
Reliability of UNIX Utilities

Eric Lucas de Peslouan
Linköpings universitetet, Sweden

erilu798@student.liu.se

Muhammad Azam Akram
Linköpings universitetet, Sweden

muhak142@student.liu.se

ABSTRACT
UNIX is a very commonly used operating system, but
some of UNIX utilities are not reliable. It means that
these utilities sometime crash or hang. In this report we
try to evaluate the reliability of some common
interactive UNIX utilities. We tested different UNIX
utilities by giving them random inputs and check their
outputs to see whether it terminate normally or not. The
important thing is that most of utilities showed
significant improvement as compared to their old
versions back to 1990s.

INTRODUCTION
As the usage of computer increased, problems started to
raise. In modern era of technology, people emphasize on
secure computer system. Operating system is one of the
fundamental component of computer, so it is very
important to have a reliable operating system. UNIX is a
very popular one and it provides reasonably good
security options. But it seems that not all of the UNIX
utilities are reliable. Some of them have vulnerabilities
which can lead to crashes. This weakness allows the
external threats to damage the system.
Reliability of any utility depends upon how it gives
output to the user, i. e. either it is the required one or an
error. It is expected that a basic utility should not
crashed. For our work, we divide the output of the
utilities into three major categories; Proper output, hang,
and crash.
Proper output: Execution of the utility ends properly and
gives the required result. If an utility receives unwanted
input, it should give an error message and terminate
normally.
Hang: An utility can be hung or halted when it does not
give any output even after taking complete input.
Crash: An utility crashes when it ends abnormally by
giving unwanted results.

Researches have shown that improper inputs are one of
the major reasons for why an utility does not provide the
required result. Another reason for failure of the utilities
is carelessness by the programmers [1].
Users do not always give right inputs to the utilities.
Rather, sometimes, they can give improper input
(deliberately or by mistake) which causes some
unwanted outputs. For example, consider a scenario in
which we have a server which is providing services to
many clients. If one of the clients gives improper input
to the server and as a result that server crashes, then the
server will not entertain any of the future queries. This is
a security problem as any attacker can attempt to give
unwanted input to the server to crash it. Which results in
denial of service attack (DoS). DoS is an attack to a

computer system that cause a loss of service to the user.

In this work, we checked the reliability of different
interactive UNIX utilities which are tools that are
directly interacting with the user by taking input and
producing output. Reliability, in this context, means
either these utilities terminate normally (with required
output) or abnormally (crash or hang).
We enhanced the research work carried out by a team of
researchers in 1990 [1] . They studied many utilities (with
different versions) on different UNIX system. In 1995, the
same researchers produced revision work of their research
in 1990 [2]. During our tests we noticed that most of the
utilities showed significant improvement in terms of
reliability as compared to its older versions.
For testing any software, testers give different types of
input to the system and check its result. We followed the
same way. We tested different interactive UNIX utilities
by giving them random input strings and checking their
output.
We selected two types of UNIX utilities for our test
work: network based and shell based utilities.
Network based utilities are the software which can be
used to perform network related tasks, for example ftpd
is used to send files from one host to others over the
network. For test purpose we used ftpd, postfixd, sshd
and apache which are very commonly used utilities.
Shell based utilities are tools which the user uses to
interact with the computer. For example, wc is a shell
based utility which counts the number of characters in
files.
We performed our tests on grep, uniq, indent and bash.
We tested both network and shell based utilities against
random strings of characters. For all the test we used the
operating system debian GNU/Linux.

Our work follows this way:
• Generating input strings of random characters

by the help of a tool called as fuzz
• Suppling the random input to the target utility,

we want to test for reliability, by using another
tool named as ptyjig

• Checking the response of tested utilities on
supplying random inputs

• Evaluating the results

We kept ourselves confined to test the reliability of
different interactive UNIX utilities and find the reasons
why these utilities crash or hang. Though we did not
solve or fix the problem to remove the vulnerabilities,
but our method of testing finds some real bugs which
result in failure of any utility.

