TDDCO3 Projects 2006

Examining a public exploit

Magnus Florén magfl705 Anna Vapen annva871

Supervisor: Claudiu Duma

Examining a Public Exploit

Magnus Florén

Anna Vapen

Linkdpings universitetet, Sweden
Email: {magfl705, annva871}@student.liu.se

Abstract

A public exploit is code that has been made for
attacking computer systems and that is made public on
the Internet. This attack code can be used for committing
computer crimes by people that don’t have enough
knowledge to write their own code. On the other hand,
public exploits can be a good source of knowledge for
those who are trying to build secure systems and protect
against intrusions. In this paper testing and analysis of
public exploits is done to show how this works. Our aid
to accomplish this is a guide by Don Parker [1] that we
used in parts of the analysis.

1. Introduction

Our task is to examine a public exploit following the
guidelines defined by Don Parker [1] and document
experiences and facts. This includes attacking a
Windows 2000 Pro machine from a Linux machine by
using the RPC DCOM exploit. By using an IDS
(Intrusion Detection System) and several other tools we
are able to see how the exploit works by analysing its
behavior. To help us doing this we are using a step by
step guide written by Don Parker [1] [2]. In the guide the
author suggests that we use the RPC DCOM exploit that
uses a well known bug in Windows. The exact version of
the exploit that Parker used is no longer available online.
Instead we found newer versions of the RPC DCOM
exploit and tried to modify them to fit our system. We
also tried to apply Don Parker’s guide [1] with another
public exploit called the ShixxNote exploit. We did a
Windows to Windows attack with the RPC DCOM
exploit and a Windows to Linux attack with the
ShixxNote exploit. The ShixxNote attack is not as well
spread as the RPC DCOM attack since the ShixxNote
attack uses a flaw in the not so common digital post-it-
notes software ShixxNote. The ShixxNote exploit was
rewritten so that it could run from Gentoo Linux
attacking Windows 2000 Pro, see figure 2.

By studying exploits and their behavior it is possible
to learn how to better protect a computer. In our project
we wanted to show how easy these public exploits are to
use, what harm they can do and what we can learn from
them.

We also wanted to show what tools a system
administrator can use to detect intrusion attempts.

The goals of this paper are: how do the RPC DCOM
exploit and the ShixxNote exploit work and how do they
exploit the vulnerabilities in Windows 2000 Pro and
ShixxNote? How does a public exploit work and how
can it be analysed? We will also evaluate how the test
bench suggested by Don Parker works.

2. Background
In this section we explain the terms used in the report.
2.1 What is a vulnerability?

“When someone breaks into a computer system, that
person takes advantage of lapses in procedures,
technology, or management, allowing unauthorized
access or actions. The specific failure of control is called
a vulnerability” [10]. Vulnerabilities often results from
bugs caused by careless programmers or design flaws in
the system [11]. An example of a vulnerability is
unchecked buffers, these can be used for buffer
overflows (described below).

2.2 What is a buffer overflow?

A buffer is a data area of memory shared by different
hardware devices or program processes to temporarily
hold data. The data can be output or input from devices
outside the computer or processes within a computer.

These buffers can be exploited if there is no check
that ensures that the data written to the buffer is within
the size of the buffer. If no check exists, data can
overflow the buffer resulting in overwriting memory
adjacent to the buffer. This can happen accidentally or
with the purpose to do that. A buffer overflow is often
used to overwrite the buffer until reaching the return
address of a stack frame. The return address points to
where the CPU shall execute code from when returning
from a function call. When reaching the return address
the attacker puts his/her own return address where attack
code is residing and that will eventually be executed
when the new return address is used. In figure 1 an
example is given when a stack frame is put on the stack
[12]. A stack is a temporary data structure. Usually it
temporary holds functions and subroutines in stack
frames. The stack frames contains the return address,
local variables and parameters. By overflowing the local
buffer with A until reaching the return address the
attacker puts Oxffffffff as the return address. This results
in a jump to an area where the attacker has placed

malicious code, like in our cases, somewhere in the
overflowed buffer.

