TDDCO3 Projects, Spring 2005

Comparative Study of Run-Time Defense
Against Buffer Overflows

Andreas Ekbom & Stefan Ottosson

Supervisor: John Wilander

Comparative Study of Run-Time Defense
Against Buffer Overflows

Andreas Ekbom, Stefan Ottosson
andek406 @student.liu,ssot@lysator.liu.se

Abstract

Buffer overflows are a common source of security
problems in software systems. Various tools and
techniques have been devised to prevent attacks o
software vulnerable to buffer overflow attacks. this
paper we describe the current state of the art athb
prevention and attack techniques. Making certairarea
in memory is both executable and writable is shtwbe
an effective countermeasure against
attacks, but this too can often be circumvented.

Keywords:. buffer overflow, return-into-libc, exec
shield, DEP, instrusion prevention.

1. Introduction

As more and more computers are linked together in

networks users become more vulnerable than everéef

code-injecting

the authors of those tools, such as the usauwdriesin
Stack Guardhave become standard features.

3. Non-Executable Stack and Heap

Many attacks on vulnerable computer systems involve
injecting binary code into the target's addressamnd
diverting execution there. These attack methodsldvou
fail if no page in memory was simultaneously writab
and executable. For instance none of the attackadst
used by Wilander and Kamkar work on Fedora Core 2,
which has incorporated this feature.

It is often possible to rework an exploit to useehnique
known asreturn into libcinstead, thereby obliterating the
need for any code injection [7].

Therefore it could be argued that classifying #&tac

to attacks on their computer systems. Most of theseMethods as code-injecting or not would make monsese

attacks exploit the same type of flalwffer overflows
[15]. Therefore a lot of research has gone intwgméng
attempts to exploit vulnerabilities of this kindoifn
succeeding. Several tools have been written withatm
in mind.

In 2003 Wilander and Kamkar published a
comprehensive comparison of the available preventio
tools and known attack variations at that time Bihce
then new venues of attack have been describediowsy
have emerged and old ones updated.

The purpose of this report is to determine how the
updated prevention tools, and some entirely news,one
fare against current attack forms.

2. New Developments

Several operating system vendors have developed
their own techniques for protection against buffer
overflows. Examples arfexec Shieldncorporated into
Red Hat, and DEP included in Microsoft Windows XP.
These protections are more ambitious than the ity
tools tested by Wilander and Kamkar, in effect mgki
these tools extraneous. Many of the solutions quih foy

than distinguishing between heap- and stack-based
attacks. Early attempts at countering code-injgctin
attacks stopped at stack protection[8], but for tmos
programs the heap too can be made non-executable.
There are exceptions, but they are rare.

Recent processors from AMD and Intel support maykin
virtual memory pages as executable or not. AMDscall
their technology forNo Execute page protectiofiNX)
while Intel uses the namExecute Disable bifor this
feature. Previously the read and execute bits were
collapsed into one, making it infeasible to use thit for
non-executable stacks (and heaps) since it must be
possible to read stack data. It is however posdible
simulate NX even on older hardware using varioickgr

9.
3.1DEP

Data Execution PreventionDEP) is a technique
developed by Microsoft in cooperation with major (CP
vendors. Microsoft's description of DEP is:

“(DEP) is a set of hardware and software technoési
that perform additional checks on memory to help
protect against malicious code exploits. In Windows

XP SP2, DEP is enforced by both hardware and
software.”

With hardware-enforced DEP all memory locationghie
address space of a process are marked as non-axecut
unless the location explicitly contains executabtsle.
The hardware implementation varies between verioiars
if code is executed from a location that is markedon-
executable, an exception is raised. Since this verst
new technology and the exception that is raised,
STATUS_ACCESS_VI OLATI ON, is a new one, most
applications must be rewritten to be able to harnklie
Not handling an exception of this type leads togpam
termination, if the exception is raised. [4]

The software-enforced part of DEP is an extensiotié
hardware part which protects against exploits of th
exception-handling mechanism in Microsoft Windows.
Unlike the hardware-enforced part, software-enfdrce
DEP works on any hardware able to run Microsoft
Windows XP SP2.

If the program being executed was built wiSafe
Structured Exception HandlindSafeSEH), software-

Another competing Linux Kernel patch comes fromagol
Designer'®Openwall projectbut it seems more limited in
scope and only protects the stack [13].

