
Intrusion Detection Systems with Correlation Capabilities

Daniel Johansson
danjo133@student.liu.se

Pär Andersson
paran213@student.liu.se

Abstract

Alert correlation in network intrusion detection systems
is a method of correlating generated alerts to both reduce
the information that network administrators have to read,
and help detect patterns that would be missed without the
correlation. In this paper we introduce the concepts of
network intrusion detection systems and the possible usages
of correlation. We cover some of the current research in
the area and present some of the more popular available
applications. We have also conducted experimental
research with our own basic correlation system. The result
of the experiments shows that correlation can both reduce
the amount of information and help detect attacks.

1. Introduction

One of the main problems with Network Intrusion
Detection Systems(NIDS) is the quantity of alerts that
are generated. In highly loaded networks the amount of
reports often overwhelms a human operator. This problem
increases when more sensors are added to the system. To
remedy this situation alerts and/or events from the sensors
can be correlated, so that information concerning the same
attack is grouped together and not reported more than once.
Correlation can also enable the detection of attacks that are
undetectable if data from only one sensor is considered.
In this paper we will discuss current research regarding
correlation in NIDS. We will also set up a NIDS installation
with more than one sensor and demonstrate how correlation
works.

2. Background

2.1. Why NIDS

With the increase in importance to keep more
information available over computer networks comes the
need for Network Intrusion Detection Systems(NIDS), this
is because there will always be faults in systems, both
through bugs in software and in system setups. Because of

this, a system is never completely safe. In the real world
this has been known since the dawn of time and guards
have been hired to protect important things, in software
security the Intrusion Detection Systems(IDS) have taken
their role. One of the major problems with NIDS is how
to get useful information from it, the sheer amount of
information produced by the systems can often overwhelm
a human. This is where correlation of events in order to find
attacks comes as a solution and this is what this report will
discuss. Another problem comes when deploying NIDS and
that is: many organizations underestimate the amount of
traffic generated by a NIDS on a large scale network. They
go from testing to deployment without a pilot phase, and as
a result they get poorly maintained systems that don’t work
as intended.[15]

In a complete IDS you protect not only the network
but also the hosts and servers on the private network. A
Host Based Intrusion Detection system run on a single host
and can monitor for example the local file system, running
processes, memory usage etc. Correlation can be efficiently
used in a HIDS as well as in a NIDS, or data between HIDS
and NIDS can be correlated. However we will only discuss
NIDS.

2.2. Anomaly and Misuse Detection

The goal of a NIDS is to listen to traffic on the network
and detect malicious behavior based on this generate alerts.
There are two common ways of doing this. The first method
try to create a model of what is normal usage of the network
and then events that deviate from the specified behavior
can be detected, this is known as anomaly detection. One
obvious benefit of anomaly detection is that previously
unknown attacks can be detected. Unfortunately anomaly
detection system often have a high rate of false positives,
i.e. normal traffic being classified as attacks.

The other method is misuse detection. This method use
rules that specify known bad behavior, and creates alerts
when events match a rule. This kind of system is easier
to implement, gives a low amount of false positives, but
can only detect things that has been specified in the rules.
There is always a delay between for example a new type of
network attack is discovered and new rules can be written



and integrated into systems, attacks missed because of this
is known as false negatives.

2.3. Correlation

The most basic setup of a NIDS is to use one sensor
that then e-mails its generated alerts to the network
administrator. In bigger networks there is often a need for
more sensors to cover the entire network. If all these sensors
use the basic setup mentioned before this results in a lot of
e-mail messages for the administrator.

A common solution is that all the sensors send their
generated alerts to a central server where they can be
stored, often using a database. The central server can then
send status reports to the administrators, but this will still
generate to much information.