Local buffer AAAAAAAAAAA
AAAAAAAAAAA
Return address Oxffffffff
Parameters Parameters

Figure 1. Buffer overflow
2.3 What is an exploit?

An exploit (or exploitation program) is a kind of
malicious logic that is used to exploit vulnerabilities in a
computer system. There are many exploits that are made
public by their creators to show how to exploit common
bugs in software and also show why it is important to fix
the problems. By analysing exploits in the way that we
have done in this project it is possible to learn about how
security flaws can be exploited. By knowing that, it is
also possible to learn how to write better software and
how to protect computer systems from being exploited.

Exploits can be harmful in many ways and some are
worse than others. Where some exploits can make a
computer crash others can give the attacker full
administrator rights on the compromised system. That
means the attacker can run arbitrary code, remove all
files and so on [5]. The exploits that we analysed use
buffer overflows to gain full rights on the Windows
machine and that makes them very harmful.

2.4 RPC DCOM and ShixxNote exploit

The RPC DCOM exploit was made public in 2003
and used vulnerabilities in unpatched versions of the
Microsoft Windows operating system. There are still
many machines running this system without patches and
firewalls, that is why it is interesting to see what harm a
public exploit can do and how it really works. The
original RPC DCOM exploit only works on Windows
2000 Pro without any service packs. However, the
versions we found also work on newer versions of
Windows 2000 and XP. The RPC DCOM exploit
exploits a service called the RPC. It stands for Remote
Procedure Call and is a protocol for inter-process
communication, which allows a system to execute code
on a remote system [8]. When this exploit was made
public other security professionals improved the code
and made it so easy that everyone capable of writing
dcom.exe “WindowsVersion” “targetlP”” in a command
shell could get administrator rights on any computer
running unpatched Windows 2000 or XP. The amount of
people exploiting the flaw was so big that it was like a
worm being spread.

The ShixxNote exploit is equally harmful, but only to
machines running the ShixxNote software. We choose to
analyze the ShixxNote exploit too because it works in a

similar way and we wanted to try Don Parkers test bench
with another exploit than the RCP DCOM exploit.

3. Method of work

Our method of work followed Don Parker’s guide [1],
but there were some exceptions. We used three
computers, see figure 2, as Parker suggested. The
computers where the exploit code executed ran with
Linux, in our case Gentoo that fits our hardware, a Sun
Ultral, better than SuSE used in Parkers guide [1], and
Windows XP. The attacked computer ran with Windows
2000 Pro.

Windows 2000 Pro
Target and analysis

Gentoo Linux
Amack [Shixxote)

Windows XP
Attack (RPC DCOM)
and analysis

Figure 2. The lab environment.

The method of work which Don Parker’s guide
suggested is these following steps:

1. Preparation

The preparation part included installation and learning
to work with the following software:
e Windows 2000 Pro

e Snort

e Snortsnarf
e Windump
e Winpcap

e ActivePerl v5.6.1
e JulianDay.pm,TimeZone.pm,
Snortsnarf to work.
Execute the exploits
Analyse the exploits
Here we used the software that we installed in the
preparation phase to analyse both exploits.

ParseDate.pom for

2.
3.

In section 4 Experiments, we have documented how
our work actually was carried out.

4. Experiments

In this section we present our experiments with two
attacks using the RPC DCOM exploit and the ShixxNote
exploit. We also present the results of the analysis of the
attacks.

4.1 The preparation phase

In the guide it was suggested to use Windows 2000
Pro without any service packs, but that version was hard
to find. Instead we used Windows 2000 Pro with service
pack 4. We realized that there are many exploits that
works with SP4 so we installed it on a virtual machine to
try if the RPC DCOM exploit would work at once. It
didn’t so we tried out a few other versions of the same
exploit, but they didn’t work either, more on that in the
next phase. Later on we used a dedicated PC only for
Windows 2000 Pro without any service packs on which
we installed the other required software such as
Windump, Winpcap, ActivePerl, Snort and Snortsnarf.

