
  
TDDC03 Projects 2006 

 
 
 
 
 
 

Examining a public exploit 
 
 
 
 
 
 
 

Magnus Florén magfl705 Anna Vapen annva871 
 

Supervisor: Claudiu Duma 



Examining a Public Exploit 
 
 

Magnus Florén               Anna Vapen  
Linköpings universitetet, Sweden 

Email: {magfl705, annva871}@student.liu.se 
 
 

Abstract 
A public exploit is code that has been made for 

attacking computer systems and that is made public on 
the Internet. This attack code can be used for committing 
computer crimes by people that don’t have enough 
knowledge to write their own code. On the other hand, 
public exploits can be a good source of knowledge for 
those who are trying to build secure systems and protect 
against intrusions. In this paper testing and analysis of 
public exploits is done to show how this works. Our aid 
to accomplish this is a guide by Don Parker [1] that we 
used in parts of the analysis. 

1. Introduction 
Our task is to examine a public exploit following the 

guidelines defined by Don Parker [1] and document 
experiences and facts. This includes attacking a 
Windows 2000 Pro machine from a Linux machine by 
using the RPC DCOM exploit. By using an IDS 
(Intrusion Detection System) and several other tools we 
are able to see how the exploit works by analysing its 
behavior. To help us doing this we are using a step by 
step guide written by Don Parker [1] [2]. In the guide the 
author suggests that we use the RPC DCOM exploit that 
uses a well known bug in Windows. The exact version of 
the exploit that Parker used is no longer available online. 
Instead we found newer versions of the RPC DCOM 
exploit and tried to modify them to fit our system. We 
also tried to apply Don Parker’s guide [1] with another 
public exploit called the ShixxNote exploit. We did a 
Windows to Windows attack with the RPC DCOM 
exploit and a Windows to Linux attack with the 
ShixxNote exploit. The ShixxNote attack is not as well 
spread as the RPC DCOM attack since the ShixxNote 
attack uses a flaw in the not so common digital post-it-
notes software ShixxNote. The ShixxNote exploit was 
rewritten so that it could run from Gentoo Linux 
attacking Windows 2000 Pro, see figure 2. 

By studying exploits and their behavior it is possible 
to learn how to better protect a computer. In our project 
we wanted to show how easy these public exploits are to 
use, what harm they can do and what we can learn from 
them.  

We also wanted to show what tools a system 
administrator can use to detect intrusion attempts.  

The goals of this paper are: how do the RPC DCOM 
exploit and the ShixxNote exploit work and how do they 
exploit the vulnerabilities in Windows 2000 Pro and 
ShixxNote? How does a public exploit work and how 
can it be analysed? We will also evaluate how the test 
bench suggested by Don Parker works. 

2. Background 
In this section we explain the terms used in the report. 

2.1 What is a vulnerability? 
“When someone breaks into a computer system, that 

person takes advantage of lapses in procedures, 
technology, or management, allowing unauthorized 
access or actions. The specific failure of control is called 
a vulnerability” [10]. Vulnerabilities often results from 
bugs caused by careless programmers or design flaws in 
the system [11]. An example of a vulnerability is 
unchecked buffers, these can be used for buffer 
overflows (described below). 

2.2 What is a buffer overflow? 
A buffer is a data area of memory shared by different 

hardware devices or program processes to temporarily 
hold data. The data can be output or input from devices 
outside the computer or processes within a computer.  

These buffers can be exploited if there is no check 
that ensures that the data written to the buffer is within 
the size of the buffer. If no check exists, data can 
overflow the buffer resulting in overwriting memory 
adjacent to the buffer. This can happen accidentally or 
with the purpose to do that. A buffer overflow is often 
used to overwrite the buffer until reaching the return 
address of a stack frame. The return address points to 
where the CPU shall execute code from when returning 
from a function call. When reaching the return address 
the attacker puts his/her own return address where attack 
code is residing and that will eventually be executed 
when the new return address is used. In figure 1 an 
example is given when a stack frame is put on the stack 
[12]. A stack is a temporary data structure. Usually it 
temporary holds functions and subroutines in stack 
frames. The stack frames contains the return address, 
local variables and parameters. By overflowing the local 
buffer with A until reaching the return address the 
attacker puts 0xffffffff as the return address. This results 
in a jump to an area where the attacker has placed 



malicious code, like in our cases, somewhere in the 
overflowed buffer. 