This is where alert correlation can help. By correlating
the alerts from the different sensor the alerts can be merged
together to reduce the information. The correlation can also
help detect attacks that would otherwise be missed. Sensors
distributed across the network can catch attacks against
different subnets or when you want to catch attacks against
several nodes. Alerts from sensors placed at different depth
in the network can be used to find attacks that might use
TTL/fragmentation attacks.[16]

2.4. Related work

There exist lots of research in the area of Intrusion
Detection System and Network Intrusion Detection
Systems. However there are not so much that specifically
target the area of Alert Correlation, and the research that
exist is mainly from 2001-2003. One notable exception is
the research done by Baleur et. al [18] that have created
a sophisticated system that performs alert correlation as a
process with many phases. One other relevant paper is by
Cuppens and Miège [8] that cover many different ways of
performing correlation.

Much research is also about combining NIDS
system with traditional host based systems, to improve
security.[6][14]

Many of the researchers[8][14][6] use the Intrusion
Detection Message Exchange Format (IDMEF)[10] which
is a protocol for sending Intrusion Detection Messages that
is currently being standardized by the Internet Engineering
Task Force (IETF)

Decentralization of the correlation has also been
researched. Krügel et. al [13] have proposed a language
for specifying distributed attacks. This can be used to ease
the writing of pattern matching rules that matches correctly
against a greater number of attacks.

3. Available Software

In this section we will discuss some of the NIDS
software that exists. We will also cover some tools for
security auditing that we will later use in our practical NIDS
study.

There exists a number of commercial NIDS applications
that have some correlation abilities. For this project we are
unable to test any of them as we have no funding. Therefore
we are dependent on either reading others reviews or
reading the software developers information. We have not
found a good source of reviews, and the software companies
of course only highlight the good features of their products.
Based on this we have chosen to only investigate free NIDS
software and not any commercial software.

3.1. Intrusion Detection

3.1.1. Snort

“Snort is the de facto standard for intrusion prevention.
Snort R© is an open source network intrusion prevention and
detection system utilizing a rule-driven language, which
combines the benefits of signature, protocol and anomaly
based inspection methods”[17]

Snort is a very popular NIDS software developed by
a company named SOURCEfire and released as free
software under the GNU General Public License(GPL).[3]
The software is available on most platforms, including
Microsoft Windows, Mac OSX, Linux. SOURCEfire
provides official updates to the rule set using a subscription
model where paying subscribers get the new rules first, later
registered users and last unregistered users. There also exist
community created rules that are available free for all.

Since Snort is rule based it is mainly a misuse detection
system, but it also has some anomaly detection capabilities.
Snort supports logging events to either log files or a
database.

3.1.2. ACID - Analysis Console for Intrusion
Databases

ACID[9] is a free web based program written in PHP
that analyzes Snort alerts stored in a database. It features
include advanced searching capabilities, displaying of raw
alert data, creation of charts and statistics. It also has some
basic correlation capabilities. However the project has been
discontinued and is no longer developed.

3.1.3. BASE - Basic Analysis and Security Engine

BASE[1] is directly based on code from the ACID
project. BASE is much improved, has less bugs, more



features, improved interface and graphics. It is actively
maintained and developed by a group of volunteers.

3.1.4. QuIDScor

QuIDScorTMis an open source tool for correlating IDS
events with vulnerabilities detected by QualysGuard.[4]

QuIDScor is an IDS manager that categorizes alerts
from snort into “Validated Alerts”, “Unknown Alerts”,
“Invalidated Alerts”, based on vulnerability information
gained through QualysGuard when doing your regular
security audits. This decreases the amount of data the
network manager needs to watch.

3.1.5. IDEA - Intrusion Detection Exchange
Architecture

“IDEA is an architecture for implementing a distributed
intrusion detection system on a computer network. It
provides a way to incorporate many different IDS sensors
into an architecture, and have them report to a central
IDS server. This server collects, aggregates, and correlates
data from the sensors, providing a unified view of network
activity. “[11] IDEA has been discontinued since 2003, the
web page doesn’t mention what it tries to correlate and it
only supports MySQL as back-end.

3.2. Security auditing tools

3.2.1. IDSwakeup

IDSwakeup[7] is a software that can be used to test NIDS
installations, it tries to mimic several well known attacks to
make the NIDS generate false positives.