We ran into some problems getting Snortsnarf to
work, the reason that it didn’t work was because we
installed a newer version of both Snortsnarf and
ActivePerl than Don Parker used in the guide [1]. When
we installed the older versions it eventually worked.

4.2 The execution phase

When we entered this second phase we had already
made some tries to get the RPC DCOM exploit to work,
but they were unsuccessful. Before execution the
exploits were compiled on the Linux machine, and then
executed from that machine. The version of the RPC
DCOM exploit that was linked from the guide [1] was no
longer available online, but instead we found newer
versions that was said to work with all service packs.
Although that exploit didn't run on our system a porting
of the ShixxNote exploit that works in a way similar to
the RPC DCOM exploit gave us remote access to the
Windows machine after a buffer overflow.

We tried to change the return addresses in the RPC
DCOM exploit a couple of times, but every execution
failed. All these tries were made from the Linux
machine.

Later on we got another new version of the RPC
DCOM exploit, which we compiled on a Windows XP
laptop. After the compilation we tried to attack the
Windows 2000 machine from the laptop and this time it
was successful.

4.3 Analysis of logs

The tools for the analysis turned out to work much
better on Windows XP than on Windows 2000 so we
used a laptop with XP for the analysis, we also installed
Windows XP and the necessary analysing tools on a
dedicated PC. Windump was used to record the exploit
in action and save the recorded data into a binary file.
This file was filtered (or “washed”, to use Don Parker’s
term) through Snort to make Snort recognize what the
exploit in action looked like.

First we listed the interfaces that the Windows machine
listened on:
windump.exe -W

We found that interface no 2 was the right one so we
used that as the interface for Windump and also wrote
the result to a file:

windump.exe -w filename -i 2

After that we could read the file through Snort (the so
called washing):
snort.exe -r filename -i 2 -c rules.conf -A full

Here we also used a ruleset file available from the
Snort homepage and enabled full logging. However it
didn't give any alerts. Instead we used a different version
of snort.conf available from [4]. From that site we also
downloaded a bigger set of snort rules (bleeding-
all.rules) and now found three alerts from the RPC
DCOM exploit and two from the ShixxNote exploit. We
now had the two alert files ready to run through
Snortsnarf. When we examined the alerts closer we saw
that the alerts was related to suspicious UDP packets and
had nothing to do with the exploits.

This was not the result that Don Parker [1] got. He
got five alerts where some of the alerts were false
positives.

We did not use the same rules that Don Parker used
because he stated that you should use the standard rules
that comes with Snort, the problem is that the few rules
that came with the installation did not give any alerts.
Therefore we have tried with different rules set, but none
resulted in the same alerts that Parker got.

Another reason why our result was different could be
that we didn’t use exactly the same exploit. We used a
newer version of the RPC DCOM exploit together with
the ShixxNote exploit. A lesson learned with Snort is
that it’s not easy to know what rules to use. We installed
Snortsnarf, a tool that Don Parker used to show the alerts
in a more readable way and it worked well. We knew
that the alerts we had wasn’t useful, but we wanted to try
out Snortsnarf as in Parkers guide.

In Parkers [1] guide he recommended that we
shouldn’t use Ethereal [9] to do the analysing, but we got
curious about this program, so we decided to try it out
and see what result we would get.

Ethereal is a network protocol analyser. We installed
Ethereal on both XP machines. This program has a
graphical user interface and is very easy to use to analyse
network traffic. The reason Parker didn’t recommend the
program was that he thought people would learn more
using the other software.

4.4 Analysis of the RPC DCOM log

What you can see in the logs is a typical behavior of a
special exploit and this can be useful for a system

administrator that wants to see suspicious behavior. In
the case with the RPC DCOM exploit we can see that it
reaches port 135 where the RPC service is running. We
can also see lots of malformed TCP packets, which is
typical for the exploit. In the end of the exploit running
we also saw that port 4444 was open and the attacker can
communicate through that port.

