
TDDC03 Projects, Spring 2006

Evaluation of Common Key and Password Generation

Hasham Ud Din Qazi Alexei Bavelski
Linköpings universitetet, Sweden

Email: {hasud353,aleba691}@student.liu.se

Viiveke Fåk

Evaluation of Common Key and Password Generation

Hasham Ud Din Qazi Alexei Bavelski
Linköpings universitetet, Sweden

Email: {hasud353,aleba691}@student.liu.se

Abstract

Today passwords are the most common mechanism to
authenticate users, even for high security tasks like
acknowledging financial transactions in companies (e-
invoice handling, logging in as a financial trader etc).
Most "secure" websites in e-commerce require their users
to register via a self-chosen password. Also actual crypto
keys are sometimes created from user entered passwords,
as in Kerberos, PGP etc. In other cases cryptographic
keys are generated by better routines, but still from fairly
little randomness. This document analyzes vulnerabilities
associated with passwords and related attacks. Also, the
report touches the issue regarding randomness required
for cryptography algorithms and its co relation with
widely used authentication based systems.

1. Introduction

A password is a form of authentication data, which is kept
secret and is used to moderate access to resources. This
authentication paradigm is based on what people know i.e. a
user provides a password to the authenticator and on the basis
of provided information the system validates the password.
Password information is kept secret from those who are not
allowed to access the system.
Controlling access through passwords has spanned a lot with
time. It is used in ATMs and mobile phones, in computer
systems and TV decoders. Typically passwords are require
for logging into the computer system, being part of a
network, retrieving email from servers, accessing files,
databases, e-commerce based websites, forums etc.
In some cases passwords are chosen by users, in other cases
they are generated randomly by computer. Both methods
have their pros and cons related to security issues. In case of
user selected passwords, they might be too simple, repeat at
many places, or be easily vulnerable to dictionary attacks. In
case of computer generated passwords other problems
appear. First of all it gets much harder to remember
passwords and people start to write them in different places,
where they could be found by potential attacker. Secondly,
how random are computer generated passwords? Does the
attacker needs to search all possible combination to guess the
correct password or additional information might help her to
reduce the search space.

In cryptography, key is some information that controls
operation of a cryptographic algorithm. As in the case of
passwords, key needs to be kept secret and only be available
to authorized persons. According to Kerckhoffs' law, system
should be secure, even if all details of the system, except the
key are available to the attacker. As a result, security of the
cryptographic system depends on the strength of the key. As
in case of passwords, key size is the measure of the number
of possible keys and key space represents the set of all
possible keys. Brute force attack is analogue to dictionary
attack in case of passwords and is searching of the key,
running through the entire key space. In different systems key
are generated in different ways. The security of the key has a
strong relation with randomness. We study pseudo-random
sequence generation algorithms in section 4 and different
sources of randomness in section 5. Also, many systems use
user entered passwords to generate cryptographic keys, that is
applying various cryptographic functions, usually one way
hash of passwords. Systems such as Kerberos, PGP, etc
generate keys in the same fashion and are discussed in section
6. In this case attack on the key, basically becomes attack on
the password. We study user chosen passwords in section 2
and randomly generated passwords in section 3. A password
is a form of authentication data, which is kept secret and is
used to moderate access to a resource(s).

2. User chosen passwords

A password usually is some information that confirms a
user’s identity. In the simplest case, it is a sequence of
characters. The password space represents the set of all
sequences of characters that are eligible to be passwords.
Usually passwords are not kept in the system in clear form,
but are mostly hashed using one-way hash function, resulting
into a compliment. Resulted string is stored in a file or in a
database. The goal of the authentication system is to ensure
that users are correctly identified. If one could guess another
user’s password than one user could impersonate another
user and the system’s security would be compromised.
If A is a password space, the user password is a, such that a є
A. Using function f, such that f є F, password a is
transformed to a compliment string c such that, c є C. If we
take for example student cards PIN, it contains 4 digits, so its
password space A consist of 10 000 elements (from “0000”
to “9999”). In UNIX systems hashing functions f are based
on permutations of Data Encryption Standard. All user
passwords are hashed to 11-character strings and are stored in