3.4 Visual C++ Compiler Security Checks

The Microsoft Visual C++ compiler has a built-in
compiler flag helping programmers write more secure
code. It is the RTCL flag which is an alias faf RTCsu
where s stands for stack checks and stands for
uninitialized variable checks. All buffers are tagat the
edges and therefore buffer overruns can be detetherl
/ RTCL1 flag is an excellent help in writing more secure
code, but it only works for debug builds. It wassfi
introduced in Microsoft Visual Studio 6 but sindeen
needs for run-time checks in production code hdse a
emerged. Therefore, starting with Microsoft Visual
Studio .NET, a new mechanism was designed making
programmers able to build programs in release mothe
run-time defense against buffer overflows. This
mechanism is also invoked by a compiler flag, ngrties
/ GCflag.

enforced DEP ensures that before an exception iSThe/ GCflag introduces @anary, or cookieas Microsoft

dispatched the exception handler is registeredhm t
programs function table. If the program being exedu
was not built with SafeSEH, software-enforced DEP

calls it, between the return address and localatoées.
This is a well-known technique used by other tomds
well, including StackGuard [14] which was tested by

ensures that before an exception is dispatched theyjjander and Kamkar [1]. For the interested reader

exception handler is located in a part of memoryctvis
marked as executable [4].

3.2 Exec Shield

Exec Shield is a Linux kernel patch written by Rat
which is used in Red Hat Enterprise Linux startivith
version 3 update 3, as well as in Fedora (the camitgru
supported version of Red Hat) Core 1 and later [H].

works through emulation on older x86 processors but

makes use of hardware mechanisms where availahée. T
stack can be set to executable for individual hésarlt
also contains some protection against return-iio-|
attacks, which are covered in section 5.

3.3 Other Attempts

Another notable implementation BaX[11], which is
a set of patches to the Linux Kernel mainly writgnan
anonymous author who will not comment on his reason
for not divulging his name. Because of the uncetyai
regarding its copyright that the mystery surrougdits
principal author results in, PaX is not expectedb®
included into mainstream distributions. PaX alsckesa
some trade-offs that are uncomfortable to vend@is[1

Microsoft has published an in-depth article [6] abtheir
compiler security checks.

4. New Attack Forms

As vendors adopted effective defenses against
traditional buffer overflow exploits attackers redd their
methods.

4.1 Returninto Libc

By implementing a non-executable stack patch fer th
Linux kernel Solar Designer showed it was possévien
for CPUs which were not designed to support it [8&
also demonstrated a way, called return into like, t
circumvent his own protection mechanism [10]. Téeai
is to overwrite the return address with the addiefsa
system function instead of an address to attaakepled
code. No injection of code is necessary, the attaokly
needs to know the address to a suitable systentidanc
and to be able to supply it with appropriate argotse
The minimal size of the payload thus shrinks, mgkin
possible to fit into smaller buffers.

4.2 C++ Virtual Methods

With C++ and object orientation comes a new attac
target: the table used to implemetittual method calls,
called thevtable Marking a method as virtual means it
should be called by dynamic dispatch, i.e. the sieciof
which implementation of the method should be caited
delayed until run time.

To implement dynamic dispatch a level of indirectis
required. Ordinary method calls can be resolved
compile time using static binding, but for callsviotual
methods the address of the method in question finstst
be fetched from the vtable.

Every class with at least one virtual method hatahle,
which is hidden from the application programmerclita
object in turn has a pointer, calledatr, into a vtable for
every virtual method it supports. This pointer t@
hidden from the application programmer. Space ties¢
pointers is allocated together with the visible rbem
variables of the object (figure 1). If it is podsibto
overflow a buffer in the object, and the compiler
allocated space for the vptaster the buffer (as in figure
1), then it may also be possible to overwrite tipérs:
Subsequent calls to virtual methods of this objact thus
lead to execution of arbitrary code.

Object
buffer VTABLE
vptr o 4 o[*code
o | A
RTTI
o | A
offset

Figure 1 A single object of a virtual class, with a member
variable called "buffer"

Rix described a method for exploiting this in Plrac
Magazine issue 58[3]. He also noted that the campil
can prevent the vptrs from being overwritten by @im
placing thembefore member variables in memory. This
indeed mitigates the problem, but in cases whererak
objects are allocated in contiguous memory the Iprob
persists, since it is then possible to overwrit \tptrs of
an adjacent object instead. Figure 2 illustratesitiea.

Object
VTABLE
o ‘ .\X//y A
buffer ol code
o | A
RTTI o R
offset
vptr ‘ . VTABLE
buffer T ¥ o
o | A
RTTI ——a
offset

Figure 2 Objects of a virtual class allocated in contiguous
memory. Here the location of the vptrs has beengba.

