

TDDC03 Projects, Spring 2005

Winnowing, a Document Fingerprinting Algorithm

Norzima Elbegbayan
elbno400@student.liu.se

Supervisor: Tina Lindkvist

1

Winnowing, a Document Fingerprinting Algorithm

Norzima Elbegbayan
Department of Computer Science

Linkoping University
elbno400@student.liu.se

Abstract

Among digital data, documents are the easiest to copy
and remove any signatures or fingerprints embedded,
which make the pirating the hardest to detect. Anyone can
just retype a document or copy a part of it. Document
fingerprinting is concerned with accurately identifying and
copying, including small partial copies, within large sets of
documents.

We will make a literature study of Winnowing, a
fingerprinting algorithm for documents. The Winnowing
selects fingerprints from hashes of k-grams, a contiguous
substring of length k. We will also show a document
fingerprinting example to show the performance of the
algorithm.

1. Introduction

The expansion of digital networks all over the world
allows extensive access to and use of any digital material.
Negative aspects of such access include unauthorized
taping, reading, manipulating or removing of data, which
might lead to financial loss or legal problems of the
producers and creators. Therefore designers, producers and
publishers of digital data like documents, images, video or
multimedia are seeking technical solutions to these
copyright protection problems.

Embedding of unique customer identification as a
watermark into digital data, to identify illegal copies of the
document and trace back pirates, is called fingerprinting. In
fingerprinting, every copy of the document will get a
unique mark, representing who is the owner of the
document.

To keep track of copies distributed, we produce different
copies for each customer. Drawbacks of this procedure are,
some people don’t like registering themselves in a database,
attackers can compare several fingerprinted copies to find
and change or destroy the embedded identification, and the
more copies we have the bigger the mark gets making it
difficult to embed. The more data the mark consists of the
more robust it will be, but at the same time the embedding
will be more difficult.

However, document fingerprinting is concerned with
accurately identifying copying, including small partial
copies, within large sets of documents. With pirated or
copied documents, comparing whole document checksums
is simple and suffices for reliably detecting exact copies;
however, detecting partial copies is subtler.

In this report, we will discuss about fingerprinting, its
example fingerprinting methods, and document
fingerprinting algorithms. The Winnowing algorithm that
uses hashing technique for document fingerprinting and its
performance measures for detecting full and partial copies
will be discussed in detail with an example.

1.1 Background and related work

Research in copyright protection and information hiding
has grown recently and a large variety of techniques have
been developed. To prevent illegal redistribution, the
distributor can try to make it difficult to make a new copy
from the distributed document. Usually this will only
temporally stop the pirates since the copy protection will
probably be cracked. Another way of limiting the illegal
distribution is to embed a signature in the document. The
signature can be divided into different classes.

The most common class of signatures in digital
documents is watermarking [8]. In watermarking all
distributed documents contain the same signature. For
example, the signature can be a company logo or a
copyright text. The watermark can also contain information
about under which circumstances the document can be used.

Another class of signatures is fingerprinting [16], which
we will discuss more precisely in this paper. In
fingerprinting all distributed documents contain individual
signatures. This way the distributor can bind an illegally
distributed copy to the pirate.

Much has been published about how to embed signatures
into images or video, for they are the most common types
of data that deal with copyright protection. For multimedia
files some transform domain is used for the embedding of
the signature [4]. Well known coding and decoding
algorithms can also be used by changing the parameters that
control the compression. The company Digimark [15] has
developed a search engine that can find registered
watermarks in images and report back with the location to
the distributor.

2

1.2 Problem

Among digital data, documents are the easiest to copy
and to remove any signatures embedded in them, which
makes copy detecting harder. There are various document
fingerprinting algorithms, which seem to capture an
essential property of any fingerprinting technique
guaranteed to detect copies.

It is easy to detect exact copies between documents by
just comparing a full document checksum. However, it is
rarely the case that whole documents are copied. Generally,
pirates use loads of tricks to avoid getting detected by a
copy checking mechanism. Some of these are relocating
parts of the text, changing document (file) names, rewriting
parts of the text and/or changing words with their synonyms.
Because of this, copy detection becomes quite challenging
[16].

1.3 Method

There are various software and document copy detection
mechanisms that detect whole and partial copies of a
document, including Moss [12] and SandMark [3], which
are widely used over Internet.