separate file(s). Initially, back in time this file was accessible
to every user, and could be easily stolen / cracked by the
attacker. So, the security of the system was based on the
criteria that the function could only do one-way
transformations and if the attacker has saved the hash of the
password c and even know-how of the transformation
function f, he / she will not be able to obtain the password.
But the attacker can try to guess the password, calculates its
hash, using the same function f and compare the hash. This is
the simplest attack against the password-based system. In the
worst case attacker will have to try all passwords in the
password space.
So, one of the security factors is concerned about large
password space. Assuming a password space of 120
characters, there are about 43,359,498,756,302,520(4.34
*10 ^16) possible passwords of length one through eight. At
50,000 attempts per second, an exhaustive search of this
password space would require over 27,480 years to
complete.
But let’s consider that how users choose passwords. For most
of the humans it would be difficult to remember meaningless
sequence of lowercase and uppercase letters, numbers, and
punctuation marks. That’s why they usually choose
passwords that remind them of something. For example,
someone’s name, date of birth, telephone numbers,
daughter’s name, etc.
So here there is another threat from a specific type of attack:
known as Dictionary attack. M. Bishop in his book
“Introduction to Computer Security” [5] defines two types of
dictionary attacks:
Type1:
Complimentary information and complementation functions
are available and if g is the guess, if f (g) corresponds to
complimentary information of the correspondent entry, then
g is a correct password.
Type2:
either complimentary information or complementation
function is unavailable and authentication function l may be
used. In this case for guess g, if l (g) returns true, g is the
correct password.
So attacker doesn’t need to try all possible passwords from
the password space, but rather use a dictionary.
In the article “Foiling the Cracker” [1], Daniel V. Klein
describes a research made on user-chosen passwords. In his
experiment he obtained a database of about 15, 000 account
entries and tested each of the account entries by the number
of intrusion strategies.

1. He tried using user’s name, initials, account name and
other relevant personal information as possible passwords
(totally about 130 different passwords for this type).

2. Words from different dictionaries, totally about 60,000
separate words for each user. They consisted of names,
keyboard patterns, numbers, common phrases, collection of
words from different technical papers, etc.

3. Various permutation of words from step 2 (making the
first letter uppercase, reversing the word, making the word in

plural, adding different suffixes, etc.). These made 14-17
more tests per word, which are about 1,000,000 more
possible passwords per user.

4. Tried foreign language words on foreign user names.
5. Tried word pairs.

As a result in about 12 months of CPU time, 25% of the
passwords were recovered, 21% of the passwords were
guessed in first week and 2.7% (368 passwords) were
guessed in first 15 minutes of testing. In average, Daniel
Klein argues that system with about 50 accounts could expect
the first account to be cracked in less than 2 minutes, and 5-
15 accounts cracked by the end of the day.
Interesting statistics of passwords, cracked in the Klein’s
research is represented in table 1.

Table 1.

The total size of the dictionary was 62, 727 words.
An interesting research on user-chosen passwords was done
in Purdue University. In the article “Observing Reusable
Password Choices” [3] Eugene Spafford describes design of
password collector, which was installed on the several
systems for almost a year and collected passwords were
studied for vulnerabilities to dictionary attacks. Total of
13787 unique password entries were examined. The average
password length found to be 6.8 characters. Table 2
represents distribution of length, and table 3, distribution of
characters.

Table 2.

Table 3.

First passwords were compared to the information provided
by users in the registration form. It was user name, phone
number, and account name. 12839 unique words were
derived from this information and 592 passwords (3.9%)
were found to match. Second comparison was made against
standard dictionary of the system (in their case SunOS 4.1.1)
which consist 25144 words, 620 words were found to match.
Next comparison was made with set of dictionaries in 11
languages, results are presented in table 4. Finally collected
passwords were compared against large “miscellaneous” list
of words from various collections and 2498 matches were
found in this comparison.
Totally 2754 (20%) of the collected passwords were quickly
found in different dictionaries and wordlists. Author also
supposes that another 10% could match if perform some sort
of simple transformation on the words from the dictionary.
According to the efforts represented above, we can argue that
situation with user chosen passwords is not very good.
Obtaining password file, attacker could recover at least
several passwords and gain access to the system. Several
solutions have been developed to the problem. One, most

Table 4.

obvious of course is hiding the password file from regular
users. UNIX system uses shadowing passwords, and makes
password file readable only by root. This is of course useful
safeguard, but it doesn’t make the system absolutely safe.
Attackers could find different ways to obtain password file,
which are not the topic of this report. Another approach,
which is useful in addition to shadowing password file, is to
eliminate easy-to-guess passwords. Some systems
periodically run password checker, which scans password
file and tries to break passwords using different dictionaries.
When weak passwords are found, owners are advised or
notified to change them. Main drawback of this approach is
that it is quite time-consuming and attacker could always
obtain more sophisticated or vast dictionary and is able to
find more vulnerable passwords. Another approach is to
force users periodically to change passwords. The biggest
disadvantage here is that it doesn’t helps the user to choose
more complex passwords, in other way, its like implying the
user to choose password from the same dictionary domain or
use the same account information or the same pattern, which
doesn’t helps out.
Another solution to the problem is a proactive password
checker, which would test user passwords before they are
saved in the system. Daniel Klein [1] describes 14 points,
which were detected in his research, and which could be used
to create a proactive password checker:

 “Passwords based on the user’s account.
 Passwords which exactly match a word in a

dictionary.
 Passwords which match a reversed in the

dictionary.
 Passwords which match a word in a dictionary

with an arbitrary letter turned into a control
character.

 Passwords which are simple conjugations of a
dictionary word (i.e., plurals, adding “ing” or
“ed” to the end of the word, etc.)

 Passwords which are shorter than a specific
length.

 Passwords which do not contain mixed upper
and lower case, or mixed letters and numbers, or
mixed letters and punctuation.

 Passwords based on the user’s initials name or
given name.

 Passwords which match a reversed word in the
dictionary with some or all letters capitalized.

 Passwords which match a dictionary word with
the numbers ‘0’, ‘1’, ‘2’, and ‘5’ substituted for
the letters ‘o’, ’l’.

 Passwords which are patterns from the keyboard
(i.e., ‘‘aaaaaa’’ or ‘‘qwerty’’)

 Passwords which consist solely of numeric
characters (i.e., Social Security numbers,
telephone numbers, house addresses or office
numbers).

 Passwords which look like a state issued license
plate number”.

Of course, password checker should be equipped with all
necessary dictionaries and would be nice if in addition to the
rejecting password, it could argue, why the password is
rejected.

3. Randomly generated passwords

As it was mentioned in the last section that the main problem
with user chosen passwords is that users usually choose their
passwords that are weak in nature and they can be easily
recovered (derived) by simple dictionary attacks. According
to the theorem from the book by M. Bishop “Introduction to
Computer Security” [5], we assume that time T expected to
guess the password is maximum, when the selection of any of
a set of possible passwords is equiprobable. Let try to
evaluate time needed to guess password in this case [5].
Anderson’s Formula shows that if S is the length of the
password and A is the number of characters in the password
such that N= sA , G is the number of guesses that can be
tested in one time unit, T – the number of time units, N –
number of possible passwords, probability that an attacker
guesses a password in time T is:

N

TG
P

For example, let say our passwords are chosen from the
alphabet of 96 characters, and we assume that 10,000
passwords can be tested each second. Our goal is that
probability of successful password guess to be 0.5 over a year
period.

From the Anderson’s Formula we get:

11
4

10*31,6
5.0

10*)60*60*24*365(

P

TG
N

So we must choose S, such as

11

0

10*31.696

S

i

i N

In this case S should be at least 6.
Use of random passwords makes the system more secure, but
a number of problems appear. One of them is that for users it
is truly difficult to remember random-generated passwords
because they don’t remind them of anything and can’t even
be pronounced. A compromise between using random
passwords, generated by the computer and user selected
passwords, which are pronounceable in nature.
Pronounceable passwords are based on the unit of sound
called phoneme [5]. Phonemes that construct passwords are
represented by the sequences of letters cv, vc, cvc, vcv, where
v is a vowel letter and c a consonant letter. The idea is that
pronouncing the password, user will not memorize single
characters, but chunks of characters. Of course password
space of pronounceable passwords is much smaller than of
random passwords. Paper “A New Attack on Random
Pronounceable Password Generators” [4] describes one of
the possible vulnerabilities of pronounceable passwords.
Because not all pronounceable passwords are easy to
pronounce or remember, usually system generates several
choices and let the user to choose one of them. The idea of
the attack is that users choose passwords, which are situated
in one subspace, more often than passwords in the other
subspace. So the password space lacks the property of being
equiprobable, the attacker can find the subspace and can
deduce user passwords from this space and eventually will
aid the user to only try passwords from this subspace.