The screenshot in appendix A shows the packets that
Windump captured, while the RPC DCOM exploit was
running, as they are shown in Ethereal. The interesting
parts are the black packets. They are malformed TCP
packets sent not from the attacker, but from the target
which can seem odd, but they are answers to packets that
the attacker (using the IP 10.0.0.6) uses to overflow the
target (IP 10.0.0.4). The violet packets are bind calls
where the attacker tries to bind to the RPC service. As a
system administrator it is easy to detect this exploit with
Ethereal (or Snort, if a good ruleset is used). The traces
are malformed SYN-ACK calls from the target and bind
calls from an attacking host to port 135 on the target
followed by traffic on an unknown port where you
usually don’t run anything. Ethereal can even show the
commands that are sent to this port.

4.5 Analysis of the ShixxNote log

The behavior of the ShixxNote exploit is similar with
the malformed TCP packets, but the ports are different.
ShixxNote is running on port 2000 and opens a port on
101. In the ShixxNote case you can see the same pattern
with malformed TCP packets. In Appendix B the
Ethereal log is shown. The red reset call is where the
attacker failed and tried again. The difference between
this log and the other one is that the RPC port isn’t used
here, so no RPC bind calls are needed. Otherwise this
looks like an ordinary remote buffer overflow, easy to
recognize with Ethereal.

5. Results

How well did the step by step guide work, and how
useful was it? One of the goals with this project was to
evaluate Don Parker’s guide [1] to see what use you can
have of an online description of how to run and analyze
a public exploit. There are many guides about hacking
and cracking, but not as many about analysing attacks.
Since this guide could be good for people working with
security we wanted to know how useful it really is. The
guide is from 2003 and of course things have changed
since then. First of all, the exploit itself was no longer
located at the homepage linked to from the guide. The
site that had published this exploit and similar is now
only open for people paying for their services (virus
alerts, an exploit archive and similar things that can be
useful for those who work with security). Although,
famous exploits will always be out there on forums,
mailing list archives and sites for all kinds of people that
are interested about security. The guide did not say

anything about how to get the exploit up and running, or
how to get the tools working. By trial and error we found
out which version of ActivePerl to install to get
Snortsnarf working, where to place the time-libraries for
Snortsnarf and how to list the interfaces to see which one
to listen to. Except of that the guide was useful when it
came to recommend tools such as Windump and Snort. It
was easy to listen to the network traffic with these tools
and see how the attack code implanted a buffer overflow
from one port and then opened a shell on another.

The guide also showed how to detect false positives
from the output from Snortsnarf. Since our network is
not connected to the Internet the risk of false positives is
not big. A problem with the guide was that the first part
did contain information and tips about how to set up the
network and do the analysis in the best way, but this
information was found in the last chapter of the second
part of the guide. It would have been much more helpful
to put that information in the beginning.

6. Conclusions

We were going to see how the RPC DCOM exploit
worked and how it exploited the RPC flaw in Windows
2000 Pro. We studied the code before compiling it and
because of that we already knew what to expect from the
exploit. The analysis with Ethereal showed that what we
had learned from studying the code was true, that this
exploit uses a buffer overflow in the RPC service on port
135 to open a command shell on another port. The logs
showed clearly what kind of traffic the exploit generated
and on which ports. Malformed SYN-ACK:s from the
attacking machine followed by bind calls to the RPC port
and after that another port opening is clear traces of this
exploit in action. What a system administrator can do to
protect against this kind of exploits is to patch Windows.
Another good idea is to use a firewall and block
unknown ports like 4444.

We were also going to evaluate Don Parker's test
bench [1]. The idea of using a test bench made of an IDS
(like Snortsnarf or Ethereal) and several other helpful
tools to see how an exploit works is good. It gives the
tester knowledge about how an exploit affects a
computer and by knowing that it is easier to protect your
system. By knowing how an exploit works it is also
possible to recognize such an attack. We tested the test
bench with two similar exploits and it seems like remote
buffer overflows are quite easy to detect according to
their special behaviour.