In the METHOD section we describe the method we
followed for testing different UNIX utilities, whereas, in
the RESULT AND ANALYSIS section we demonstrate
the outcomes and analysis of our testings. In the end we
make our conclusion on the base of our work.

METHOD
In order to test the reliability of the UNIX utilities we
had to setup a clear testing procedure. We decided to use
a method similar to the one used in the previous studies
[1]. Our method can be decomposed in the following
steps :

• Generate random input
• Supply input to utilities
• Check the behavior of utilities on receiving the

input
The main difference between our method and the one
used in the previous studies, is in the inputs generation.
We generate the input “on-the-fly” while testing, and we
save only the ones which generated improper behavior,
whereas the other technic consist in first generating and
storing inputs in files and testing after.
To apply correctly this procedure we wrote some scripts,
which perform all the task automatically.
For each test our script checks the return value of the
utility to determine whether there is an error or not.

Generate Random Input
The question is what type of input we should produce to
test the utility? We found three approaches to generate
test data: Generic test data [3], Intelligent test data [3]
and fuzz [1]. Generic data is used in generic testing in
which we use same test data generator to test all
components. Intelligent test data is dependent on the
utility being tested. The intelligent data generator
produces specific testing string for each utility. Fuzz
consist in only generating random data without any
specification.

We decided to choose the third technique to generate our
inputs, and so to use fuzz, a software provided by the
previous studies. It produces a continuous string of
characters on its standard output. This tool provides
interesting options to generate different kind of inputs. It
can generate printable and/or non printable characters.
Printable characters are those which can be displayed on
the screen (for example A,s,2,# etc.) while non printable
characters are control characters (for example alt, ctrl
etc.). The idea behind giving both printable and non
printable characters is that users may give any type of
input either deliberately or by mistake. We can decide
how many characters we want to generate, and also
define the last character of the string, this is a very useful
option which allow us to validate a command while
testing a program like bash.
For example, The following command generate 200
printable characters and write them to output-file:

fuzz 200 -p -o output-file

The size of the input can have some impact on the result

of the test that's why in case of crash we tried to redo the
test with some smaller inputs. The basic size of input we
used was 1000.

Supply Input to Utilities
We supplied random string of characters generated by
fuzz to the tested utility. There are two different kinds of
utilities :

• Those that we can test directly by sending our
input on their standard input. (ex : grep, wc)

• Those which require a pty emulator use to send
them the input while they are running (ex: Vim,
bash).

For this purpose we used another tool provided by the
previous study: ptyjig. It is a software which allows the
testers to test interactive utilities. Ptyjig basically lies
between fuzz and target utility. It makes possible to feed a
software like a text editor with inputs. While using this
tool, the tested software have the impression to receive
some characters from the keyboard.

This example show how to test a basic utility on its
standard input by sending 200 random characters:

fuzz 200 -p | utility

The following example demonstrates how we can
provide input generated by fuzz to any utility through
ptyjig:

fuzz 200 -p | ptyjig utility

Testing network utilities is slightly different of the other
categories. During normal use of the network services
the user never interact directly with the server, they go
through a program which send the information usually
after formatting them according to the correct protocol.
The goal of our study is to bypass this programs and
send our inputs to the server without following any
protocol. To do that we need to use another connector:
portjig. This tool, very similar to the UNIX tool netcat,
connect to a specific port of a computer and directly
write there all the information we want. So we can use it
in the same way as ptyjig:

fuzz | portjig localhost 22

Check the Behavior
After suppling the random inputs to tested utilities, we
determine what type of termination these utilities
showed. To do that we check the return code of the
program. If any utility terminates with desired output or
any programmed error message (in case of failure) we
categorized that utility as “reliable”. Whereas if it hangs
or crashes, we classified it as “unreliable”.