4. Pseudo-random sequence generation
algorithms

 Blum Blum Shum Generator

BBS (Blum, Blum and Shub generator) is one of the
simplest and an efficient complex generator having a
strongest public proof of its strength [6], BBS is also
known as quadratic residue generator. BBS generators, in
general are slow, in practise they are not useful for stream
ciphers but there exist versions of this generator which
speed it up, comprising on the "secure" aspect of it. These
generators are used for public key cryptography [7].
The reason for its strong security and its lack of speed is
that it generates pair of large sized prime numbers [8].
Also generation of large primes is much faster than

factoring the product of two of the said primes, so this
makes the algorithm cryptographically more secure. As it
is extremely slow compared to other RNGs [8], it is not
appropriate for use in simulations, only for cryptography
[9].
Experiments by L'Ecuyer and Proulx suggest that finding
large special primes and an element in a long cycle may
require 155 hours of CPU time (on a MicroVax II) for an
improper 128-bit design [9].

Method:

The generator requires generating two large prime
numbers, which are congruent to 3 modulo 4. The product
of these integers is n also known as blum integer. Another
random integer is chosen, x, which is relatively prime to

n. Then 0x is computed as following:

0x = (2x) (mod n)

and follows as:

ix = (
1

2
ix) (mod n)

Advantage:

The most efficient property of this generator is that you
don’t have to iterate through all i-1 bits to get the i'th bit.
This means that in applications where many keys are
generated in this fashion, it is not necessary to save them
all. Each key can be effectively indexed and recovered
from that small index and the initial x and n, if p and q are
know the i'th bit can be computed directly. This property
can use this cryptographically strong pseudo-random-bit
generator as a stream cryptosystem for a random access
file. BBS generator is unpredictable to the left and
unpredictable to the right which means that the
cryptanalyst cannot predict the next bit in the sequence or
the previous bit in the sequence [10].
BBS is itself is cryptographically strong (or is believed to
be), where the responsibility for providing a secure seed is
left to the client using the PRNG (Pseudo Random
Number Generator). BBS generator is likely to be used for
high security applications, such as key generation (session
keys) [11].

Analysis:
The security of this paradigm is dependent on difficulty of
factoring n. The x^2 mod N RNG is claimed to be
"unpredictable" (when properly designed), but even this is
no absolute guarantee of secrecy. An attack on RNG
repetition does not require "prediction." Even a brute force
attack has the possibility of succeeding quickly. An
inference attack could be practical if some way could be
found to efficiently describe and select only those states
which have a particular output bit-pattern from the results
of previous such selections; that we currently know of no
such procedure is not particularly comforting [12].

To put this in perspective, we should recall that all digital
computer RNG's, including x^2 mod N, are deterministic
within a finite state-space. Such mechanisms necessarily
repeat eventually, and may well include many short or
degenerate cycles. It is unnecessary to "predict" a
sequence which will repeat soon. Accordingly, the x^2
mod N RNG requires some fairly-complex design
procedures, which are apparently intended to assure long
cycle operation [13].
If integer factorization is difficult (as is suspected) then
BBS with large N will have an output free from any non-
random patterns that can be discovered with any
reasonable amount of calculation. This makes it as secure
as other encryption technologies tied to the factorization
problem, such as RSA encryption [13].

 RC4

RC4 is a stream cipher designed by Rivest for RSA Data
Security (now RSA Security). It is a variable key-size
stream cipher with byte-oriented operations. The
algorithm is based on the use of a random permutation.
Analysis shows that the period of the cipher is
overwhelmingly likely to be greater than 10100 . Eight to
sixteen machine operations are required per output byte,
and the cipher can be expected to run very quickly in
software. Independent analysts have scrutinized the
algorithm and it is considered secure [14].
Its followers are RC5 and RC6 designed by Ronald Rivest
for RSA Security, these ciphers use parameterized
algorithms, such as, variable block size, a variable key
size, and a variable number of rounds / iterations. Such
built-in variability provides flexibility at all levels of
security and efficiency.

Applications:

RC4 is used in various applications such as Lotus notes,
Apple computer's AOCE and Oracle Secure SQL. RC4 is
also used in wireless technologies such as WEP and WPA.
Also MPPE (Microsoft Point-to-Point Encryption), SSL
(Secure Sockets Layer) (optionally) and SSH (Secure
Shell) (optionally).
RC4 is used for file encryption in products such as RSA
SecurPC, RSA SecurPC is a software utility that encrypts
disks and files on both desktop and laptop personal
computers. SecurPC extends the WindowsTM File
Manager or Explorer to include options for encrypting and
decrypting individually selected files or files within
selected folders [15].

Implementation:

RC4 generates a pseudorandom stream of bits (a "key
stream") which, for encryption, is combined with the
plaintext using XOR as with any Vernam cipher.

