permission is not
dangerous If there are no other
permissions granted because
malicious codes will not be able to
send it (SocketPermission) or write
it on a file (FilePermission) for
instance. However it still can help
hacker to find flaws in the security
policy.
So, Confidentiality is not granted
anymore.
Threat: espionage.

Granting this permission allows the
application to know if it can do
something bad on your computer.
This could help a hacker to prepare
an attack against your system.

It shows the list of the permissions
granted in the current policy.

createAccessControlContext

Allow the code to create an
AccessControlContext. Using the
associated DomainCombiner and
ProtectionDomain, the code will be
able to get the permissions
associated with the current
ProtectionDomains in the various
Threads running.
A malicious code may use this
information to optimize an attack or
to collect them (if SocketPermission
is also granted).

Granting this permission allows the
code to obtain information about the
current security configuration. This
could help a hacker to prepare an
attack against your system.

Not implemented

 22

So, Confidentiality is no longer
ensured.
Threat: espionage.

getDomainCombiner

Allow the code to access the current
DomainCombiner and
ProtectionDomain.
A malicious code may read the
permissions granted for the context.
So, Confidentiality is no longer
ensured.
Threat: espionage.

Granting this permission allows the
code to obtain information about the
current security configuration. This
could help a hacker to prepare an
attack against your system.

Not implemented.

java.io.FilePermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

read

Allow to read file. If the read file
contains important information, the
malicious code can get it. This
permission protects the
confidentiality.
So, Confidentiality is no longer
ensured. Threat: espionage.

Granting this permission allows the
code to read your documents and
possibly find some confidential
information

The exploit code reads the five first
lines of a given file.

 23

java.net.SocketPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

listen

Allow the code to create a socket
and wait for connections from
distant hosts. This permission is not
sufficient to accept this connection
(cf. accept). This permission is
necessary on server-side but not
sufficient to settle a client-server
mechanism.
Alone, this permission cannot be
used by a hacker to pirate the user’s
computer.

Granting this permission allows the
code to wait for a connection from a
distant computer (but not to accept
it). There is no direct danger to
grant this permission, except if you
also grants the “accept” permission.

The exploit code shows a server-
side which creates a ServerSocket
and waits for a connection. If no
connection comes from a client, the
execution runs without any
problem. If a client connects on the
given port, a security exception is
launched because the “listen”
permission only gives the
permission to wait for a connection,
not to accept it.

resolve

Enable the use of DNS service. This
permission is implied when using
the other SocketPermission. It is
dangerous only if the malicious
code can also force the utilisation of
the hacker's DNS server.

Granting this permission enables
the code to obtain the network
address of your computer in the
Internet. There is no danger to grant
this permission.

The implemented code uses the
DNS service to convert a hostname
into an IP.

 24

java.io.SerializablePermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

enableSubclassImplementation

Allow the code to override the
default implementation of the
serialization and deserialization of
object.
A malicious code may corrupt the
data during serialization or
deserialization, access confidential
data or simply remove the content
of the object. It may be very
harmful to the user/company.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: espionage and fool users.

Granting this permission allows the
code to modify the way data is
processed before its storage (Note:
in a serialized form) or sending
(Note: in a serialized form) on a
communication channel (e.g. on
your Internet connections). It is
dangerous because your data can
be lost or corrupted.

An exploit strategy would be to
override the writeObject and
readObject methods (cf.
ObjectOutputStream and
ObjectInputStream) using
writeObjectOverride and
readObjectOverride respectively.
These latter methods will be called
instead of the original ones. Inside,
an attacker can modified the data
before serializating/deserializating
it. For instance the hacker may add
or shifted bytes of the given object
to write/read, thus corrupting it.

enableSubstitution

Allow the code to substitute the
object to serialize/deserialize by
another. The
serialization/deserialization process
used is the default one; only the
replaceObject and resolveObject
methods are re-implemented.
A malicious code may corrupt the
data during serialization or
deserialization, access confidential
data or simply remove the content
of the object. It may be very
harmful to the user/company.

Granting this permission allows the
code to substitute data by fake or
dangerous one before its storage
(Note: in a serialized form) or
sending (Note: in a serialized form)
on a communication channel (e.g.
on your Internet connections). It is
dangerous because your data can
be lost or corrupted.

The exploit code shows how to
replace each String object to
serialize by a fake other one.
First, the code serializes the string
“HELLO WORLD !”. During the
serialization process (the default
one), the string is replaced by
‘HACKED during serialization!!’.
Then, the code deserializes the
object and reads it to prove that it
is this last value that was serialized.

