
 
 
 
 

TDDC03 Projects, Spring 2005 
 
 
 
 
 
 

Comparative Study of Run-Time Defense  
Against Buffer Overflows 

 
 

Andreas Ekbom & Stefan Ottosson 
 

Supervisor: John Wilander



Comparative Study of Run-Time Defense  
Against Buffer Overflows 

 

Andreas Ekbom, Stefan Ottosson  
andek406@student.liu.se, sot@lysator.liu.se  

 
 

Abstract 
Buffer overflows are a common source of security 

problems in software systems. Various tools and 
techniques have been devised to prevent attacks on 
software vulnerable to buffer overflow attacks. In this 
paper we describe the current state of the art in both 
prevention and attack techniques. Making certain no area 
in memory is both executable and writable is shown to be 
an effective countermeasure against code-injecting 
attacks, but this too can often be circumvented. 
 
Keywords: buffer overflow, return-into-libc, exec 
shield, DEP, instrusion prevention. 
 

1. Introduction 
 

As more and more computers are linked together in 
networks users become more vulnerable than ever before 
to attacks on their computer systems. Most of these 
attacks exploit the same type of flaw: buffer overflows 
[15]. Therefore a lot of research has gone into preventing 
attempts to exploit vulnerabilities of this kind from 
succeeding. Several tools have been written with this aim 
in mind. 
 
In 2003 Wilander and Kamkar published a 
comprehensive comparison of the available prevention 
tools and known attack variations at that time [1]. Since 
then new venues of attack have been described, new tools 
have emerged and old ones updated. 
 
The purpose of this report is to determine how the 
updated prevention tools, and some entirely new ones, 
fare against current attack forms.  
 

2. New Developments 
 
 Several operating system vendors have developed  
their own techniques for protection against buffer 
overflows. Examples are Exec Shield incorporated into 
Red Hat, and DEP included in Microsoft Windows XP. 
These protections are more ambitious than the individual 
tools tested by Wilander and Kamkar, in effect making 
these tools extraneous. Many of the solutions put forth by 

the authors of those tools, such as the use of canaries in 
Stack Guard, have become standard features.  

 

3. Non-Executable Stack and Heap 
 

Many attacks on vulnerable computer systems involve 
injecting binary code into the target's address space and 
diverting execution there. These attack methods would 
fail if no page in memory was simultaneously writable 
and executable. For instance none of the attack methods 
used by Wilander and Kamkar work on Fedora Core 2, 
which has incorporated this feature. 
 
It is often possible to rework an exploit to use a technique 
known as return into libc instead, thereby obliterating the 
need for any code injection [7]. 
 
Therefore it could be argued that classifying attack 
methods as code-injecting or not would make more sense 
than distinguishing between heap- and stack-based 
attacks. Early attempts at countering code-injecting 
attacks stopped at stack protection[8], but for most 
programs the heap too can be made non-executable. 
There are exceptions, but they are rare. 
 
Recent processors from AMD and Intel support marking 
virtual memory pages as executable or not. AMD calls 
their technology for No Execute page protection (NX) 
while Intel uses the name Execute Disable bit for this 
feature. Previously the read and execute bits were 
collapsed into one, making it infeasible to use this bit for 
non-executable stacks (and heaps) since it must be 
possible to read stack data. It is however possible to 
simulate NX even on older hardware using various tricks 
[9]. 
 

3.1 DEP 
 
 Data Execution Prevention (DEP) is a technique 
developed by Microsoft in cooperation with major CPU 
vendors. Microsoft's description of DEP is:  
 

“(DEP) is a set of hardware and software technologies 
that perform additional checks on memory to help 
protect against malicious code exploits. In Windows 



XP SP2, DEP is enforced by both hardware and 
software.”  
 

With hardware-enforced DEP all memory locations in the 
address space of a process are marked as non-executable 
unless the location explicitly contains executable code. 
The hardware implementation varies between vendors but 
if code is executed from a location that is marked as non-
executable, an exception is raised. Since this is a very 
new technology and the exception that is raised, 
STATUS_ACCESS_VIOLATION, is a new one, most 
applications must be rewritten to be able to handle this. 
Not handling an exception of this type leads to program 
termination, if the exception is raised. [4] 
 
The software-enforced part of DEP is an extension to the 
hardware part which protects against exploits of the 
exception-handling mechanism in Microsoft Windows. 
Unlike the hardware-enforced part, software-enforced 
DEP works on any hardware able to run Microsoft 
Windows XP SP2. 
 
If the program being executed was built with Safe 
Structured Exception Handling (SafeSEH), software-
enforced DEP ensures that before an exception is 
dispatched the exception handler is registered in the 
programs function table. If the program being executed 
was not built with SafeSEH, software-enforced DEP 
ensures that before an exception is dispatched the 
exception handler is located in a part of memory which is 
marked as executable [4]. 
 