In our report we will study algorithms for fingerprinting
and detecting copies of a document using hashing
techniques. To hash a document we will use the notion k-
gram [15], a substring of length k, where k is chosen by the
distributor. Documents will be divided into all possible k-
grams, and then the k-grams will be hashed. The main
problem is how to choose the fingerprint from the hashes.
From several methods for selecting fingerprint we will
study Winnowing algorithm which selects the smallest hash
value from w window slides. With such hashed fingerprints,
there are certain bounds for detecting similarity between
copied and original documents.

2. Fingerprinting

Digital watermarking offers a supplemental form of
protection that can extend into a broader scope. By
watermarking, we mean inserting some information into a
document, such as an audio track, still image, video stream
or text, in such a way that the marked document differs
imperceptibly from the original. The information contained
in the mark can be recovered by authorized parties, and
removal of the mark by modifying the marked document
results in rendering the document useless [9].

One of such techniques of embedding a mark into a
document for copyright protection is called fingerprinting.
To fingerprint the data, unique information is inserted into
each copy. This will enable the owner or the distributor to
trace an unauthorized copy back to the source.

2.1 Fingerprinting methods

Most fingerprinting schemes are symmetric, which
means that both the user and the distributor have access to
the fingerprinted data. If an unauthorized copy of such data
is found, one cannot assign responsibility to one of them
with absolute certainty. Although symmetric fingerprinting
algorithms are very helpful for eliminating possible sources,
their findings alone cannot convict anybody in the court.

Asymmetric fingerprinting on the other hand creates a
copy that only the user knows about [13]. The fingerprint is
created by the distributor. First the distributor encrypts the
object using the user’s public key and than the user
decrypts it using his secret key. After the deal is done the
user have a uniquely, and tied to him, fingerprinted copy of
the data. The distributor does not get this copy. From the
public key gained in the key exchange, the distributor
cannot create a copy identical to the one that the user has.
But, if the user distributes illegal copies of the data, the
distributor can identify them and trace them back to the
user.

The traitor-tracing fingerprint schemes [2] differ from
the other fingerprinting schemes mentioned above as they
do not prevent or deter from redistribution of the data, but
rather focus on prevention of decryption possibilities. The
fingerprint is in the decryption keys, not in the actual data.

2.2 Fingerprinting example

Here we give an illustration to show the basic ideas of

fingerprinting. The text we want to fingerprint looks like:

The match was cancelled due to a terrible storm.

The possible synonyms of words used in this sentence

are:

due to \ owing to \ on account of the fact there was
match \ game \ contest \ competition
canceled \ called off
storm \ wind
terrible \ dreadful \ strong

From the text we can construct several different versions

using word substitution, without the meaning being lost.

The game was cancelled due to a terrible storm.
The match was called off due to a terrible storm.
The match was cancelled owing to a terrible storm.
The match was cancelled due to a strong storm.

We can prevent from illegal distribution by keeping

track of who got which copy. The fingerprint will be robust

3

against pirate attacks as long as the possible substitution
word list and user database remain secret. However two or
more users can collude and compare their fingerprints to
detect the differences and by changing the words that were
different can create a new one. If the created fingerprint
matches one of the original fingerprints, an innocent user
can be framed for illegal distribution.

If we have more copies than our fingerprint could handle,
both the mark and user database needs to grow. Another
potential problem is that people are not so keen to register
themselves in a database due to confidentiality and integrity
reasons.

3. Document fingerprinting

Document fingerprinting is a technique for accurate
detection of full and partial copies between documents.
Here, the idea is to store a small sketch (that is, a
representative set of numbers) such that by comparing the
sketches between two documents, we will be able to
identify whether they have a substantial overlap [16].

According to [5], a digital document fingerprinting
scheme consists of a number of marking positions in the
document, a fingerprinting algorithm which selects the
mark to be embedded for each marking position depending
on the number of the copy and embeds it. Another possible
content is a pirate tracing algorithm which, on input of a
modified document, outputs at least one number of a copy
that was used in constructing the modified document.

Different copies of a document containing digital
fingerprints differ at most at these marking positions. A
powerful attack to remove a fingerprint therefore consists
of comparing two or more fingerprinted documents and to
alter these documents randomly in those places where a
difference was detected. If three or more documents are
compared, a majority decision can be applied to improve
this kind of attack; for the area where the documents differ,
choose the value that is present in most of the documents.

The only marking positions the pirates can not detect are
those positions which contain the same letter in all the
compared documents. We call the set of these marking
positions the intersection of the different fingerprints.