3.2.2. nmap

Nmap (“Network Mapper”)[12] is used for network
exploration and/or security auditing. It supports many
different methods of scanning for open ports and online
hosts. It also have support for trying to identifying what
operating system the scanned target is running.

4. Practical research

For this part we set up a test network with three private
subnets and one common subnet, with NIDS running on
two of the gateways separating the private subnets from the
common subnet. We then performed some simple attacks
to demonstrate how correlation can be used on the resulting
alerts.

Figure 1. Test system network topology

4.1. User Mode Linux

We have set up our test system using User Mode Linux
(UML)[5]. UML is a type of virtual machine that works
by running instances of the Linux kernel as user-space
processes on a host Linux system. Support for virtual
networking is also provided.

4.2. Operating system

All the UML instances used run the operating system
Debian GNU/Linux version 3.1[2]. Debian is a free
operating system developed by a group of individuals.

4.3. Test system

Our test system uses 12 UML instances, where eight are
ordinary hosts and four are routers. The UML instances are
connected by a virtual network, as shown in figure 1.

• ids-gw: One gateway that connects the virtual network
to the rest of the world. This node also runs the
centralized database server used for storing alerts and
doing correlation.



• ids-16-gw, ids-32-gw, ids-48-gw: Three gateway
nodes, that each has one interface connected to a
virtual internal network, and one interface connected
to the other gateways by the virtual interconnection
network.

• ids-16-2, ids-16-3, ids-16-4, ids-16-5: Four nodes on
the first internal network (Subnet 16), connected to ids-
16-gw.

• ids-32-2, ids-32-3: Two nodes on the second internal
network (Subnet 32), connected to ids-32-gw.

• ids-48-2, ids-48-3: Two nodes on the third internal
network (Subnet 48), connected to ids-48-gw.

4.3.1. NIDS Sensors

We use Snort as the NIDS for our tests. The Version
of Snort used is 2.3.2 as available in Debian 3.1, but with
manually updated rule set to the latest publicly available.

Snort was installed on two of the gateways, ids-16-gw
and ids-32-gw listening on the interface connected to the
internal networks. We use Snort version 2.3.2 and it is
configured to send the generated alerts over the network to
be stored in a database running on ids-gw.

4.3.2. Correlation Server

Alerts from the Snort instances are stored in a
PostgreSQL database running on ids-gw. On the gateway
we also run a web server with BASE and our correlation
software installed. While IDEA incorporates the concepts
that we want to illustrate in this report, it had too many
drawbacks that would have taken us too much time to sort
out given the time-frame of the project.

4.4. Attacks

One attack that is easy to detect using correlation is the
“ping sweep”, especially if the targeted addresses are in
subnets covered by different sensors, this will be the first
attack that we will perform and try to detect. This attack
will be performed using Nmap.

Another attack that will be a little more difficult will be
a “sparse port scan”, i.e. a port scan that touches several
nodes but does so slowly, thus trying to make the NIDS
believe that there is no connection between the attacks.

We will also use the program IDSwakeup, as this will
hopefully result in lots of alerts, with the same pattern each
time. By running IDSwakeup against several nodes we will
simulate for example a worm trying to infect those hosts,
or a malicious user trying the same series of attacks against
them. Due to the number of alerts that each execution of

IDSwakeup will produce from the NIDS this will be very
good to illustrate the information reduction that comes from
correlation.

We will also use nmap to port scan various hosts, the
results from this should be similar as when attacking with
IDSwakeup. This should however result in far less alerts.

Other attacks that might illustrate the need for distributed
NIDS are DoS and TTL based attacks, however this is
not the focus of this report so these attacks will not be
performed. DoS attacks might be easier for the NIDS
systems to handle, since no single sensor have to take
the burden of the entire data stream. TTL-based attacks
make the NIDS create a different packet than the end node
by sending packets with different TTL.[16] Having two
sensors on a serial line would then see that traffic have
changed, this particular attack can also be avoided by using
the snort frag3 preprocessor, but attacks based on the same
principle might still be valid.

