
Standards for Input Validation

Ayesha Bhatti
Linköpings universitet, Sweden

Email: ayesa593@student.liu.se

Abstract
Almost every computer application processes user data

in one form or the other. The data may be from a genuine
user or it may come from a malicious source. An
application that doesn’t have any mechanism to recognize
the malicious data may process it and that may result in
any thing between a simple crash and a server with data
loss. This document states different types of input
vulnerabilities and the methods of preventing those.
Practical part of the report addresses SQL Injection and
cross-site scripting (XSS) attacks. It states different types
of attacks in these two categories, and also states the
regular expressions that can block the stated attack types.

1. Introduction
Almost every computer application processes the data

supplied by the user in one form or the other. Data may be
login details, filenames, environment variables, web forms,
cookies, URLs etc. The normal behavior of a program is to
accept the provided data, process it and generate the output.
But due to the fact that all users are not good and don’t
always provide expected input, programs cannot trust any
user supplied information. Due to the multi-user nature of
computer programs and the fact that most applications are
operating on web, the situation has gotten worse and no input
is reliable any more to be accepted directly.

By supplying wrong input into a vulnerable program user
can do anything to the extent of taking control of the server
or steeling whole databases depending upon the type of
target application and attack.

SQL Injection is form of attack in which user inputs meta-
characters like single quote or single dash. These single
quotes break or change SQL queries resulting in deletion of
undesired data from database or display of sensitive data of
other users. Take an example of following query.

SELECT uid, pwd FROM tblusers WHERE

uid = 'uid' AND pwd = 'password'

If user supplies the following data

Uid= ' OR ' =''
pwd= ' OR ' =''

The query will become

 SELECT uid, pwd FROM tblusers
WHERE uid = '' OR ''='' AND pwd = ''
OR ''=''

Now this query can never be negative, it will pick all
records from the table and reveal secret information of all
users along with their passwords to some one entering the
malicious input.

Various real life examples of SQL injection attack can be
seen at web hacking database [29]. One of hack states that
Russian hackers stole 53,000 credit card numbers from
http://www.ri.gov/ through SQL injection attack. More
details can be checked from [30].

Hence it is a must for both developers and security
personals to learn how hackers can input wrong data, and
what they should block in order to make their systems
secure.

Objective of the current work is to search for the
existing standards or guidelines provided by different
security experts or associations for validating input and
present them those in an organized form at one place.

The report is structured in three major parts from here on.
The first part (section 2) contains the background
information about what are the input types and how many are
these? What are the vulnerabilities related with each input
type? The next part (section 3) states the standards or
guidelines for input validation in general and also related to
individual input type. Section (4) concentrates deeply on
two of the attack forms that are possible through malicious
input. Please note that there are other attacks that are possible
but this report only concentrates on two of them. The section
describes how these attacks can be made possible and also
how to stop them using the guidelines stated in section 4.
Rest is conclusion and references.

2. Input Types
Two main questions arise when looking at any input

for security concerns, where the input is coming from and
how secure is the medium of input? If it is coming from a
file then how secure is it? If it is coming from a setting in
a web-browser then who can do the setting? etc. That
means inputs can be categorized on the basis of source or
medium. Section 3.1 to section 3.6 describes various
inputs types that are categorized on the basis of
source/medium and their related problems.

2.1 Environment Variables
Environment variables are the data bits the program

reads from the already specified locations. These can be
set manually by the system administrator or by the some
program.

UIDs are used to control access in Unix based
systems. System calls to set these UIDs are known as
setuid programs. Setuid type of programs use
environment variables a lot. The child processes can
change these variables. They are principally inherited
from the parent program but due to the fact that child
processes can alter them this inheritance works
transitively. A single pointer points to list of pointers that
stores the environment variables as key value pairs. The
list may contain multiple entries with one name and
different values. Different systems read the list in
different ways, some check the first matching value, and
some check the last. If users can add their own
environment variables at the end of the list then checking
the last value could be a big problem.