The test bench we used was similar to the one in the
guide, but instead of using Snort and Snortsnarf we used
Ethereal. The problem with this type of guides is that
they soon become dated, and this one is three years old.
In the end we didn’t follow Parker’s guide all the way,
but the guide was very useful to us. We learned how to
work with Windump, Snort and Snortsnarf. Besides of
that we also learned how to do a log analysis with

Ethereal and we showed that our own version of Don
Parker’s guide works also with the ShixxNote exploit.

7. References

[1] Don Parker, Examining a Public Exploit, Part 1,
http://www.securityfocus.com/infocus/1795

[2] Don Parker, Examining a Public Exploit, Part 2,
http://www.securityfocus.com/infocus/1801

[3] Snort — the defacto standard for intrusion
detection/prevention, http://www.snort.org

[4] The Bleeding Edge of Snort — Open Snort signatures,
http://www.bleedingsnort.com

[5] Stuart McClure, Joel Scambray, George Kurtz,
Hacking i Fokus (Hacking Exposed, third edition), ISBN
91-636-0707-7

[6] Flashsky and Benjurry, The Analysis of LSD's Buffer
Overrun in Windows RPC Interface,
http://www.xfocus.org/documents/200307/2.html

[7] MilwOrm, http://www.milwOrm.com

[8] Matti Aharoni, Windows DCOM RPC Exploit,
http://securitypronews.com/securitypronews-24-
20030814WindowsDCOMRPCEXxploit.html

[9] Ethereal: A Network Protocol Analyzer
http://www.ethereal.com

[10] Matt Bishop, Introduction to COMPUTER
SECURITY, page 389, ISBN 0-321-24744-2

[11] Vulnerability
http://en.wikipedia.org/wiki/Vulnerability (computer sci

ence)

[12] Wilander, Kamkar, A Comparison of Publicly
Available Tools for Dynamic Buffer Overflow Prevention

http://www.securityfocus.com/infocus/1795
http://www.securityfocus.com/infocus/1801
http://www.snort.org/
http://www.bleedingsnort.com/
http://www.xfocus.org/documents/200307/2.html
http://www.milw0rm.com/
http://securitypronews.com/securitypronews-24-20030814WindowsDCOMRPCExploit.html
http://securitypronews.com/securitypronews-24-20030814WindowsDCOMRPCExploit.html
http://www.ethereal.com/
http://en.wikipedia.org/wiki/Vulnerability_(computer_science)
http://en.wikipedia.org/wiki/Vulnerability_(computer_science)

8. Appendix A- Ethereal log of the RPC
DCOM exploit

EHEO'WEG:WIMEMM

lﬁ@ﬂﬁ EEAx®@g @¢¢¢DEQ EG acafd d¥Ex @

= | Gt m|m

No. | Tme [Seusee [Destnatien [Puctecal [1nts]
L 0. 000000 10.0.0.6 10.0.0.255% HENS Nama quary MB TSCOLTENT<DD>
20, 748038 10,.0.0.4 10.0,0,25%% HENS Mamg quary NB TSCLTENT o00
31 496024 10.0.0.6 10.0.0.25% HENS MESE Gquéry NS TSCLIENT ob0x
= .mmm‘m z 0. ok T:'.'eb 2

12.117069 10.0.0. 3 TCR 35 > apmap [ADK] Seqel Ack=
A2AATAAL AL OL0IE DORERPC Bﬂ'lﬂ‘ call_idi 127[racket siZe 1Timited during captura]

9 1213962910, 0.0, 6 . DCERPC mequestT: <all_Vd: 229 opnum: 4 cux_id: l[Packer size Ted during captur
10 32.139707 10.0.0.6 TCP 1435 > epmap [PSH, ack] Seqel533 Acke=gl win=65475 Len=Zdd