3.1 Document fingerprinting methods

Most of the existing techniques for document
fingerprinting or copy detection use a notion of hashing of
k-grams [15] or w-shingles [1]. Each document may be
considered as a sequence of words in a canonical form
(stripped of formatting, capitalization, punctuation etc.).
The algorithm divides a document into k-grams or w-
shingles, where k and w are parameters chosen by the user.

The first one, which is considered being very efficient
for detecting full and partial copies between documents is
hashing of k-grams. A k-gram is a contiguous substring of

length k [15]. For example, the sequence of 5-grams of the
phrase "A do run run run, a do run run" is:

adoru dorun orunr runru unrun nrunr runru unrun

nruna runad unado nador adoru dorun orunr runru unrun

On the other hand, a contiguous subsequence of words is

called a shingle, and specifically a contiguous subsequence
of w words is a w-shingle [1]. For example, the set of 4-
shingles of the phrase "one two three one two three one two
three" is:

{(one, two, three, one), (two, three, one, two),
 (three, one, two, three)}

Then hash each k-gram/w-shingle and select a subset of

these hashes to be the document’s fingerprints. How
hashing and selecting of the subset are done will be
discussed in Section 3.2. An example algorithm using k-
gram is the Winnowing algorithm [15] that selects the
fingerprints from a sequence of hashes that guarantees that
at least part of any sufficiently long match is detected. We
will discuss this algorithm in detail later in Section 4.

[16] introduces a new randomized algorithm that
provides a guarantee that with very high probability, any
match of greater than or equal to W characters (an input
parameter) will be detected. This algorithm has small
deterministic bounds on the amount of space needed for the
algorithm.

The Google search engine uses the technique outlined by
Broder [1] to detect copies of web pages while crawling the
web. It then tries to display only unique results (removing
mirror sites etc.) so that the user has a better selection.

3.2 Document fingerprinting algorithm using
hashes of k-grams

Many copy detecting approaches may rely upon gross
similarities between documents. One such technique
derives a document hash (checksum) for all items in a
comparison set. Thereby, identical checksums characterize
identical documents. This is a viable means of building a
set of document comparators over time. Whenever a new
set of documents is checked the historical collection of
checksums can be invoked to provide an extended
comparator set.

Clearly, such techniques may be refined. For instance,
using document sections as a basis for fingerprinting, rather
than complete documents affords a finer grain comparison
[18]. Such document sections could be either k-grams [15]
or w-shingles [1], that are described in above section.

Let us look at an example from [15] to see how hashing
and selecting fingerprints from the hashes are done. In the
example, 5 is parameter k.

4

A do run run run, a do run run
(a) Some text.

adorunrunrunadorunrun
(b) The text with irrelevant features removed.

adoru dorun orunr runru unrun nrunr runru unrun

nruna runad unado nador adoru dorun orunr runru unrun
 (c) The sequence of 5-grams derived from the text.

Now hash each k-gram and select some subset of these

hashes to be the document’s fingerprints. In all practical
approaches, the set of fingerprints is a small subset of the
set of all k-gram hashes. If the hash function is chosen so
that the probability of collisions is very small, then
whenever two documents share one or more fingerprints, it
is extremely likely that they share a k-gram as well.

77 72 42 17 98 50 17 98 8 88 67 39 77 72 42 17 98
(d) A hypothetical sequence of hashes of the 5-grams.

For efficiency, only a subset of the hashes should be

retained as the document’s fingerprints. But which hashes
should be selected as fingerprints?

Karp and Rabin’s algorithm [7] for fast substring
matching is apparently the earliest version for selecting
fingerprints based on k-grams. A simple but incorrect
strategy is to select every ith hash of a document, but this is
not robust against reordering, insertions and deletions. In
fact, pre-pending one character to a file shifts the positions
of all k-grams by one, which means the modified file shares
none of its fingerprints with the original.

Thus, any effective algorithm for choosing the
fingerprints to represent a document cannot rely on the
position of the fingerprints within the document.

The scheme Manber [11] chose is to select all hashes
that are 0 mod p, for some fixed p. In this way fingerprints
are chosen independent of their position, and if two
documents share a hash that is 0 mod p, it is selected in
both documents. This approach is easy to implement and
retains only 1/p of all hashes as fingerprints.

72 8 88 72
(e) The sequence of hashes selected using 0 mod 4.