Many stream ciphers are based on linear feedback shift
registers (LFSRs), and, while efficient in hardware, are
much slower in software. The design of RC4 is quite
different, and is ideal for software implementations, as it
requires only byte-length manipulations. It uses 256 bytes
of memory for the state array, S[0] through S[255], k
bytes of memory for the key, key[0] through key[k-1], and
integer variables, i, j, and k. Performing a modulus 256
can be done with a bitwise AND with 255 (or on some
platforms, simple addition of bytes ignoring overflow)
[16].

Analysis:

RSA Data Security, Inc (RSADSI) claims that the
algorithm is immune to differential and linear
cryptanalysis, have large cycles and is highly non linear.
The algorithm is simple enough that most programmers
can quickly code it from memory [10].
In 2001 a new and surprising discovery was made by
Fluhrer, Mantin and Shamir: over all possible RC4 keys,
the statistics for the first few bytes of output keystream are
strongly non-random, leaking information about the key.
If the long-term key and nonce are simply concatenated to
generate the RC4 key, this long-term key can be
discovered by analysing large number of messages
encrypted with this key [17]. This and related effects were
then used to break the WEP ("wired equivalent privacy")
encryption used with 802.11 wireless networks. This
caused a scramble for a standards-based replacement for
WEP in the 802.11 market, and led to the IEEE 802.11i
effort and WPA [18].

 Linear Congruential Generator

A Linear Congruential Number Generator (LCG)

produces a sequence of numbers 1x , 2x , 3x where

nx = a 1nx + b (mod m)

In this relation 0x is the initial seed, and values a, b and

m are parameters that makes the relation for this
generator. The generator has a period not greater than
length m, b should be relative prime to m.

History:

The LCG is perhaps the most commonly used Random
number generator in modern computer applications, but
strangely, it was invented by D.H. Lehmer in a time when
his concept had almost no practical use, as there were
essentially no computers around [19]. It was only later on,
when programmers required a fast way to generate a large
stream of random numbers that Lehmer’s LCG method
was used as it simple and fast. These early programmers
were more interested in speed than statistical randomness,
and thus many of early LCGs were awfully flawed [20].

Most computers have a method for generating random
numbers that is readily available to the user. For example,
the standard C library contains a function rand () that
generates pseudo-random numbers between 0 and 65535.
This pseudo-random function takes a seed as input and
produces bit stream. This rand () function and many other
pseudo-random number generators are based on linear
congruential generators [21]. Donald Knuth quotes “…
look at the random number subroutine library of each
computer installation in your organization… Try to avoid
being too shocked at what you find [19]”.

Analysis:

As cryptography requires values (bits) which are
unpredictable. The use of pseudo-random number
generators based on LCG is mostly suitable for
experiment purposes or for simulations, and is highly
discouraged for cryptographic functions because this
generator is predictable even without knowing the value of
the parameters involved in the relation. Eavesdropper can
use the knowledge of some bits to predict the value of
future bits with high probability. However they are
efficient and show good statistical behaviour with respect
to most reasonable empirical tests [21,10].
Regarding the ubiquity of flawed LCGs, this generator can
be easily implemented and are fast, It is, however, well
known that the properties of this class of generator are far
from ideal. If higher quality random numbers are needed,
and sufficient memory is available (~ 2 KBytes), then the
Mersenne twister algorithm is a preferred choice [22].

5. Sources of Randomness

 Cryptographic randomness from air
turbulence in disk drives

In article [23] it tells about cryptographic randomness
from air turbulence in disk drives, as disk drive’s motor
speed variates irregularly due to the air turbulence present
in the disk’s closure. It shows by timing disk accesses, a
program can extract about 100 independent, unbiased bits
per minute, at no hardware cost.
Further on, the discussion motivates the idea behind
generating random numbers from air turbulence in disk
drives. As Secure Pseudo Random Number relies on the
complexity of the algorithm, hardware providing natural
physical noise is expensive also it tends to be biased and is
correlated but idea of air turbulence is inexpensive,
reliable and mathematically noisy.
On the other hand OS detects disk faults unlike other
hardware (devices), so the randomness failure is unlikely.
Secondly the disk can be secured from out side influence
and observations, most importantly non linear dynamics

of disk aids to construct a mathematical argument on it.
Turbulence occurs at the read/write heads and their
support arms. The usage of Fast Fourier Transform acts as
an unbiasing algorithm, converting variations form the
access times into uniformly distributed and independent
variable. The research provides proof of variance due to
air turbulence according to various tests and work of
others.