77 Ack=fl win=6347% Lan=0

]
T

15 12.260754 10.0.0.6 TCP 1435 » epmap [acK Seu-:l?:'s AckeB? Win=a5475 Len=d
16 13, 251900 10.0.0.6 g ik HENS Mm@ quary N8B TSCLIENT <20
1? 13, 25433? 10.0.0.6 5 HEHNE [T quq.ry H\B T.E- IEHT-tDD:
10.0.0.4 1438
13. 559344 AAE R 1428
13, 808067 5 10,0.0.4 1438 (k] Seqel Ack=l06 Win=G5430 Len=Q
25 13, 995615 10.0.0.4 10.0,0.255 MENS Mame query M8 TSCLIENT<0>
26 13. 995653 10.0.0.8 10.0,0.255 MNENS Mame query NS TSCLIENToO0»
27 14.745603 10.0.0.6 10.0.0.255 HENS Mam& quéry KB TSCLIENT<20>
2B 14, 745642 10, 0.0, 6 10,0.0.25% NBNE Mame query N8 TSCLIENT <00
29 15495518 10.0.0.6 10,0.0.25% HENS Mamae query NE TSCLTENT<00-
I0 16, 245554 10.0.0.6 10.0.0.2%% MENS Name quary NS TSCLIENT (0>
31 16, 995558 10.0.0.6 10,0,0.255% HENS MamE query N8 TSCLTENT 00> _J
TYRE: IF LURUSauTT j
INTErnet Protocol, SFo: 10.0.0.4 (10.0.0.4), DsT: 10.0.0.6 (10.0.0.6)
varsion; 4
Header lengrh: 20 bytes
d pifferentiasted Services Field: Cx00 (pSCP Ox00: Default; ECH: Oxdd)
Total Length: 48
Identification: Owddd7 (710
Flags: Ox4 (Don’t Fragment)
Fragment offset: o
Time to Tive: 128
Protocal: TCP (0xd6)
Header checksum: Oud0dd [fncorrect, should be Oxed??)]
Source: 10.0.0.4 (10.0.0.4)
pestinarion: 10.0.0.6 (10.0.0.6) ksl
@ Transmission Control Protocol, Src Port: epmap (135), DSt Port: 1435 (143%), Seq: 0, Ack: 1, Len: © =]

ool oo 12 37 L co 3% U0 L0 4D ba D8 B4 OB 00 £5 00 safantis KiaaudEs
o010 00 30 00 A7 40 00 80 06 OO0 00 Oa 00 OD 04 Da 00 .0.G8...,

o020 OO0 06 00 B7 0% 9b ef <5 B8 2& fd 39 &B 1k 70 12 s
O30 44 FO 57 0D 00 Q0 02 04 O5 b4 01 01 04 02

il "\ Documents and SelingavArna G kibord wadh_mpe 2370 Byes DG 16 [FRET®D

9. Appendix B — Ethereal log of the
ShixxNote exploit

—Ete B Vew Go Cophes Srsbue Guatiter Heb _ _ xl
BEgea cRxI ResoT7E BE QAN VEX @ |

4 0. 1 [3 [-] | %Y K L W 1 ! 150 WS

3 0.000446 10.0.0. 10.0.0.4 3243 3 2000 [Ack] Seq-1 Ack-l Win-5840 Len=0 TSV-100931 TSER=0

4 05.62565% 10.0.0.4 10:0.0.255 oirect_group datagram[packer size 1imited during caprure]

5 100150778 10.0.0.5 10. 0. 0.4 3243 > 2000 [PEW, ack] Seqel Ackel Win=5840 Len=335 TSv=125965 TSER=O

B 100.166616 10.0.0.5 10.0.0.4 3243 > 2000 [Ack] Seqe93F Ack=31 wWin=5840 Lan=0 TSw=12506% TSER=4726
G 100, 205965 { 3243 > 2000 [ACK] Seqs037 Ack=32 win=5840 Len=0 TSV=125070 TSER=4726

GETnAME 5 - ; E SVml30554
13 118. 509757 R ST Name sefs=l Ack=1 Win=5B40 Lén=0 TSw=130554 TSER={
15 118. 532399 st name Seqel Ack=43 N=5B40 Len=0 TSv=130560 TIER=4000