4.5. Alert Correlation

BASE has a nice user interface and is useful to see for
example what alerts are generated. However it has very
limited correlation abilities, it is only possible to group
events, eg. you can us it to watch unique alerts and see
that an alert has been caught by several sensors. We wanted
to be able to detect the attacks described. We first started
to extend BASE with our own correlation functions, mainly
because it already had a suitable user interface to present the
data. However we realized that the code is quite complex,
and not very well documented, and decided that extending
BASE would not be possible considering this projects time
frame. Instead of extending BASE we created our own basic
correlation software.

Our correlation software is implemented in PHP, does
not have a nice user interface but is good enough to serve
as a proof of concept for using alert correlation. The
program is not run in real time, and does not take any input
parameters. It connects to the database on the server, reads
the data of all alerts stored there by the Snort sensors and
then performs different types of correlation on the alerts.
The results are presented as a web page that list the resulting
alerts from correlation as well as the original Snort alerts.

The data our program looks at when performing
correlation comes from the alerts generated by Snort
and has the following interesting fields: The ID of the
generating sensor(sid), the name of the Snort signature that
matched and caused the alert to be generated(sig name),
the source address of the matching packet(ip src), the
destination address of the matching packet(ip dst) and the
timestamp of when the alert was generated (timestamp).

The program have three different ways to correlate the
alerts:



• Burst correlation: This mode simply correlates the
alerts from all sensors based on timestamp and detects
bursts of alerts. As soon as one alert is found a
new burst is started and subsequent alerts are then
added into this burst. A burst is ended when there is
a specified time interval with no new alerts. Using
this distributed attacks can be detected. Of course
this method will be very infeasible on a larger scale
network where alerts are generated continuously. This
method could scale much better if the type of the alerts
were also used, instead of detecting bursts of alerts it
could for example detect bursts of ping scan alerts.

• Pattern correlation: Here we look at alerts from all
sensors and then try to find similar patterns of alerts
that have traversed different sensors and creates an
alert-sequence. This is done by searching through the
alerts ordered by timestamp and group possible attacks
together based on common sequences with the same
sig name. This type of correlation will catch both
attacks against distributed nodes separated by time and
attacks such as those indicating a worm.

• Ping Sweep: This is specifically created for finding
ping sweeps. It looks at alert data from all sensors and
detects the “ICMP PING” sig name, if many of these
have the same ip src, and happen within a short time
of each other they are grouped together and classified
as a ping sweep.

4.6. Results

We will now discuss the results using our software when
performing the described attacks. A summary of how many
Snort alerts that was generated from each attack, and how
many alerts our correlators generated from these is shown
in table 1.

Attack Alerts Bursts Patterns Ping sweeps
Ping Sweep 12 1 1 1
IDSwakeup 150 1 10 -
Port scan 36 6 1 -

Table 1. Correlation software results

We first performed a simple ping sweep using nmap
scanning all IP addresses in subnet 16 and 32. The scanned
subnets have two and four nodes respectively. The ping
sweep resulted in two alerts per scanned node so the total
number of generated alerts was 12. All those alerts were
grouped together by our ping sweep detector as being one
attack. Our other two correlation methods also produced
interesting results, the burst correlator reported the entire
ping sweep as one burst as expected. The pattern matcher

found one pattern containing four alerts, this is because one
sensor reported eight alerts while the other reported four so
the smallest common sequence was detected.

Our second test was to simulate an attacker
simultaneously attacking two different nodes in the
network. These attacks were performed using IDSwakeup,
and produced a total of 150 sensor alerts. Our program
showed this as one burst, and 10 patterns. The reason
that the entire IDSwakeup attack was not correlated into
one pattern is likely because of delays in the network
and the operating systems TCP stacks so that some of the
packets pass through the sensors in different order. This
problem could be solved by using more advanced pattern
matching rules. Also IDSwakeup is not a very realistic
attack simulation due to the number of attacks that it
perform, ordinary attacks will result in fewer and shorter
patterns. We still consider this a good result for illustrating
correlation, as reviewing 10 patterns is much better than
150 alerts.