Solutions include erasing the environment after
extracting carefully desired set of values, not allowing
restricted users changing or adding environment
variables. [6] provides a good reason from keeping users
to mess with environment, by giving example of telnet
daemons that support RFC 1408 or RFC 1572. It is
possible for a remote computer connected to these
daemons to transfer environment variables that may
influence the login program. Check [6,7] for more
details.

2.2 Files
Files offer multiple problems. Users create files and

choose names. These names may include characters,
which cause various kinds of problems. Like a preceding
dash may be interpreted by another program as option
and result in a crash. Spaces are allowed in windows like
systems and are not allowed in Unix like systems.
Programming scripts may confuse new-line or carriage
return characters in the file names as argument separator.
Filenames could be strangely encoded, like a program
may believe that filename is UTF-8 encoded, however it
may be long UTF-8 encoding. Operating system doesn’t
enforce encoding and hence this is a problem for
developers.

Globbing is a feature that is used to obtain a list of
files whose names fulfill a certain criteria like *.txt will
return all text file. Globbing is a useful feature but at the
same time can be very hard on system resources like CPU,
and memory. Hence can a malicious user use it for denial
of service. David provides an expression that can be used
for this purpose in his book [7] that is as follows.

ftp> ls */../*/../*/../*/../*/../
/..//../*/../*/../*/../*/../*/../*

File contents should also be trusted only in case

when they are in control of only trusted users. Otherwise
contents are just like direct input, and they can cause all
those problems that can be caused by the direct malicious
input.

2.3 Web Content
 URLs have special encoding known as URL-

encoding. According to URL-encoding characters are
replaced with their hex values. This introduces an
additional complexity layer. Now applications have to
convert the hex values to characters and then check if
they are valid. There is no trusted user on web, so URLs
are no different than any other input.

Cookies are data bits stored on the client’s machines
by the websites. As they reside on user’s machine so
these are in total control of client and thus totally un-trust
worthy. There are two types of cookies, persistent
cookies and non-persistent cookies. Non-persistent
cookies last only for single http session, while persistent
cookies may last for several days. For a non-technical
user it is a bit hard to change a cookie value during an
http session so non persistent cookies are relatively safe
to use. But changing a cookie value that stays on the
user’s machine for several days is very easy to change for
any user. Hence programs using persistent cookies are at
higher risk of processing malicious data.

HTML forms are used to take input from web users.
Normally javascript is used to validate the input. But
unfortunately this only helps valid users to fill the forms
correctly. It doesn’t have any role for security as the
same data can be sent to web-server directly.

2.4 UTF 8
UTF 8 is variable length encoding for multilingual

characters. It is flexible in the sense that it is backward
compatible with ASCII and its variable length. It is
becoming a standard for multilingual softwares and
websites due to ease of use, portability and backward
compatibility. However this is another source of security
problems. All byte sequences are not UTF-8 valid
encoding. UTF-8 encodes are supposed to use shortest
possible encoding, however some earlier standards
allowed decoders to accept values that are longer. This is
a genuine problem for validation routines as potentially
dangerous inputs can be expressed in multiple ways. [10]
discusses this problem in more detail while RFC 3629
stated this as follows.

“Implementers of UTF-8 need to consider the security
aspects of how they handle illegal UTF-8 sequences. It is

conceivable that in some circumstances an attacker
would be able to exploit an incautious UTF-8 parser by
sending it an octet sequence that is not permitted by the
UTF-8 syntax.

A particularly subtle form of this attack could be
carried out against a parser that performs security-critical
validity checks against the UTF-8 encoded form of its
input, but interprets certain illegal octet sequences as
characters. For example, a parser might prohibit the NUL
character when encoded as the single-octet sequence 00,
but allow the illegal two-octet sequence C0 80 (illegal
because it's longer than necessary) and interpret it as a
NUL character (00). Another example might be a parser
which prohibits the octet sequence 2F 2E 2E 2F ("/../"),
yet permits the illegal octet sequence 2F C0 AE 2E 2F.”

3. Input Validation
The previous section explained various forms of

inputs and their vulnerabilities. This section explains
what a developer can do in order to validate the input
data.