17 116. 534102 hostname ceq=1 Ack=11% wWin=5540 Len=0 TSw=L130560 TSER=4%10
18 124.B842847 10.0.0.5 10.0.0.4 hosTname ack] seqsl Acks1135 wins5840 Lens5 TSwal3Z137 TSER=4I10

20 129, 207172 10.0.0.5 10.0.0.4 TCP hosTname [PSH, ACK] Seqed Ack=11% N=3840 Len=6 TSw=133228 TSER=4975

22.126.207784 16.0.0.5 16.0.0.4 TCP hostname [AckK] Seqel? Ackel26 wWin=3840 Lén=0 TSW=133228 TSER=5017
23 129, 207997 10.0.10.5 10.0.0.4 TCP nosTname [PSH, ACK] Sengel? Ack=126 win=5840 Len=3 TSVel33228 TSER=S0L7

25 129, 281718 10.0.0.5 10.0.0.4 TP hopstname [ACK] Seqe=13 ACk=321H Win=5840 Len=0 TSV=133247 TSER=5017
27 120.281976 10.0.0.5 10.0.0.4 TCP 3791 > hootname [ACK] Sensl3 ACk=34F7 wWin=3840 Len=0 TSW=133247 TSER=5018

Framé 2 (78 bytes on wire, 78 bytes captured)
Ethernet II, $ro: 3com_ba:Ce:gd (00:10:4b:ba:0e:84), Dst: SunMicro_89:90:4c (0B:00:20:80:00:4C)
pestination: surMicro_B9:90:d4c (0a: OB 90:ds]
Source: Jcom_ba:Oe:84 (00:10:4b:ba:de:d4)
Type: IP (OxOB00)
INTErneét Frotocol, Src: 10.0.0.4 (10.0.0.4), D3v: 10.0.0.5 CLOLO.0.5)
version; 4
Header Tlength: 20 bytes
i pifferent fated Services Field: Oxd0 (DSCP Owdd: Default; ECM; CwbD)
Toral Lengrh: o4
Identificarion: Ox0041 (6%)
4 Flags: Ox0d {bon't Fragment])
Fragment offset: 0
Time to Tive: 128
protocol: TCP {Ox06)
Header checksum: O0x0000 [Incarrect, should be OGxedde]
Source! 10.0.0.4 (10.0,0.4)
pestination: 10.0.0.5% {10.0.0.5)
Transmission Control Protocol, Src POrt: 2000 (20000, DSt POrt: 3243 (32430, Seq: 0. Ack: 1, Len; @

(00 U8 00 20 BD U 4C OO 10 4D Da e =4 U= 00 4% 00
C0AG 00 40 0D 41 40 00 BO 05 0D 00 D& 00 00 04 Qa 00
10020 00 05 07 db 0c ab Bc <O ee dl 27 9c 5b 5d b 12
0030 44 PO Fa 0D cO O 02 04 0% b4 01 03 03 00 01 O
G 08 03 00 00 0O 00 0D 00 0D OO 00 0L 04 Q2

[Fle: T \Documents and Sefmgrannavsimbonmat_thea 2512 Byins U0 (200 [EHComa |

.3

L

	1. Introduction
	2. Background
	2.1 What is a vulnerability?
	2.2 What is a buffer overflow?
	2.3 What is an exploit?
	2.4 RPC DCOM and ShixxNote exploit

	3. Method of work
	4. Experiments
	4.1 The preparation phase
	4.2 The execution phase
	4.3 Analysis of logs
	4.4 Analysis of the RPC DCOM log
	4.5 Analysis of the ShixxNote log

	5. Results
	6. Conclusions
	7. References
	[12] Wilander, Kamkar, A Comparison of Publicly Available Tools for Dynamic Buffer Overflow Prevention
	8. Appendix A– Ethereal log of the RPC DCOM exploit
	9. Appendix B – Ethereal log of the ShixxNote exploit