       
 
 
 
 
 
 

Figure 1. Buffer overflow 

2.3 What is an exploit? 
An exploit (or exploitation program) is a kind of 

malicious logic that is used to exploit vulnerabilities in a 
computer system. There are many exploits that are made 
public by their creators to show how to exploit common 
bugs in software and also show why it is important to fix 
the problems. By analysing exploits in the way that we 
have done in this project it is possible to learn about how 
security flaws can be exploited. By knowing that, it is 
also possible to learn how to write better software and 
how to protect computer systems from being exploited. 

Exploits can be harmful in many ways and some are 
worse than others. Where some exploits can make a 
computer crash others can give the attacker full 
administrator rights on the compromised system. That 
means the attacker can run arbitrary code, remove all 
files and so on [5]. The exploits that we analysed use 
buffer overflows to gain full rights on the Windows 
machine and that makes them very harmful. 

2.4  RPC DCOM and ShixxNote exploit 
The RPC DCOM exploit was made public in 2003 

and used vulnerabilities in unpatched versions of the 
Microsoft Windows operating system. There are still 
many machines running this system without patches and 
firewalls, that is why it is interesting to see what harm a 
public exploit can do and how it really works. The 
original RPC DCOM exploit only works on Windows 
2000 Pro without any service packs. However, the 
versions we found also work on newer versions of 
Windows 2000 and XP. The RPC DCOM exploit 
exploits a service called the RPC. It stands for Remote 
Procedure Call and is a protocol for inter-process 
communication, which allows a system to execute code 
on a remote system [8]. When this exploit was made 
public other security professionals improved the code 
and made it so easy that everyone capable of writing 
dcom.exe “WindowsVersion” “targetIP” in a command 
shell could get administrator rights on any computer 
running unpatched Windows 2000 or XP. The amount of 
people exploiting the flaw was so big that it was like a 
worm being spread. 

The ShixxNote exploit is equally harmful, but only to 
machines running the ShixxNote software. We choose to 
analyze the ShixxNote exploit too because it works in a 

similar way and we wanted to try Don Parkers test bench 
with another exploit than the RCP DCOM exploit. 

3. Method of work Local buffer

Return address

Parameters

AAAAAAAAAAA
AAAAAAAAAAA

0xffffffff

Parameters

Our method of work followed Don Parker’s guide [1], 
but there were some exceptions. We used three 
computers, see figure 2, as Parker suggested. The 
computers where the exploit code executed ran with 
Linux, in our case Gentoo that fits our hardware, a Sun 
Ultra1, better than SuSE used in Parkers guide [1], and 
Windows XP. The attacked computer ran with Windows 
2000 Pro.  
 

 
Figure 2. The lab environment. 
 

The method of work which Don Parker’s guide 
suggested is these following steps: 
 
1. Preparation 

The preparation part included installation and learning 
to work with the following software: 
• Windows 2000 Pro 
• Snort 
• Snortsnarf 
• Windump 
• Winpcap 
• ActivePerl v5.6.1  
• JulianDay.pm,TimeZone.pm, ParseDate.pm for 

Snortsnarf to work. 
2. Execute the exploits 
3. Analyse the exploits 

Here we used the software that we installed in the 
preparation phase to analyse both exploits. 

 
In section 4 Experiments, we have documented how 

our work actually was carried out. 
 

4. Experiments 
In this section we present our experiments with two 

attacks using the RPC DCOM exploit and the ShixxNote 
exploit. We also present the results of the analysis of the 
attacks. 



4.1 The preparation phase 
In the guide it was suggested to use Windows 2000 

Pro without any service packs, but that version was hard 
to find. Instead we used Windows 2000 Pro with service 
pack 4. We realized that there are many exploits that 
works with SP4 so we installed it on a virtual machine to 
try if the RPC DCOM exploit would work at once. It 
didn’t so we tried out a few other versions of the same 
exploit, but they didn’t work either, more on that in the 
next phase. Later on we used a dedicated PC only for 
Windows 2000 Pro without any service packs on which 
we installed the other required software such as 
Windump, Winpcap, ActivePerl, Snort and Snortsnarf.  