 25

So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: espionage and fool users.

javax.net.ssl.SSLPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

getSSLSessionContext

Allow the code to access the
context of an SSL session. A
session may gather several secure
connections.
Given the session, a malicious code
can obtain information about the
various connections (id, cipher
type…), invalidate the session,
change the timeouts…etc.
So, Confidentiality, Integrity and
Availability are no longer ensured.
Threats: DoS.

Granting this permission allows the
code to control the context of a
secure connection you opened. It is
dangerous because It may make the
connection inconsistent or
untrustworthy.

The exploit code retrieves the
SSLSessionContext on a
connection opened via a
SSLSocket.

 26

java.sql.SQLPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

setLog
(server side)

Allow the call of
javax.sql.DataSource
.setLogWriter, javax.sql.
ConnectionPoolDataSource.
setLogWriter, and
javax.sql.XADataSource

.setLogWriter javax.sql.
These functions are used in servlets
to log database connections. On the
server side logging allows to save
passwords or usernames. This is a
hindrance to data confidentiality.

Allow this permission permits to
show connections logs of all the
clients of your database. It can also
show their login/password.

An exploit strategy would be to
develop a servlet that uses a
database connection and then
enables the logs. Finally, the
servlet would display all the
connection traces. The login/
password used to connect to this
database may be in the logs.

 27

java.net.NetPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

setDefaultAuthenticator

Allow the code to customize the
mechanism that handles the
opening of an URL which is
protected by a login/password
(.htaccess).
A malicious code may create an
authentication mechanism that
keeps trace of the login/password
entered by users. Then, this
information may be used to access
confidential data or to damage the
user’s system.
However, without other
permissions, like FilePermission or
SocketPermission, the
login/password collected won’t be
easily retrieved by the hacker.
So, Confidentiality and Integrity
are no longer ensured.
Threats: DoS and espionage.

Granting this permission gives the
application the ability to retrieve
the password you write in a form.

The exploit code creates a new
Authenticator and sets it as the
default authenticator. This new

authenticator displays the content
of an URL protected by a

login/password mechanism
(.htaccess). It implements its own
way to ask for the login/password

and processes them
(getPasswordAuthentication). The

code may modify or store this
information. However, this exploit

code directly returns the
login/password as a

PasswordAuthentication object.

requestPasswordAuthentication

Allow the code to ask the user for
his password. Because the code
handles this procedure, it may steal
this information by storing or
sending it after (require
FilePermission or

Granting this permission allows the
code to ask you your password and
keep it.

Not Implemented.

 28

SocketPermission).
So, Confidentiality is no longer
ensured.
Threats: espionage.

java.awt.AWTPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

createRobot

Allow the code to take control of
the graphics events on whole the
system.
A malicious code may be able to
artificially move the mouse and use
the keyboard. It can also stop the
user from using these devices.
Finally, a robot may read the
screen and copy it as a
BufferedImage (screenshot).
So, Confidentiality and Availability
are not ensured anymore.
Threats: espionage and DoS.

Granting this permission allows the
code to control the graphics events
(mouse, keyboard, and screen) on
the entire system. This is very
dangerous because a malicious
code can use that to control your
computer.

The exploit code moves the mouse
on the screen following a square.

accessEventQueue

Allow the code to take control of
the graphics events in the
application.
A malicious code may access the
events currently under process and
modify or delete them. The
resulting behaviour of the
application would be inconsistent.
So, Confidentiality, Integrity and

Granting this permission allows the
code to control your mouse and
keyboard in Java applications.
Then, they may misbehave.

The exploit code adds an
ActionEvent (like a click on a
button) to the AWTEventQueue.
So, the application will consider
the user has really clicked on a
button.

 29

Availability are not ensured
anymore.
Threats: espionage and DoS.

 30

Low severity

java.lang.RuntimePermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

queuePrintJob

Allow the code to print, by adding
new jobs in the printer’s queue.
Hackers can use that to waste
paper, print confidential data or
simply deny the user access to the
printer.

This permission allows the code to
use your printer. A hacker would
be able to overload your printer by
printing thousands of papers.

The code put 100 pages in the
printing queue, resulting in using
the printer’s resources and making
the users waiting for availability.

java.security.SecurityPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

getProperty.{key}

Allow the code to access the value
of the security properties of the
Java environment.
A malicious code may not be able
to affect directly the behaviour of
the application but may use this
information to optimize the attack.
Thus, other permissions are
required in order to do real

Granting this permission allows the
code to obtain information about
the security configuration of your
computer. This permission is not
directly a danger for the security of
your system.