Furthermore, he observed the existence of four more
hidden bytes allocated for every object, but did no
investigate their use. This is understandable githen
sparse documentation on the C++ ABI (Application
Binary Interface) used by GCC. These bytes however
contain run-time type information (RTTI) and ansaff.
Since these bytes can be overwritten too it wowdd b
interesting to see if doing so could lead to a mgve of
attack.

4.3 Exceptions

Exceptions and exception handling is quite a tricky
area to deal with. When thinking about C++ andttle
catch, throw keywords, an exception is a software
discovered error that when thrown transfers thetrobn
flow of the program to the innermost (matching)cbat
statement. But when hardware exceptions, such as a
division by zero or segmentation fault, occur,situp to
the operating system to handle this.

In the heart of its core Microsoft Windows dealshwi
exceptions according to theStructured Exception
Handling (SEH) mechanism. There are several good
things about SEH but there is also a flip-sideht® $ame
coin. SEH can be exploited!

In order to understand how a buffer overflow attack
works on SEH one has to understand how SEH works.

Each executing thread in a Windows environment has
something called a TIB (Thread Information Blockhe
first DAWORD in that structure is a pointer to the thread’s
EXCEPTI ON_REGQ STRATI ON structure. Located
inside this structure is a pointer to the next
EXCEPTI ON_REQ STRATI ON and also a pointer to an

TIB (Thread Information Block

_except _handl er callback function. Se figure 3 for
an overview of this.

Exception handler code
«

Pointer to
EXCEPTI ON REGI STRATI ONp
structure

Stack

Function
parameters

Function return
address

Frame-pointer

& ®

Locally declared
variables & buff;

Callee sav
registers

rs

» o« A

Figure 3 This figure shows the
EXCEPT_REG STRATI ON structures’ location on the
stack and the TIB pointing to the first one in thked
list

This then constitutes a linked list. This is beeaas
application seldom only has one exception handléas
several, each taking care of one type of excepidinen
a thread executes something that leads to an ésnepe
control is transferred to the operating system tiien
looks in the TIB for the pointer to the first
EXCEPTI ON_REG STRATI ON. The list is then
traversed until the correct handler is found arehtthe
flow of control is passed to the corresponding fiamc

When a Windows C++ compiler sees the keywords _try

and _except in a function it generates code faataorg an
EXCEPTI ON_REG STRATI ON structure and putting it
on the stack. When the function is called duringtirae
the first thing that happens is that an
EXCEPTI ON_REG STRATI ON will be created and put
onto the stack. A buffer overflow within this fuiar can
possibly overwrite theEXCEPTI ON_REGQ STRATI ON
structure and making it point to arbitrary codetéasl of
the real exception callback. The attacker also roresite
an exception within this function so control canpgassed
to the attack code. The last part is easy, justflove the
buffer so much that an access violation exceptimurcs.

The SEH mechanism has been fixed in response to the
above described attack and Windows XP with Service
Pack 2 is believed to withstand all current SEHhckis

[2]. Similar attacks on Linux might also be possibThe
function-pointer clobbering discussed by Pincus and
Baker has a very similar approach [2].

5. Further Protection Techniques

When non-executable stacks and heaps were
introduced attackers responded with the returribto
technique. The response from the security communit
was to randomize addresses and relocate sharedidibr
to an area in memory which Red Hat calls %®ClI
Armor.

5.1 Randomized Addresses

To be able to transfer control to their own codéooa
system function attackers need to know the addregse
place in memory where they want execution to camtin
If the base addresses of the stack, heap and oédsha
libraries are randomly chosen upon startup of each
process, or at some short time interval, the pritibabf
a successful attack using return-into-libc is rextlic
greatly. The chance that an address that workethen
attacker's computer will also work on another cotapu
or even at the same machine at a different timegerg
slim.

In order for an executable to be loaded at a random
address it has to be compiled tBIC (Position
Independent Code), which means it is relocatahist j
like a shared library. Unfortunately compiling tdCP
results in a small performance penalty, but eveugh

this is true for shared libraries as well it stihs not
stopped programmers from doing most of their heavy
lifting in libraries. Hence this trade-off can bensidered
reasonable.

5.2 ASCII Armor

The ASCII Armor is Red Hat's name for the lower 16
megabytes of virtual memory, to which all system
libraries are relocated [5]. On Fedora Core 2 wditesn
libraries are prelinked every 14 days, each timéhwi
random addresses containing zeros. The rationaliifo
is that since most overflows are due to insecuee afs
string-handling functions, exploiting typical
vulnerabilities is made more difficult if all shakre
libraries have addresses with zeros in them. This i
because strings are usually zero-terminated, meganin
string functions such ast r cpy() will stop when they
encounter a zero. This feature is not unique to Red

they just serve as an example because they gaae it
descriptive name.