We ran into some problems getting Snortsnarf to 
work, the reason that it didn’t work was because we 
installed a newer version of both Snortsnarf and 
ActivePerl than Don Parker used in the guide [1]. When 
we installed the older versions it eventually worked.  
 

4.2 The execution phase 
When we entered this second phase we had already 

made some tries to get the RPC DCOM exploit to work, 
but they were unsuccessful. Before execution the 
exploits were compiled on the Linux machine, and then 
executed from that machine. The version of the RPC 
DCOM exploit that was linked from the guide [1] was no 
longer available online, but instead we found newer 
versions that was said to work with all service packs. 
Although that exploit didn't run on our system a porting 
of the ShixxNote exploit that works in a way similar to 
the RPC DCOM exploit gave us remote access to the 
Windows machine after a buffer overflow.  

We tried to change the return addresses in the RPC 
DCOM exploit a couple of times, but every execution 
failed. All these tries were made from the Linux 
machine.  

Later on we got another new version of the RPC 
DCOM exploit, which we compiled on a Windows XP 
laptop. After the compilation we tried to attack the 
Windows 2000 machine from the laptop and this time it 
was successful.  

4.3 Analysis of logs 
The tools for the analysis turned out to work much 

better on Windows XP than on Windows 2000 so we 
used a laptop with XP for the analysis, we also installed 
Windows XP and the necessary analysing tools on a 
dedicated PC. Windump was used to record the exploit 
in action and save the recorded data into a binary file. 
This file was filtered (or “washed”, to use Don Parker´s 
term) through Snort to make Snort recognize what the 
exploit in action looked like. 
 

First we listed the interfaces that the Windows machine 
listened on: 
windump.exe -W 
 
We found that interface no 2 was the right one so we 
used that as the interface for Windump and also wrote 
the result to a file: 
windump.exe -w filename -i 2 
 
After that we could read the file through Snort (the so 
called washing): 
snort.exe -r filename -i 2 -c rules.conf -A full 
 

Here we also used a ruleset file available from the 
Snort homepage and enabled full logging. However it 
didn't give any alerts. Instead we used a different version 
of snort.conf available from [4]. From that site we also 
downloaded a bigger set of snort rules (bleeding-
all.rules) and now found three alerts from the RPC 
DCOM exploit and two from the ShixxNote exploit. We 
now had the two alert files ready to run through 
Snortsnarf. When we examined the alerts closer we saw 
that the alerts was related to suspicious UDP packets and 
had nothing to do with the exploits. 

This was not the result that Don Parker [1] got. He 
got five alerts where some of the alerts were false 
positives.  

We did not use the same rules that Don Parker used 
because he stated that you should use the standard rules 
that comes with Snort, the problem is that the few rules 
that came with the installation did not give any alerts. 
Therefore we have tried with different rules set, but none 
resulted in the same alerts that Parker got.  

Another reason why our result was different could be 
that we didn’t use exactly the same exploit. We used a 
newer version of the RPC DCOM exploit together with 
the ShixxNote exploit. A lesson learned with Snort is 
that it’s not easy to know what rules to use. We installed 
Snortsnarf, a tool that Don Parker used to show the alerts 
in a more readable way and it worked well. We knew 
that the alerts we had wasn’t useful, but we wanted to try 
out Snortsnarf as in Parkers guide. 

In Parkers [1] guide he recommended that we 
shouldn’t use Ethereal [9] to do the analysing, but we got 
curious about this program, so we decided to try it out 
and see what result we would get.  

Ethereal is a network protocol analyser. We installed 
Ethereal on both XP machines. This program has a 
graphical user interface and is very easy to use to analyse 
network traffic. The reason Parker didn’t recommend the 
program was that he thought people would learn more 
using the other software. 