The exploit code displays the
security property ‘login.
configuration.provider’ written in
the file “java.security”.

 31

damage.
So, Confidentiality is not ensured
anymore.
Threat: espionage.

printIdentity

Allow the code to display
information about a given Identity
(person or company): its name, if it
is trust or not…etc.
A malicious may retrieve
confidential information about the
Identity objects stored. Without
other permissions (Socket, File…)
this permission is not very
dangerous.
So, Confidentiality is no longer
ensured.
Threat: espionage.

Granting this permission allows the
code to obtain the information
which describes the contacts you
do business with. Granting this
permission is not directly
dangerous, except if the code can
also connect to distant computer.

Not implemented

 32

java.awt.AWTPermission

showWindowWithoutWarnin
gBanner

In applet, a warning banner always
tells the user that the window was
created by an applet and not by an
application. It may be important for
a user because applications and
applets have not the same default
rights. This permission allows the
code to not to display this banner.
Using this trick, a malicious code
may fool users.
So, Integrity is not ensured
anymore.
Threats: fool users.

Granting this permission allows the
code to pass an applet window off
as an application window. Hackers
can use this trick to fool you.

Not implemented.

javax.sound.sampled.AudioPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

record

Allow to record sounds from a
computer, thus, permitting
eavesdropping. When you record
audio, the system use mixers. If
many mixers are opened, the
computer can become slow,
because mixers use lots of
resources. It is even more
dangerous with file or socket
permissions.
So, Confidentiality and the

Granting this permission allows the
code to record sounds. You can be
eavesdropped and the performance
of your computer can be affected.

A possible way to exploit this
permission is for eavesdropping
user’s conversations.

 33

Availability are no longer ensured.
Threats: espionage and DoS

play

This permission allows to play
audio on the computer. When you
play audio, the system uses mixers.
If many mixers are opened, the
computer can become slow,
because they use lots of resources
The availability is no longer
ensured.
Threat: DoS.

Granting this permission allows the
code to play sounds. The
performances of your computer can
be affected.

The exploit code launches many
threads that play the same sound.
Thus, all these threads overload the
user’s cpu.

java.sql.SQLPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

setLog
(Client side)

Allow to call the function
DriverManager.setLogWriter that
traces (in a file or in the console)
connections and queries to the
database. It does not show any

passwords or usernames.

Allow this permission permits to
save your database connection
logs.

The code shows the logs when it
connects to a MySQL database.

 34

java.util.PropertyPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

write

Allow the code to set the properties
of the system, for example the OS
version and architecture, the user
directory, the endian type, the Java
version or the file encoding.
A malicious code may change the
value of these properties to make
the system unstable or to modify
the initial behaviour of the
application.
So, Confidentiality and Integrity
are not ensured anymore.
Threats: fool users and DoS.

Granting this permission allows the
code to modify some configuration
information of your computer and
thus affect the execution of the
application.

The exploit code shows a few
property values (we also granted
the read permission for the
demonstration) and then modify the
value of the property
“user.language” from “fr” to “en”.

read

Allow the code to read the value of
properties of the system.
A malicious code may use this
information to prepare or optimize
its damage on the computer, or
simply to spy the characteristics of
the system.
So, Confidentiality is not ensured
anymore.

Granting this permission allows the
code to obtain information about
the configuration of your computer.
A hacker may use this information
to prepare an attack against your
system.

The exploit code shows a few
property values, including the OS
name and the user directory.

 35

java.util.logging.LoggingPermission

Action Severity User-friendly hint Exploit code comment or Exploit
Strategy

control

Allow the code to take control of
the logging configuration.
A malicious code may be able to
remove some logging mechanisms
in order to hide what it has done. It
can also access and modify the
existing mechanisms and add new
ones.
So, Confidentiality, Integrity and
Availability are not ensured
anymore.
Threats: espionage and fool
administrator.

Granting this permission allows the
code to log/trace what you are
doing in the application.

The exploit code creates a logging
mechanism (Logger and
ConsoleHandler) with the level
INFO. So, only messages with the
levels SEVERE, WARNING and
INFO will be logged. The code
first shows that SEVERE and
INFO messages are really
displayed and FINE are not. Then,
the code modifies the level of the
logger to SEVERE. Thus, INFO
messages are not logged anymore.
The code “removed” information
which could have been useful for
tracking issues.