After this we did port scan attacks using nmap. The
correlation of alerts produced when executing the scans
worked very well. Each scan results in an average of six
alerts, which our software correlated into one burst. Our
pattern correlator also detected the scans as using the same
patterns and grouped them together. When scanning the
same nodes that was targeted in the previous ping sweep,
one at a time, this generated 36 alerts correlated into six
bursts and one pattern.

5. Conclusions

In this paper we have covered the usages of alert
correlation in intrusion detection systems and why it is
necessary to help network administrators handle a high
number of alerts and to help them detect otherwise
unnoticed attacks. There have been much research in the
area, especially around 2002-2003. Unfortunately much
research is about the broader subject of network intrusion
detection, but we have not found many studies that focus
especially on the alert correlation of alerts from distributed
sensors.

There is not so much free software available to do
advanced correlation. Some projects do exist but they don’t
seem to be very mature yet.

Using our test system we have seen that implementing
some simple correlating methods in a program is easy.
Using our program it was also easy to illustrate the benefits
of using correlation, both for information reduction and
attack identification. However, our simple software can
only detect a small number of attacks and therefore more
advanced correlation algorithms are necessary to be useful
in a real life scenario.



References

[1] Basic Analysis and Security Engine.
http://secureideas.sourceforge.net/.

[2] Debian GNU/Linux 3.1. The Debian Project,
http://www.debian.org/News/2005/20050606.

[3] GNU General Public License. Free Software Foundation,
Inc., http://www.gnu.org/licenses/gpl.html.

[4] Qualys IDS Correlation Daemon. Qualys, Inc,
http://quidscor.sourceforge.net/.

[5] User-mode Linux Kernel. http://user-mode-
linux.sourceforge.net/.

[6] D. Andersson, M. Fong, and A. Valdes. Heterogeneous
sensor correlation: A case study of live traffic analysis. In
Third Ann. IEEE Information Assurance Workshop, June
2002.

[7] S. Aubert. IDSwakeup.
http://www.hsc.fr/ressources/outils/idswakeup/.

[8] F. Cuppens and A. Miège. Alert correlation in a cooperative
intrusion detection framework. In SP ’02: Proceedings of
the 2002 IEEE Symposium on Security and Privacy, page
202, Washington, DC, USA, 2002. IEEE Computer Society.

[9] R. Danyliw. Analysis Console for Intrusion Databases.
http://acidlab.sourceforge.net/.

[10] H. Debar, D. Curry, and B. Feinstein. Intrusion
Detection Exchange Format, Internet-Draft.
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-
xml-16.txt, March 2006.

[11] I. Duffy. Intrusion Detection Exchange Architetcure.
http://idea-arch.sourceforge.net/.

[12] Fyodor. Nmap, Network Mapper.
http://www.insecure.org/nmap/.

[13] C. Krügel, T. Toth, and C. Kerer. Decentralized
event correlation for intrusion detection. In ICISC ’01:
Proceedings of the 4th International Conference Seoul
on Information Security and Cryptology, pages 114–131,
London, UK, 2002. Springer-Verlag.

[14] P. Porras, M. Fong, and A. Valdes. A mission impact based
approach to infosec alarm correlation. In In Proc. of RAID,
pages 95–114, 2002.

[15] G. Shipley. Event Correlation. Network Computing,
http://www.networkcomputing.com/1401/1401f25.html.

[16] S. Siddharth. Evading nids.
http://www.securityfocus.com/infocus/1852, dec 2005.

[17] SOURCEfire. Snort R© network intrusion prevention and
detection system. http://www.snort.org.

[18] F. Valeur. A comprehensive approach to intrusion detection
alert correlation. IEEE Trans. Dependable Secur. Comput.,
1(3):146–169, 2004. Member-Giovanni Vigna and Member-
Christopher Kruegel and Fellow-Richard A. Kemmerer.