4.4 Analysis of the RPC DCOM log 
What you can see in the logs is a typical behavior of a 

special exploit and this can be useful for a system 



administrator that wants to see suspicious behavior. In 
the case with the RPC DCOM exploit we can see that it 
reaches port 135 where the RPC service is running. We 
can also see lots of malformed TCP packets, which is 
typical for the exploit. In the end of the exploit running 
we also saw that port 4444 was open and the attacker can 
communicate through that port. 

The screenshot in appendix A shows the packets that 
Windump captured, while the RPC DCOM exploit was 
running, as they are shown in Ethereal. The interesting 
parts are the black packets. They are malformed TCP 
packets sent not from the attacker, but from the target 
which can seem odd, but they are answers to packets that 
the attacker (using the IP 10.0.0.6) uses to overflow the 
target (IP 10.0.0.4).  The violet packets are bind calls 
where the attacker tries to bind to the RPC service. As a 
system administrator it is easy to detect this exploit with 
Ethereal (or Snort, if a good ruleset is used). The traces 
are malformed SYN-ACK calls from the target and bind 
calls from an attacking host to port 135 on the target 
followed by traffic on an unknown port where you 
usually don’t run anything.  Ethereal can even show the 
commands that are sent to this port. 

4.5 Analysis of the ShixxNote log 
The behavior of the ShixxNote exploit is similar with 

the malformed TCP packets, but the ports are different. 
ShixxNote is running on port 2000 and opens a port on 
101. In the ShixxNote case you can see the same pattern 
with malformed TCP packets. In Appendix B the 
Ethereal log is shown. The red reset call is where the 
attacker failed and tried again. The difference between 
this log and the other one is that the RPC port isn’t used 
here, so no RPC bind calls are needed. Otherwise this 
looks like an ordinary remote buffer overflow, easy to 
recognize with Ethereal. 

5. Results 
How well did the step by step guide work, and how 

useful was it? One of the goals with this project was to 
evaluate Don Parker’s guide [1] to see what use you can 
have of an online description of how to run and analyze 
a public exploit. There are many guides about hacking 
and cracking, but not as many about analysing attacks. 
Since this guide could be good for people working with 
security we wanted to know how useful it really is. The 
guide is from 2003 and of course things have changed 
since then. First of all, the exploit itself was no longer 
located at the homepage linked to from the guide. The 
site that had published this exploit and similar is now 
only open for people paying for their services (virus 
alerts, an exploit archive and similar things that can be 
useful for those who work with security). Although, 
famous exploits will always be out there on forums, 
mailing list archives and sites for all kinds of people that 
are interested about security. The guide did not say 

anything about how to get the exploit up and running, or 
how to get the tools working. By trial and error we found 
out which version of ActivePerl to install to get 
Snortsnarf working, where to place the time-libraries for 
Snortsnarf and how to list the interfaces to see which one 
to listen to. Except of that the guide was useful when it 
came to recommend tools such as Windump and Snort. It 
was easy to listen to the network traffic with these tools 
and see how the attack code implanted a buffer overflow 
from one port and then opened a shell on another. 

The guide also showed how to detect false positives 
from the output from Snortsnarf. Since our network is 
not connected to the Internet the risk of false positives is 
not big. A problem with the guide was that the first part 
did contain information and tips about how to set up the 
network and do the analysis in the best way, but this 
information was found in the last chapter of the second 
part of the guide.  It would have been much more helpful 
to put that information in the beginning. 

6. Conclusions 
We were going to see how the RPC DCOM exploit 

worked and how it exploited the RPC flaw in Windows 
2000 Pro. We studied the code before compiling it and 
because of that we already knew what to expect from the 
exploit. The analysis with Ethereal showed that what we 
had learned from studying the code was true, that this 
exploit uses a buffer overflow in the RPC service on port 
135 to open a command shell on another port. The logs 
showed clearly what kind of traffic the exploit generated 
and on which ports. Malformed SYN-ACK:s from the 
attacking machine followed by bind calls to the RPC port 
and after that another port opening is clear traces of this 
exploit in action. What a system administrator can do to 
protect against this kind of exploits is to patch Windows. 
Another good idea is to use a firewall and block 
unknown ports like 4444. 