3.2 Exec Shield 
 

Exec Shield is a Linux kernel patch written by Red Hat 
which is used in Red Hat Enterprise Linux starting with 
version 3 update 3, as well as in Fedora (the community-
supported version of Red Hat) Core 1 and later [5].  It 
works through emulation on older x86 processors but 
makes use of hardware mechanisms where available. The 
stack can be set to executable for individual binaries. It 
also contains some protection against return-into-libc 
attacks, which are covered in section 5. 

 

3.3 Other Attempts 
 

Another notable implementation is PaX [11], which is 
a set of patches to the Linux Kernel mainly written by an 
anonymous author who will not comment on his reasons 
for not divulging his name. Because of the uncertainty 
regarding its copyright that the mystery surrounding its 
principal author results in, PaX is not expected to be 
included into mainstream distributions. PaX also makes 
some trade-offs that are uncomfortable to vendors[12]. 

Another competing Linux Kernel patch comes from Solar 
Designer's Openwall project, but it seems more limited in 
scope and only protects the stack [13]. 

 

3.4 Visual C++ Compiler Security Checks 
 
 The Microsoft Visual C++ compiler has a built-in 
compiler flag helping programmers write more secure 
code. It is the /RTC1 flag which is an alias for /RTCsu 
where s stands for stack checks and u stands for 
uninitialized variable checks. All buffers are tagged at the 
edges and therefore buffer overruns can be detected. The 
/RTC1 flag is an excellent help in writing more secure 
code, but it only works for debug builds. It was first 
introduced in Microsoft Visual Studio 6 but since then 
needs for run-time checks in production code have also 
emerged. Therefore, starting with Microsoft Visual 
Studio .NET, a new mechanism was designed making 
programmers able to build programs in release mode with 
run-time defense against buffer overflows. This 
mechanism is also invoked by a compiler flag, namely the 
/GC flag. 
 
The /GC flag introduces a canary, or cookie as Microsoft 
calls it, between the return address and local variables. 
This is a well-known technique used by other tools as 
well, including StackGuard [14] which was tested by 
Wilander and Kamkar [1]. For the interested reader 
Microsoft has published an in-depth article [6] about their 
compiler security checks. 
 
4. New Attack Forms 
 

As vendors adopted effective defenses against 
traditional buffer overflow exploits attackers refined their 
methods. 

 

4.1 Return into Libc 
 

By implementing a non-executable stack patch for the 
Linux kernel Solar Designer showed it was possible even 
for CPUs which were not designed to support it [8]. He 
also demonstrated a way, called return into libc, to 
circumvent his own protection mechanism [10]. The idea 
is to overwrite the return address with the address of a 
system function instead of an address to attacker-supplied 
code. No injection of code is necessary, the attacker only 
needs to know the address to a suitable system function 
and to be able to supply it with appropriate arguments. 
The minimal size of the payload thus shrinks, making it 
possible to fit into smaller buffers. 



4.2 C++ Virtual Methods 
 

With C++ and object orientation comes a new attack 
target: the table used to implement virtual method calls, 
called the vtable. Marking a method as virtual means it 
should be called by dynamic dispatch, i.e. the decision of 
which implementation of the method should be called is 
delayed until run time. 

To implement dynamic dispatch a level of indirection is 
required. Ordinary method calls can be resolved at 
compile time using static binding, but for calls to virtual 
methods the address of the method in question must first 
be fetched from the vtable. 

Every class with at least one virtual method has a vtable, 
which is hidden from the application programmer. Each 
object in turn has a pointer, called a vptr, into a vtable for 
every virtual method it supports. This pointer too is 
hidden from the application programmer. Space for these 
pointers is allocated together with the visible member 
variables of the object (figure 1). If it is possible to 
overflow a buffer in the object, and the compiler 
allocated space for the vptrs after the buffer (as in figure 
1), then it may also be possible to overwrite the vptrs. 
Subsequent calls to virtual methods of this object can thus 
lead to execution of arbitrary code. 

  

Figure 1 A single object of a virtual class, with a member 
variable called "buffer" 
 
Rix described a method for exploiting this in Phrack 
Magazine issue 58[3]. He also noted that the compiler 
can prevent the vptrs from being overwritten by simply 
placing them before member variables in memory. This 
indeed mitigates the problem, but in cases where several 
objects are allocated in contiguous memory the problem 
persists, since it is then possible to overwrite the vptrs of 
an adjacent object instead. Figure 2 illustrates this idea. 

 

Figure 2 Objects of a virtual class allocated in contiguous 
memory. Here the location of the vptrs has been changed. 
 