 Randomness from Radio active nuclear
decay

Radioactive decay is the set of various process from
which nuclides (atomic nuclei) emits radiation in form
subatomic particles. Decay initiates in the parent nucleus
and produces a sub daughter nucleus. This procedure is
random in nature and is impossible to predict the decay of
individual items. Geiger counter [24] can be used to detect
alpha and beta radiation. This instrument amplifies input
signals and displays it to the user.
On the premise that radioactive decay is truly random
(rather than merely chaotic), it has been used in hardware
random-number generators and is an invaluable tool in
estimating the absolute ages of geological materials and
young organic matter [25]. In [26] a true random
generator, “RANDy”, is proposed which is based on
radioactive decay. They utilized the alpha decay of
Americium 241, for generating random number generator
for cryptographic applications. It shows three different
algorithms for the extraction of random bits from the
exponentially distributed impulses. Applying statistical
test to their idea, confirming high quality of data delivered
by the device.
The TRNG presented in this work consists of a
radioactive source and a corresponding detector. The
decay impulses are filtered and amplified for a further
digital processing. The random bits are obtained by
deciding whether the time interval between two pulses
consists of an even or odd amount of timing units. This
processing is done by a micro-controller that sends the
random data via RS232 to a host computer where it is
captured by a standard terminal program and stored or
used. The length of the time intervals between two
consecutive decay impulses is unpredictable. RANDy
based on a preparation of the alpha radiator Americium
241 from a common household smoke detector so the total
amount of radioactive material is not very critical. Geiger
Muller tubes are rather common for simple qualitative
measurements of mostly beta-radiation. On the other hand,
a semiconductor sensor has the advantage that no high
voltage is necessary and the recovery time after an
impulse was detected is much smaller than in a tube. This
method was applied to construct this TRNG.

 Randomness Using Noise

Natural noise can be used for TRNG (True random
number generator) requiring special hardware. In [27] a
random number generator using Wi-Fi background noise
is discussed. It experiments with wireless technologies /
devices (such as WLAN, Wireless LAN, or IEEE 802.11)
recording background noise in their environment, relying
on Electro magnetic noise as a physical phenomena.
Today, information such as noise level can be queried
from such applications. Command such as iwconfig can
be used to extract the information (such as noise level) of
a wireless device.
Furthermore [28] discusses the idea of using thermal noise
with SHA 2 for generating equally uniformed random
numbers, they retrieve thermal noise generated by
integrated circuits. In addition to this, [29] shows the
usage of metastability and thermal noise to generate
random numbers demonstrating their results from a
fabricated circuit, it specifies when a signal violates a
bistable device’s signal setup and hold timing
requirements, the device output comes unstable. The
undesirable phenomenon where the final state of the
device is unpredictable and is determined by thermal noise
is knows as metastability [29]. This study creates
metastability from manufacturing variation in ICs.

 Randomness using External Interrupts
(System Clock)

Working with randomness from natural sources is a big
issue, it involves special hardware plus the process of
extracting randomness is quite slow. Work has been done
on using interrupts from external resources like keyboard
strokes, hard-disk I/O completions, network packet
arrivals etc [31] which result in uniformly distributed
random sequence of 0’s and 1’s. This effort relies of not
requiring a dedicated hardware and using the inherent
entropy of external interrupts. Also lower bits of clock
register when sampled on a lower rate, provides a good
source of random bits.
The methods used a generator which is known as the
entropy daemon and a buffer manager for management.
Entropy daemon is responsible for collecting time stamps
from external interrupts and converting them ultimately to
a sequence of uniformly distributed bits. The buffer
manager distributes the bits by serving blocking and non
blocking read requests by processes in the operating
system.
Like wise LINUX random number generator utilizes the
same principle that is generating randomness from entropy
of operating system events. The LINUX kernel uses the
random data for various functions such as generating
random identifiers, computing TCP sequence numbers,
producing passwords, and generating SSL private keys.
The interface of receiving random values from Linux
Random Number (LRNG) Generator is the function
get_random_bytes(*buf, nbytes). The API to the LRNG is
through two devices /dev/random and /dev/urandom.

/dev/random is used for more secure bits, while
generating bits from this device the user might go in a halt
state. /dev/urandom is used for less secure bits [32].

 User Input Latency

It’s been observed that people typing pattern is both
random and non-random. The random pattern is random
enough that they can be used to generate random bits. The
process is carried by measuring time between successive
keystrokes, and then extracting least significant bits of
these observations. These bits may be biased and co
related, but, can be distilled using whitening algorithms.
This scheme may not be suitable for UNIX terminal, as
keystrokes pass through various transformations before
they get to the program, but can be used in most of the
personal computers[10].
Normally the extraction depends on reliance of data
measured according per stroke. Normally one bit per type
is suitable; extracting more bits might skew the result.
This situation also depends on the typist that how good is
a typist. The technique is limited for generating small
keys.