David Wheeler has done detailed work on specific
input types and has described solution to validate almost
every kind of input in his book [7], and also in various
web articles. Section 4.2 onwards states his work. Each
section explains what are the important issues to look for
in each input type and how to validate it correctly.

3.1 Environment variables

“For secure setuid/setgid programs, the short list of
environment variables needed as input (if any) should be
carefully extracted. Then the entire environment should
be erased, followed by resetting a small set of necessary
environment variables to safe values. There really isn't a
better way if you make any calls to subordinate
programs; there's no practical method of listing ``all the
dangerous values''. Even if you reviewed the source code
of every program you call directly or indirectly, someone
may add new undocumented environment variables after
you write your code, and one of them may be
exploitable.” [7]

The other thing David says in this regard is to keep
user from creating his own environment variables with
the valid argument that they will cross the boundaries of
their restricted accounts if they get this option. He also
supported his argument with a Bugtraq discussion back in
2002, that I couldn’t actually find. However if you are
interested you can find the text of that article in his book.
[7].

3.2 Files

Try not to allow users to choose file names. If that
doesn’t work then file names should not contain certain

characters as described in section 2.3. Take those and
you can also add your own according to your application,
and make a regular expression, and use that to validate
the user provided name. David suggests the following in
[13].

^[A-Za-z0-9][A-Za-z0-9._\-]*$

When it comes to using contents of some file, check

the contents against valid pattern depending upon the
application, here David agrees with Matt that one should
check the data against valid input.

3.3 Web Content
Do not use persistent cookies. It is good for security

and also good for being lawful. If you accept a cookie
value, check that its domain value is what you expected,
i.e. your own site, other wise reject it.

URL’s should be validated against valid pattern.

^(http|ftp|https)://[-A-Za-z0-

9._/]+$

The above is good for most purposes. But it may

alarm false positives on valid URLs as it doesn’t allow
characters like tilt, exclamation mark etc.

For letting more complex patterns through and yet
block attackers the following is useful.

^(http|ftp|https)://[-A-Za-z0-

9._]+(\/([A-Za-z0-9\-
_\.\!\~*\'\(\)\%\?]+))*/?$.

Each and every field of web forms should be checked

against the valid patterns according to the type of field.
Checking email addresses is tricky. The shortest

regular expression for checking email is 4,724 bytes
long(Jeffrey Friedl's has written that) and According to
David even that misses some cases.

3.4 UTF 8

The following table contains the valid patterns of UTF
sequences. Any value not matching these patterns is not a
valid UTF 8 sequence. The First column contains values
that are to be UTF 8 encoded. Second column contains
their legal UTF encoding in binary and last column
contains the hex equivalents of legal UTF 8.

‘x’ in binary value represent data bits 0 or 1.

UCS
Code
(Hex)

Binary UTF-8
Format

Legal UTF-8
Values (Hex)

00-7F 0xxxxxxx 00-7F
80-7FF 110xxxxx

10xxxxxx
C2-DF 80-BF

800-FFF 1110xxxx
10xxxxxx
10xxxxxx

E0 A0*-BF 80-BF

1000-
FFFF

1110xxxx
10xxxxxx
10xxxxxx

E1-EF 80-BF 80-BF

10000-
3FFFF

11110xxx
10xxxxxx
10xxxxxx
10xxxxxx

F0 90*-BF 80-BF
80-BF

40000-
FFFFFF

11110xxx
10xxxxxx
10xxxxxx
10xxxxxx

F1-F3 80-BF 80-BF
80-BF

40000-
FFFFFF

11110xxx
10xxxxxx
10xxxxxx
10xxxxxx

F1-F3 80-BF 80-BF
80-BF

100000-
10FFFFF

11110xxx
10xxxxxx
10xxxxxx
10xxxxxx

F4 80-8F* 80-BF
80-BF

200000-
3FFFFFF

111110xx
10xxxxxx
10xxxxxx
10xxxxxx
10xxxxxx

too large; and for
most purposes illegal

04000000-
7FFFFFFF

1111110x
10xxxxxx
10xxxxxx
10xxxxxx
10xxxxxx
10xxxxxx

too large; and for
most purposes illegal

Table 3.1 Valid UTF 8 sequences, taken from David’s
book.