Furthermore, he observed the existence of four more 
hidden bytes allocated for every object, but did not 
investigate their use. This is understandable given the 
sparse documentation on the C++ ABI (Application 
Binary Interface) used by GCC. These bytes however 
contain run-time type information (RTTI) and an offset. 
Since these bytes can be overwritten too it would be 
interesting to see if doing so could lead to a new type of 
attack.  

 

4.3 Exceptions 
 

Exceptions and exception handling is quite a tricky 
area to deal with. When thinking about C++ and the try, 
catch, throw keywords, an exception is a software 
discovered error that when thrown transfers the control 
flow of the program to the innermost (matching) catch 
statement. But when hardware exceptions, such as a 
division by zero or segmentation fault, occur, it is up to 
the operating system to handle this.  
 
In the heart of its core Microsoft Windows deals with 
exceptions according to the Structured Exception 
Handling (SEH) mechanism. There are several good 
things about SEH but there is also a flip-side to the same 
coin. SEH can be exploited! 
 
In order to understand how a buffer overflow attack 
works on SEH one has to understand how SEH works. 
 
Each executing thread in a Windows environment has 
something called a TIB (Thread Information Block). The 
first DWORD in that structure is a pointer to the thread’s 
EXCEPTION_REGISTRATION structure. Located 
inside this structure is a pointer to the next 
EXCEPTION_REGISTRATION and also a pointer to an 

buffer

RTTI

offset

vptr

Object
VTABLE

code

buffer

RTTI

offset

vptr

buffer

RTTI

offset

vptr

Object
VTABLE

VTABLE

code



_except_handler callback function. Se figure 3 for 
an overview of this. 

Figure 3 This figure shows the 
EXCEPT_REGISTRATION structures’ location on the 
stack and the TIB pointing to the first one in the linked 
list 
 
 
This then constitutes a linked list. This is because an 
application seldom only has one exception handler, it has 
several, each taking care of one type of exception. When 
a thread executes something that leads to an exception the 
control is transferred to the operating system which then 
looks in the TIB for the pointer to the first 
EXCEPTION_REGISTRATION. The list is then 
traversed until the correct handler is found and then the 
flow of control is passed to the corresponding function.  
 
When a Windows C++ compiler sees the keywords _try 
and _except in a function it generates code for creating an 
EXCEPTION_REGISTRATION structure and putting it 
on the stack. When the function is called during runtime 
the first thing that happens is that an 
EXCEPTION_REGISTRATION will be created and put 
onto the stack. A buffer overflow within this function can 
possibly overwrite the EXCEPTION_REGISTRATION 
structure and making it point to arbitrary code instead of 
the real exception callback. The attacker also must create 
an exception within this function so control can be passed 
to the attack code. The last part is easy, just overflow the 
buffer so much that an access violation exception occurs. 
 

The SEH mechanism has been fixed in response to the 
above described attack and Windows XP with Service 
Pack 2 is believed to withstand all current SEH attacks 
[2]. Similar attacks on Linux might also be possible. The 
function-pointer clobbering discussed by Pincus and 
Baker has a very similar approach [2]. 
 

5. Further Protection Techniques 
 

When non-executable stacks and heaps were 
introduced attackers responded with the return-into-libc 
technique.  The response from the security community 
was to randomize addresses and relocate shared libraries 
to an area in memory which Red Hat calls the ASCII 
Armor. 

 

5.1 Randomized Addresses 
 

To be able to transfer control to their own code or to a 
system function attackers need to know the address of the 
place in memory where they want execution to continue. 
If the base addresses of the stack, heap and of shared 
libraries are randomly chosen upon startup of each 
process, or at some short time interval, the probability of 
a successful attack using return-into-libc is reduced 
greatly. The chance that an address that worked on the 
attacker's computer will also work on another computer, 
or even at the same machine at a different time, is very 
slim. 

In order for an executable to be loaded at a random 
address it has to be compiled to PIC (Position 
Independent Code), which means it is relocatable, just 
like a shared library. Unfortunately compiling to PIC 
results in a small performance penalty, but even though 
this is true for shared libraries as well it still has not 
stopped programmers from doing most of their heavy 
lifting in libraries. Hence this trade-off can be considered 
reasonable. 

 

5.2 ASCII Armor 
The ASCII Armor is Red Hat's name for the lower 16 

megabytes of virtual memory, to which all system 
libraries are relocated [5]. On Fedora Core 2 all system 
libraries are prelinked every 14 days, each time with 
random addresses containing zeros. The rationale for this 
is that since most overflows are due to insecure use of 
string-handling functions, exploiting typical 
vulnerabilities is made more difficult if all shared 
libraries have addresses with zeros in them. This is 
because strings are usually zero-terminated, meaning 
string functions such as strcpy() will stop when they 
encounter a zero. This feature is not unique to Red Hat, 

Pointer to 
EXCEPTION_REGISTRATION 

structure

TIB (Thread Information Block)

Function 

parameters

Function return 
address

Frame-pointer

Locally declared 

variables & buffers

Callee save 
registers

Stack

Exception handler code



they just serve as an example because they gave it a 
descriptive name. 