6. Systems based on user specific keys /
passwords

 Kerberos

In single sign-on systems such as Kerberos, passwords are
limited to the use of characters that can be represented by
7 bit ASCII format. This password of any arbitrary length
is converted into an encryption key that is stored in the
Kerberos database which includes many steps including
CBC mode of DES, these steps result in a CBC checksum,
which is the key associated with this user’s password. So
we can view it as a hash function that maps an arbitrary
password into a 64-bit hash code.
Both version of Kerberos are vulnerable to passwords
attacks, the Authentication Server to the client includes
information encrypted with a key based on clients
passwords. If this data is comprised and suspected to
proper attack, then it can reveal the password and hence
the security of the system is compromised by gaining
credentials from Kerberos. A counter measure for this
situation is introduced in Kerberos version 5, a concept of
pre authenticating, which is introduced to make password
attacks more difficult but still it doesn’t prevents the
attacker much.
Also, it has long been known that Kerberos 4 Ticket
Granting, Tickets, are susceptible to dictionary attacks, as
they contain a constant string that can be used for
compares, the string happens to be "krbtgt". It is possible
to query a Kerberos server, provide a valid principle (user
and Kerberos realm), receive a Ticket Granting Ticket,

and decrypt the DES ticket using dictionary words for the
key, if the phrase "krbtgt" exists in the decrypted packet
then correct key is exposed.

 PGP

PGP (Pretty good privacy), system for standard email,
requires pass phrases. Like many other systems, PGP uses
passwords to control access; it uses the password to
generate a 128-bit code using a hash function. As
password can be of any length that’s why it is called “pass
phrase”. Pass phrase is used to encrypt the user’s copy of
the secret key that is stored on user’s computer hard drive
and also user’s file(s). It is recommended that these
phrases should be complex sentences making no sense at
all, for e.g. “666babyicecream”. This sort of paradigm do
help against the dictionary attacks, reverse dictionary
attacks but the point is that the user can’t remember long,
complex, peculiar phrases (passwords), which provides
room for various attacks, which can lead the attacker to
read all the encrypted emails.

7. Conclusion

In this project we have studied common key and password
generation. Many systems use passwords or similar
information for generation of the cryptographic key. That
is why attacks against keys sometimes become attacks
against passwords. We studied different ways of
generating passwords, weaknesses in user-chosen
passwords and methods to protect against them. User-
chosen passwords are most user-friendly and easy to
remember, but they are not most secure. Due to many
psychology reasons, users tend to choose passwords
which could be recovered by various dictionary attacks.
Various ways exists to prevent users from choosing too
simple passwords. One of the best is proactive checking
of selected passwords before introducing it to the
database. This method allows to check the password
against different dictionaries that attacker might use and
evaluate how strong it is, if password is found too weak,
user is suggested to choose another one. Different
implementations of proactive password checker are used
in most of the systems that allow user-selected passwords.
In general, carefully designed proactive password checker
will allow the system to be relatively safe against
dictionary attacks.
Randomly generated passwords are generally much
stronger, but it is more difficult to remember them. Plus,
in some cases, information about the source of
randomness might help attacker to reduce the search
space. We studied different sources of randomness, which
are used in generating random passwords and random
keys. Random bits can be extracted from natural sources,
like radio-active decay, noise, air turbulence in disk drives

and from system events, like interrupts from the I/O
devices, user input latency, etc. Usually natural sources of
randomness are more expansive because they require
special hardware. But they are also more reliable and are
used mostly in the systems that have higher security
requirements.
If we take a look at the situation today, passwords remain
the most popular form of authentication for low security
systems. We use passwords to access our e-mail, our
student account, different forums, e-commerce web-sites
etc. Usually these systems leave password generation to
the user, and it is up to the user, to generate truly random
and “unbreakable” password or choose some string of
characters, which can be recovered in a small amount of
time.
Also, the structure of the authentication systems or
technologies relies on one single entity, usually a master
key, when deciphered compromises the security of the
whole system. Depending on the nature of required
security various architectures work with combination of
two or more functionalities to make a system more secure,
combining Pseudo Random Generator or/and True
Random Number Generator.