We were also going to evaluate Don Parker's test 
bench [1]. The idea of using a test bench made of an IDS 
(like Snortsnarf or Ethereal) and several other helpful 
tools to see how an exploit works is good. It gives the 
tester knowledge about how an exploit affects a 
computer and by knowing that it is easier to protect your 
system. By knowing how an exploit works it is also 
possible to recognize such an attack. We tested the test 
bench with two similar exploits and it seems like remote 
buffer overflows are quite easy to detect according to 
their special behaviour. 

The test bench we used was similar to the one in the 
guide, but instead of using Snort and Snortsnarf we used 
Ethereal. The problem with this type of guides is that 
they soon become dated, and this one is three years old. 
In the end we didn’t follow Parker’s guide all the way, 
but the guide was very useful to us. We learned how to 
work with Windump, Snort and Snortsnarf. Besides of 
that we also learned how to do a log analysis with 



Ethereal and we showed that our own version of Don 
Parker’s guide works also with the ShixxNote exploit. 
 

7. References 
[1] Don Parker, Examining a Public Exploit, Part 1, 
http://www.securityfocus.com/infocus/1795
 
[2] Don Parker, Examining a Public Exploit, Part 2, 
http://www.securityfocus.com/infocus/1801
 
[3] Snort – the defacto standard for intrusion 
detection/prevention, http://www.snort.org
 
[4] The Bleeding Edge of Snort – Open Snort signatures, 
http://www.bleedingsnort.com
 
[5] Stuart McClure, Joel Scambray, George Kurtz, 
Hacking i Fokus (Hacking Exposed, third edition), ISBN 
91-636-0707-7  
 
[6] Flashsky and Benjurry, The Analysis of LSD's Buffer 
Overrun in Windows RPC Interface, 
http://www.xfocus.org/documents/200307/2.html
 
[7] Milw0rm, http://www.milw0rm.com
 
[8] Matti Aharoni, Windows DCOM RPC Exploit, 
http://securitypronews.com/securitypronews-24-
20030814WindowsDCOMRPCExploit.html
 
[9] Ethereal: A Network Protocol Analyzer 
http://www.ethereal.com
 
[10] Matt Bishop, Introduction to COMPUTER 
SECURITY, page 389, ISBN 0-321-24744-2  
  
[11] Vulnerability 
http://en.wikipedia.org/wiki/Vulnerability_(computer_sci
ence)

[12] Wilander, Kamkar, A Comparison of Publicly 
Available Tools for Dynamic Buffer Overflow Prevention

http://www.securityfocus.com/infocus/1795
http://www.securityfocus.com/infocus/1801
http://www.snort.org/
http://www.bleedingsnort.com/
http://www.xfocus.org/documents/200307/2.html
http://www.milw0rm.com/
http://securitypronews.com/securitypronews-24-20030814WindowsDCOMRPCExploit.html
http://securitypronews.com/securitypronews-24-20030814WindowsDCOMRPCExploit.html
http://www.ethereal.com/
http://en.wikipedia.org/wiki/Vulnerability_(computer_science)
http://en.wikipedia.org/wiki/Vulnerability_(computer_science)


8. Appendix A– Ethereal log of the RPC 
DCOM exploit 



9. Appendix B – Ethereal log of the 
ShixxNote exploit 

 
 


	1. Introduction
	2. Background
	2.1 What is a vulnerability?
	2.2 What is a buffer overflow?
	2.3 What is an exploit?
	2.4  RPC DCOM and ShixxNote exploit

	3. Method of work
	4. Experiments
	4.1 The preparation phase
	4.2 The execution phase
	4.3 Analysis of logs
	4.4 Analysis of the RPC DCOM log
	4.5 Analysis of the ShixxNote log

	5. Results
	6. Conclusions
	7. References
	[12] Wilander, Kamkar, A Comparison of Publicly Available Tools for Dynamic Buffer Overflow Prevention 
	8. Appendix A– Ethereal log of the RPC DCOM exploit
	9. Appendix B – Ethereal log of the ShixxNote exploit