 

6. Results 
 

We used Wilander and Kamkar's testbed with two 
additional test cases: the attack on Windows' exception 
handling mechanism, and the vptr attack. Naturally the 
exception attack was not tried on Linux, and vice versa 
with the vptr attack and Windows, as they are 
incompatible.  

The results have been compiled in a table, however there 
is one caveat. The reader might be misled into believing 
Exec Shield is a panacea due to its impressive number of 
attacks prevented. This is an effect of limiting the tests to 
code-injecting attacks. The numbers would have been 
different had return-into-libc attacks been included. 
Unfortunately no computer equipped with hardware 
support for DEP was in our possession so therefore no 
test were committed using hardware enforced DEP.  

 
 

 prevented missed 

Windows SP1 0 (0%) 19 (100%) 

Windows SP2 1 (5%) 18 (95%) 

Windows  SP2 
/GC 

3 (16%) 16 (84%) 

Windows DEP N/A N/A 

Exec Shield 19 (100%) 0 (0%) 

Basic Linux 0 (0%) 19 (100%) 

 
 

7. Conclusions 
 

Up until now exploiting buffer overflows has been 
easy. With the new tools presented in this report it is the 
belief of the authors that these kinds of attacks will be 
more difficult in the future. There are still many years left 
until all users have an effective protection system in their 
computer since Microsoft’s DEP technology relies on 
hardware support. And until then most users will still be 
vulnerable to conventional buffer overflow attacks. 
 

Buffer overflow exploits that do not use code injection 
will probably become more common since current 
prevention tools do not fully protect against this class of 
attacks. 

References 
 
[1] John Wilander and Mariam Kamkar, “A Comparison of 
Publicly Available Tools for Dynamic Buffer Overflow 
Prevention”, In 10th Network and Distributed System Security 
Symposium (NDSS'03), pp. 149-162, February 5-7, 2003, San 
Diego, California 
[2] Jonathan Pincus and Brandon Baker, “Beyond Stack 
Smashing: Recent Advances in Exploiting Buffer Overruns”, 
IEEE Security & Privacy, IEEE Computer Society, July/August 
2004, pp. 20-27. 
[3] rix, "Smashing C++ VPTRS", Phrack Magazine 56 article 
0x08 (May 2000), http://www.phrack.org/phrack/56/p56-0x08 
[4] Starr Andersen, “Changes to Functionality in Microsoft 
Windows XP Service Pack 2 – Part 3: Memory Protection 
Technologies”, Microsoft TechNet (August 2004), 
http://www.microsoft.com/technet/prodtechnol/winxppro/maint
ain/sp2mempr.mspx  
[5] Arjan van de Ven, “Security Enhancements in Red Hat 
Enterprise Linux”, 
http://people.redhat.com/drepper/nonselsec.pdf  
[6]Brandon Bray, “Compiler Security Checks In Depth”, Visual 
Studio Team, Microsoft Corporation (February 2002), 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dv_vstechart/html/vctchCompilerSecurityChecksInDepth.asp  
[7] Nergal, “The advanced return-into-lib(c) exploits”, Phrack 
Magazine 58 article 4, 
http://www.phrack.org/show.php?p=58&a=4 
[8] Solar Designer, “Non-executable stack -- final Linux kernel 
patch”, Linux Kernel mailing list 14 May 1997, 
http://www.ussg.iu.edu/hypermail/linux/kernel/9705.1/0493.htm
l 
[9] Arjan van de Ven, “New security Enhancements in Red Hat 
Enterprise Linux v.3, update 3”, 
http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf 
[10] SolarDesigner, “Getting around non-executable stack (and 
fix)”, Bugtraq mailing list, 
http://www.securityfocus.com/archive/1/7480 , Aug. 1997 
[11] The PaX team, PaX, web site  
[12] Ingo Molnar, “Thoughts on kernel security issues”, 
http://lkml.org/lkml/2005/1/20/42 
[13]  README file for “Patch for Linux 2.4.30, version 1”, 
http://www.openwall.com/linux/ 
[14] Immunix, “StackGuard: Protecting Systems from Stack 
Smashing Attacks”, 
http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/  
[15] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. “A 
first step towards automated detection of buffer overrun vulner-
abilities”, In Proceedings of Network and Distributed Sys-tem 
Security Symposium, pages 3–17, Catamaran Resort 
Hotel, San Diego, California, February 2000. 

 