References

1. Klein D., "Foiling the Cracker: A Survey of,
and Improvements to, Password Security,"
Proceedings of the 2nd USENIX UNIX
Security Workshop, pp. 514

2. Bishop M., Klein D., "Improving System
Security via Proactive Password Checking,"
Computers and Security 14 (3), pp. 233-249
(Apr. 1995).

3. Spafford E., "Observing Reusable Password
Choices," Proceedings of the 3rd UNIX
Security Symposium, pp. 299-312

4. R. Ganesan and C. Davies., "A New Attack on
Random Pronounceable Password
Generators", Proc. 17th National Computer
Security Conference", pp. 184-197, 1994

5. Bishop M., “Introduction to Computer
Security”

6. M. Geisler, M. Krøigård and A. Danielsen.
"About Random Bits", December 3, 2004.

7. L. Blum, M. Blum, and M. Shub. “A simple
unpredictable pseudo-random number
generator”. In SIAM Journal on Computing,
15, May 1986.

8. C. Wright. "So You Need a Random Number
Generator".

9. L'Ecuyer, P. and R. Proulx. 1989. about
Polynomial - Time "Unpredictable"
Generators. Proceedings of the 1989 Winter
Simulation Conference. 467-476. IEEE Press:
New York.

10. B. Schneier. "Applied Cryptology". Second
edition, John Wiley & Sons, Inc.

11. RFC 1750, "Randomness Recommendations
for Security".

12. Ritter, T. 1991. "The Efficient Generation of
Cryptographic Confusion Sequences".
Cryptologia. 15(2): 81-139.

13. Wikipedia. "Blum Blum Shub", In Wikipedia,
the free encyclopedia. The Wikipedia
Community, November 2004.

14. RSA laboratories, "RC4".
15. RSA laboratories, "SecurePC".
16. Wikipedia. "RC4Linear Congruential

Generator", In Wikipedia, the free
encyclopedia. The Wikipedia Community.

17. Scott R. Fluhrer, Itsik Mantin and Adi
Shamir, Weaknesses in the Key Scheduling
Algorithm of RC4. Selected Areas in
Cryptography 2001.

18. N. Ferguson, B. Schneier. "Practical
Cryptology". First edition, John Wiley &
Sons, Inc.

19. Stephen K. Park and Keith W. Miller Random
Number Generators: Good Ones Are Hard To
Find Communications of the ACM,
31(10):1192-1201, 1988.

20. J. Pisharath, "Linear Congruential Number
Generators", Newer Math, Fall 2003.

21. W. Trappe and L. Washington. "Introduction
to Cryptography with Coding Theory". First
edition.

22. Wikipedia. "Linear Congruential Generator",
In Wikipedia, the free encyclopedia. The
Wikipedia Community.

23. D. Davis, R. Ihaka, and P. Fenstermache,
“Cryptographic Randomness from Air
Turbulence in Disk Drives”.

24. Wikipedia. "Geiger Counter ", In Wikipedia,
the free encyclopedia. The Wikipedia
Community.

25. Wikipedia. "Radioactive decay ", In
Wikipedia, the free encyclopedia. The
Wikipedia Community.

26. M. Rohe, "RANDy - A True-Random
Generator Based On Radioactive Decay",
2003.

27. P. Mutaf, "True random numbers from Wi-Fi
background noise", February'06 Paris, FR.

28. Y. Wang, H. Zhang, Z. Shen, K. LI, "Thermal
Noise Random Number Generator Based on
SHA-2 (512)", Proceedings of the Fourth
International Conference on Machine
Learning and Cybernetics, Guangzhou, 18-21
August 2005.

29. D. C. Ranasinghe, D. Lim, S. Devadas, D.
Abbott, P. H. Cole, "Random numbers from
metastability and thermal noise".

30. J. Amenedo, R. McCue and, B. H. Simov.
“Extracting randomness from external

resources”, System Networking and Security
Lab Hewlett-Packard Co.

31. Z. Gutterman, B. Pinkas and T. Reinman,
"Analysis of the Linux Random Number
Generator", March 6, 2006.

32. "Applied Cryptology". Second edition, John
Wiley & Sons, Inc.

33. W. Stallings, “Network security essentials,
application and standards”.

34. LE Webmaster, “Linux exposed, Kerberos
Security”.

35. B. Schneier. “"Secret and Lies: Security in a
network world”".

36. S. Garfinkel. “PGP: Pretty Good Privacy”.

	1.Introduction
	2.User chosen passwords
	3.Randomly generated passwords
	4.Pseudo-random sequence generation algorithms
	5.Sources of Randomness
	6.Systems based on user specific keys / passwords

	7.Conclusion
	References