For further details if interested see [7] and if some one
need all information about UTF encoding and its security
issues then see [10] by Markus Kuhn.

4. Case Studies
I did two case studies. First on SQL Injection attack

and other on Cross Site scripting. The work is mainly
inspired by the Security Focus article by K. K. Mookhey,
Nilesh Burghate, but I have practically confirmed it.

4.1 SQL Injection

Standard Query language is used to query databases
for data in desired format. For reader not having
background on SQL please check [21].

SQL does have its own meanings to certain characters
like single quote semi colon dashes etc and also their
combinations. Hence these are meta characters in case of
SQL as described in 2.7.2 .

This means that these characters should not be used
with in the data at all. And this needs to validated by the
application at the top of database server.

Now consider the following query.

SELECT uid FROM tblusers WHERE uid =

'' OR ''='' AND pwd = '' OR ''=''

This query is written for matching the user provided

input with some valid username and password in the
database but user provided the following information.

uid=' OR ' =''
pwd=' OR ' =''

Due to this malicious input the query has turned into

an expression that would always be true.

As advised by David the first step should be the

detection of meta-characters and writing a regular
expression. If I consider stopping the above attack my
regular expression would be

/(\%27)|(\')|((\%3D)|(=))/ix

I have checked for single quote hex equivalent

because its an HTML meta character and is encoded into
hex by the browser.

A more sophisticated form could be the following.

/\w*((\%27)|(\'))((\%6F)|o|(\%4F))((

\%72)|r|(\%52))/ix

This regular expression can also block OR with all its

hex equivalents.

In mySQL # creates problems and in oracle double

dash creates problems [22]. SO the regular expression
will works there.

/(\%27)|(\')|((\%3D)|(=))|(\-\-

)|(\%23)|(#)/ix

Double dash’s hex equivalent is not included in the
expression as its not a meta character in HTML.

User can use semicolon to complicate things. Consider
the following query

select uid from tblusers where
age=userage;

Now if user supplies his age as follows

5; delete from tblsusers;

Whole tblusers would be deleted as a result of this

query. This can be blocked by following regular
expression.

/((\%3D)|(=))[^\n]*((\%27)|(\')|(\-

\-)|(\%3B)|(;))/I

The main idea is to block semicolon in user input but

semicolon is a common HTML character and blocking it
straightforwardly can generate lot of false positives [22].
User data comes normally in GET request so checking
equality sign before semicolon can reduce the false
positives to a great extent.

Union keyword is also source of attack. Consider the

following query

SELECT uid, age, company FROM

tblusers WHERE City = '" & strCity &
"' AND Country = 'Sweden'"

Now an attacker can easily transform it to

SELECT uid, age, company FROM

tblusers WHERE City = 'NoSuchCity'
UNION ALL SELECT * FROM OtherTable
tblcreditcard WHERE 1=1 AND Country =
'Sweden'

The following regular expression can block this kind

of intrusion [22].

/((\%27)|(\'))union/ix

The above regular expressions are to be used with

Snort IDS system . Snort is a free open source Intrusion
detection system and is on its way to become a defecto
standard for intrusion detection. [24] Snort rules can be
easily created with the above expression.

However it is not necessary to use some kind of
intrusion detection system to stop SQL Injection. The
regular expressions (with small variations) can be used
with in the programming environment to suffice the
purpose.

4.2 Cross Site Scripting

Many websites allow user to post messages with
HTML code and javascript in them. Some times
websites gather data from user and pass it to another
website to process it. If the data contains malicious code
in it then that can be harmful for the second website and
it’s the fault of first website that hasn’t correctly
validated the user input on its part. [25, 26]

Most of the crosssite scripting attacks are result of
HTML or javascript code hidden in a link. It can be plain
text or in for of hex equivalents.

Regular expression for blocking simple attack is
below [22]

/((\%3C)|<)((\%2F)|\/)*[a-z0-

9\%]+((\%3E)|>)/ix

It checks for opening and closing angled brackets,

alphanumeric strings with in the tad and forward slash
used for closing HTML tag.

 tag can download file easily hence can be

used in CSS attack. Following Regular Expression can be
used to stop this [22].