Test method
In order to correctly test the utilities, we performed the
tests several times. We can not rely on only one or two
test to determine the reliability of a program. To achieve
this goal, we used some scripts. Their purpose is to test

the program a defined number of times. If a failure is
discover during one test, the script exits, saving in a file
the inputs which make the utility to crash.
A return code different of zero (or/and some other
number, depend on the aim of the tested program)
indicates a failure. Staying stopped in a middle of a test
means that the utility is stuck in an infinite loop.
During testing the big amount of non printable
characters that we send to the tested program arrive
sometimes on the screen. For example the result of the
command grep is printed on the screen, whatever it is.
That can lead our graphical terminal to crash. We
discover here a non expected failure in the “gnome-
terminal”.
Solutions are to redirect all the output of the tested
program to /dev/null or to use directly a full text terminal
which is more basic and stronger.

Categories of utilities
We selected two categories of utilities for our test they
are: shell utilities and network utilities

Shell utilities
We can directly test this kind of utility with the fuzz
program without any interface. In that case, it is
relatively simple to use. For more complicated software
like a shell, we have to use the utility ptyjig which
create a virtual terminal as interface between fuzz and its
target. The utilities we selected for this category are:

• grep, uniq and wc because they are probably
some of the most often used

• Indent because it was crashing in the old studies
• bash for testing how an interactive program

react to these random inputs

Network utilities
In this category we need to use the tool provided in the
previous study : portjig.
We decided to test following services:

• ftpd as one of the most basic unix services. We
didn't want to test an evolved ftp server such as
proftpd, but a real basic one. This service was
run by the internet superserver inetd. We also
choose it because it already had some weakness
in the past.

• Apache as the most common web server on the
internet it should be able to react in a smart way
to all the input we send it, and it shouldn't have
such security hole.

• Postfix as a very powerful mail server should
also be very strong against this kind of
aggression.

• sshd as a wildly used deamon providing a
remote shell We tought interesting to check its
behavior in such situation.

RESULT AND ANALYSIS

Shell based utilities
We will show here the result of our test in table 1.
There are two columns for the result as for each utility

we test its resistance both to printable and non printable
characters.

Commands

Input Characters

Utility Printable Non Printable

grep
2.5.1

Success Success

wc
5.2.1

Success Success

uniq
5.2.1

Success Success

bash
3.00.16

Success Crash

indent
2.2.9

Success Success

Table 1: Test results of shell utilities

As we can see on the table above all the basic utilities tested
pass the tests, even indent which was failing in the last studies.
However, it seems that the shell bash have some
problems with the non printable inputs as it often
crashed during theses test. This can be surprising as it is
one of the most commonly used shell of the non
professional users. However it handled the printable
inputs and as it is only suppose to receive characters
from the keyboard, that should not be a problem in a
classical situation. We also tried to give it some smaller
input or to change the speed at which the characters are
provided, but that didn't change the result of the test.
To check if the bugs are corrected, we decided to select
one utility crashing in the last study and to reproduce the
bug with the old version and then to submit the new
version to the same test. We did that on the utility
indent, this is a small utility used to indent the source
code correctly (it is one of the tools used by the vim
editor to format the code in the right way). We saw that
the bug was corrected after the study, as this new version
accept the wrong input without any problems.

Network services
We submit our selected network utilities to the same test
as the shell based. Table 2 shows the results of tests of
network based utilities :