6. Results

We used Wilander and Kamkar's testbed with two

additional test cases: the attack on Windows' diaep
handling mechanism, and the vptr attack. Naturtiky
exception attack was not tried on Linux, and viegsa
with the wvptr attack and Windows, as they are
incompatible.

The results have been compiled in a table, howthee
is one caveat. The reader might be misled intcebielg
Exec Shield is a panacea due to its impressive auwib
attacks prevented. This is an effect of limiting thsts to

Buffer overflow exploits that do not use code injec
will probably become more common since current
prevention tools do not fully protect against tbiass of
attacks.

References

[1] John Wilander and Mariam Kamkar, “A Comparisan
Publicly Available Tools for Dynamic Buffer Overflo
Prevention”, InL0th Network and Distributed System Security
Symposium (NDSS'Q3)p. 149-162, February 5-7, 2003, San
Diego, California

[2] Jonathan Pincus and Brandon Baker, “BeyondkStac
Smashing: Recent Advances in Exploiting Buffer @ues”,
IEEE Security & PrivacylEEE Computer Society, July/August
2004, pp. 20-27.

[3] rix, "Smashing C++ VPTRS", Phrack Magazine Biicke
0x08 (May 2000)http://www.phrack.org/phrack/56/p56-0x08
[4] Starr Andersen, “Changes to Functionality in Micfbs

code-injecting attacks. The numbers would have beenwindows XP Service Pack 2 — Part 3: Memory Protecti

different had return-into-libc attacks been incldde
Unfortunately no computer equipped with hardware
support for DEP was in our possession so therafore
test were committed using hardware enforced DEP.

prevented missed

Windows SP1 0 (0%) 19 (100%)

Windows SP2 1 (5%) 18 (95%)
Windows SP23 (16%) 16 (84%)
IGC

Windows DEP N/A N/A

Exec Shield 19 (100%) 0 (0%)
Basic Linux 0 (0%) 19 (100%)

7. Conclusions

Up until now exploiting buffer overflows has been
easy. With the new tools presented in this regas the
belief of the authors that these kinds of attackis lve
more difficult in the future. There are still maygars left
until all users have an effective protection systertheir
computer since Microsoft's DEP technology relies on
hardware support. And until then most users will ke
vulnerable to conventional buffer overflow attacks.

Technologies”, Microsoft TechNet (August 2004),
http://www.microsoft.com/technet/prodtechnol/winxpfmaint
ain/sp2mempr.mspx

[5] Arjan van de Ven, “Security Enhancements in Ried
Enterprise Linux”,
http://people.redhat.com/drepper/nonselsec.pdf
[6]Brandon Bray, “Compiler Security Checks In Depttiisual
Studio Team, Microsoft Corporation (February 2002),
http://msdn.microsoft.com/library/default.asp?uibrary/en-
us/dv_vstechart/html/vctchCompilerSecurityCheckspih.asp
[7] Nergal, “The advanced return-into-lib(c) exp#di Phrack
Magazine 58 article 4,
http://www.phrack.org/show.php?p=58&a=4

[8] Solar Designer, “Non-executable stack -- fihadux kernel
patch”, Linux Kernel mailing list 14 May 1997,
http://www.ussg.iu.edu/hypermail/linux/kernel/9708493.htm
I

[9] Arjan van de Ven, “New security EnhancementRed Hat
Enterprise Linux v.3, update 3",
http://www.redhat.com/f/pdf/rhel/WHPO006US Execsthiedf
[10] SolarDesigner, “Getting around non-executaéek (and
fix)", Bugtrag mailing list,
http://www.securityfocus.com/archive/1/748Bug. 1997

[11] The PaX team, PaX, web site

[12] Ingo Molnar, “Thoughts on kernel security isst)
http://Ikml.org/lkml/2005/1/20/42

[13] README file for “Patch for Linux 2.4.30, vamn 17,
http://www.openwall.com/linux/

[14] Immunix, “StackGuard: Protecting Systems frStack
Smashing Attacks”,
http://www.cse.ogi.edu/DISC/projects/immunix/Stacle®d/
[15] D. Wagner, J. S. Foster, E. A. Brewer, andAiken. “A
first step towards automated detection of buffearawn vulner-
abilities”, In Proceedings of Network and Distributed Sys-tem
Security Symposim, pages 3-17, Catamaran Resort

Hotel, San Diego, California, February 2000.