/((\%3C)|<)((\%69)|i|(\%49))((\%6D

)|m|(\%4D))((\%67)|g|(\%47))[^\n]+((\%
3E)|>)/I

Addition in this regular expression as compared to

the previous is the letter and hex equivalents for
and any character following it except new-line. Rest is
same.

If you want to block all attacks and do not care
about false positives then use the following regular
expression [22].

/((\%3C)|<)[^\n]+((\%3E)|>)/I

It simply looks for any tag any character following

at other than new line and than closing tag. With this as a
snort rule any thing that remotely resembles to CSS
attack will be caught.

5. Conclusions
I couldn’t find any approved standard for input

validation, but according to a wide majority of web
articles and books on computer security the standard
method of validating user input is matching it against a
regular expression written according to the
users/application/input type. This can be done with in
application code and also through an external tool like
Snort IDS. Same kind of regular expressions can be used

with slight variations in different programming
environments and on Snort or some other Intrusion
detection system. There is another very strong advise
given by almost all authors that one should check user
supplied data against valid input pattern and reject all
those don’t match that, instead of looking for bad input
patterns. There last thing is one should try to keep false
positives as low as possible, the application should be
secure against malicious users and it should be available
to valid users, so one should take certain care when
writing regular expression considering the type of
application and level of security.

References
[1] S. Greg, “Why Hackers Escape”, news.com ’May 14,

2002.
[2] http://www.securityfocus.com/bid/17821
[3] http://www.sei.cmu.edu/news-at-

sei/features/2001/1q01/feature-1-1q01.htm
(programmers are not trained to write secure programs)

[4] http://www.homeport.org/~adam/setuid.7.html
[5] http://www.canonical.org/~kragen/security-holes.html
[6] http://www.cert.org/advisories/CA-1995-14.html

(environment variables that were transferable on telnet)
[7] http://www.dwheeler.com/secure-programs/Secure-

Programs-HOWTO/input.html
[8] http://www.govexec.com/dailyfed/0401/041801h1.htm(f

orbidden cookies)
[9] RFC 3629 UTF-8 Standard
[10] http://www.cl.cam.ac.uk/~mgk25/unicode.html
[11] http://www.cert.org/archive/pdf/cross_site_scripting.pdf
[12] http://www.cert.org/tech_tips/malicious_code_mitigation

.html
[13] http://www-128.ibm.com/developerworks/library/l-

sp2.html
[14] http://www.siam.org/siamnews/general/ariane.htm
[15] http://www.cert.org/homeusers/buffer_overflow.html
[16] Mat Bishop, Introduction to Computer Security.
[17] http://www-128.ibm.com/developerworks/linux/library/l-

sp1.html(David’s First Article)
[18] http://www.cert.org/advisories/CA-2003-18.html(Integer

Overflow)
[19] http://www.redhat.com/archives/redhat-watch-list/2000-

September/msg00004.html(locale vulnerability)
[20] http://nob.cs.ucdavis.edu/~bishop/secprog/sans2002.pdf

(Matt Bishop’s slides, integer Over Flow Problem in
SendMail)

[21] SQL Tutorial, http://www.w3schools.com/sql/default.asp
[22] Detection of SQL Injection and Cross Site Scripting

Attack, http://www.securityfocus.com/infocus/1768
[23] Writing Secure Code,

http://www.microsoft.com/mspress/books/5957.asp
[24] Snort Intrusion Detection System, http://snort.org/dl/
[25] Cross Site scripting,

http://www.4guysfromrolla.com/webtech/112702-
1.2.shtml

[26] Cross Site Scripting FAQ,
http://www.cgisecurity.com/articles/xss-faq.shtml

[27] http://www.securityfocus.com/bid/17812
[28] http://www.cs.berkeley.edu/~daw/papers/setuid-

usenix02.pdf
[29] http://www.webappsec.org/projects/whid/list_class_sql_i

njection.shtml
[30] http://www.fcw.com/article92132-01-27-06-Web