Network

Input Characters Description

Utility Printable Non
Printable

ftpd
0.17-20

hang hung Service terminated
by 'inetd' because

of infinite loop

Network

Input Characters Description

Utility Printable Non
Printable

apache
1.3.33

Success Success Connection close

postfix
2.2.4

Success Success Connection close

Openssh
4.1

Success Success Connection close

Table 2: Test results of network utilities

As we can see apache postfix and ssh always react by
simply closing the connection, without being disturbed.
They simply notice the wrong inputs in their respective
logs and wait for the next connection. That policy is
really good and allow them to be protected from any
error which can be caused by any random inputs.
However the more basic service ftp was stopped by its
handling process inetd because it was stuck in an infinite
loop. We could see a difference with the other servers
because in contrast of them ftpd did not close the
connection when it received our wrong inputs. It is
visible in the logs, where all the inputs were wrote,
sometimes separated by the errors messages of ftpd. The
non application of this secure policy consisting of
closing the connection led it to theses instabilities.
By the way it is interesting to make this observation
because this service was crashing in the study of 1990
and the problem was corrected in the 1995 study.
We tried to find the string which was able to crash the
daemon and we discovered that this string used a second
time, did not affect ftpd. Then we tried to change the
speed at which we send the input so the server and we
discovered that when the inputs are sent slower ftpd does
not hang and behave normally. The problem with ftpd is
so mainly a problem related to the speed of the input
more than the kind of inputs. This kind of error probably
come from the size of a buffer.

General result
According to our test we could see that some of the
utilities such as indent were improved since the last
study and some other like ftpd went in the wrong way.
Not all the program we tested were tested in the previous
studies, so we can not make comparison along their
evolution for all of them, but we thought interesting to
test the very commonly used one. Also we could see
that surprisingly it was easier to make them crash than
we expected.
We also found out that the gnome-terminal had some
problems to handle out non printable inputs. That show
us that every program have its vulnerabilities and that it
is more common than we could think.
However the application of secure principle while
conceiving program can really help to improve the
stability of the programs as we saw in the case of ftpd

which does not close the connection when he receives
improper inputs.

Comparison between different categories
The main difference between the network and the shell
based utilities come from the protection method used by
the network applications. Their ability to close
connection to anybody sending wrong inputs help them a
lot for their self-protection. Whereas the shell based
utility always process their inputs whatever they are and
do not have the possibility to block any stream of input
arriving to them.

Comparison between different versions

utilities

Tested in :

Utility 1995 2006

grep
2.5.1

Success Success

wc
5.2.1

Success Success

uniq
5.2.1

Success Success

bash
3.00.16

X Crash

indent
2.2.9

Crash Success

ftpd
0.17-20

Success Hung

apache
1.3.33

Success Success

postfix
2.2.4

Success Success

Openssh
4.1

Success Success

Table 3 : comparison of versions
(X = not tested)

In table 3 we can see that on one hand indent was
improved since the last studies and on the other hand
ftpd got some more problems since the last study. The
other tools tested did not have any problems before and
are still non sensitive to the random inputs.

CONCLUSIONS
After performing the various tests on a number of
common interactive UNIX utilities, we conclude that
there is a significant improvement over the reliability of
these utilities. Most of new versions of the utilities
removed their old vulnerabilities.
But still there exist utilities that crash or hang in course
of getting different kind of inputs. The reason for this
are:
first: most of these utilities are not developed in context

of security or reliability and do not make use of some
basic policy, so developers do not emphasise on
reliability part.
Second: some flaws occur due to programming logic
finally: software testing does not performed in suitable
way.
We also saw that the application of basic security
principles are really important to improve the overall
reliability of the program.
We can see that these basic tests already performed in
the previous study are still useful even some years after.
There are many UNIX utilities and we selected few of
them. We can not claim that our work provide test
results of reliability of all utilities. However, our work
can be extended to test more usable utilities.

REFERENCES
[1]. Barton P. Miller, Lars Fredriksen, Bryan, “An

empirical study of the reliability of UNIX utilities”,
Communications of the ACM, Pages: 32 - 44, year
of publication 1990.

[2]. Barton P. Miller, David Koski, Cjin Pheow Lee,
Vivekananda Maganty, Ravi Murthy, Ajitkumar
Natarajan, Jeff Steidl, “fuzz Revisited: A Re-
examination of the Reliability of UNIX Utilities and
Services”, Department of Computer Science,
University of Wisconsin, 1995.

[3]. Matthew Schmid & Frank Hill, "Data Generation
Techniques for Automated Software Robustness
Testing", Reliable Software Technologies
Corporation 21515 Ridgetop Circle #250, Sterling,
VA 20166.