A disadvantage of this method is that it gives no

guarantee that matches between documents are detected: a
k-gram shared between documents is detected only if its
hash is 0 mod p. If the hash function is chosen so that the
probability of collisions is very small, then whenever two
documents share one or more fingerprints, it is extremely
likely that they share a k-gram as well [15]. Consider the
sequence of hashes generated by hashing all k-grams of a
file in order. Call the distance between consecutive selected
fingerprints the gap between them [15]. If fingerprints are
selected 0 mod p, the maximum gap between two

fingerprints is unbounded and any matches inside a gap are
not detected. In Section 4, the Winnowing algorithm [15]
for selecting the fingerprints from a sequence of hashes will
be discussed. This algorithm guarantees that at least part of
any sufficiently long match is detected.

In [6], Heintze proposed choosing the n smallest hashes
of all k-grams of a document as the fingerprints of that
document. By fixing the number of hashes per document,
the system would be more scalable as large documents have
the same number of fingerprints as small documents.

The price for a fixed-size fingerprint set is that only
near-copies of entire documents could be detected.
Documents of vastly different size could not be
meaningfully compared; for example, the fingerprints of a
paragraph would probably contain no fingerprints of the
book that the paragraph came from. Choosing hashes 0 mod
p, on the other hand, generates variable size sets of
fingerprints for documents but guarantees that all
representative fingerprints for a paragraph would also be
selected for the book. Broder [1] classifies these two
different approaches to fingerprinting as being able to
detect only resemblance between documents or also being
able to detect containment between documents.

A fingerprint can also contain positional information,
which we do not show, describing the document and the
location within that document that the fingerprint came
from.

3.3 Detecting resemblance and containment of
documents from their hashed k-grams

As mentioned above in Section 1, document
fingerprinting is concerned with accurately identifying
copying, including small partial copies, within large sets of
documents. Therefore, the most probable pirate attack for
documents is that either all or part of the document can be
copied. Computing the resemblance and containment
between the copy and the original could be sufficient for
detecting such pirating.

One measure of the resemblance of two text files A and
B is the resemblance of their corresponding sets of k-grams.
We therefore define the resemblance r(A,B) as

r(A,B) = |S(A,k)∩ S(B,k)|/ |S(A,k) ∪ S(B,k)|

Here S(A,k) is a set of hashes of k-grams of the

document A. The resemblance is implicitly dependent on k,
a pre-chosen fixed parameter. The resemblance is a number
between 0 and 1, with a value of 1 meaning that the two
documents have the same set of k-grams. Small changes in
a large document can only affect the resemblance slightly,
since each word change can affect at most k distinct grams.
Similarly, resemblance is resilient to changes such as
swapping the order of paragraphs.

5

For a fingerprinted document, we store only k-grams
that are 0 mod p for some suitable p. Let L(A) be the
fingerprint or hashes that are 0 mod p for the document A.
Then the estimated value of the resemblance re is given by

re(A,B) = |L(A)∩ L(B)|/ |L(A) ∪ L(B)|

This is an unbiased estimator for the actual resemblance

r(A,B). By choosing p appropriately, we can reduce the
amount of storage for L(A), at the expense of obtaining
possibly less accurate estimates of the resemblance. As L(A)
is a smaller set of k-grams derived from the original set, we
call it a sketch of the document A. Given sketches for two
files A and B we can compute text resemblance.

Similarly we may define the containment of A by B, or
c(A,B) by

c(A,B) = |S(A,k)∩ S(B,k)|/ S(A,k)

Again containment is a value between 0 and 1, with

value near 1 meaning that most of the shingles of A are also
shingles of B. In the text setting, a containment score near 1
suggests that the text of A is somewhere contained in the
text of B. We may estimate containment by

ce(A,B) = |L(A)∩ L(B)|/ L(A)

Again this is an unbiased estimator.

4. Winnowing algorithm

In this section we describe and analyze the Winnowing
algorithm, which is taken from [15], for selecting
fingerprints from hashes of k-grams. We give an upper
bound on the performance of Winnowing, expressed as a
trade-off between the number of fingerprints that must be
selected and the shortest match that we are guaranteed to
detect.

Given a set of documents, we want to find substring
matches between them that satisfy two properties:

1. If there is a substring match at least as long as the
guarantee threshold, t, then this match is detected,
and

2. We do not detect any matches shorter than the noise
threshold, k.

The constants t and k ≤ t are chosen by the user. We
avoid matching strings below the noise threshold by
considering only hashes of k-grams. The larger k is, the
more confident we can be that matches between documents
are not coincidental. On the other hand, larger values of k
also limit the sensitivity to reordering of document contents,
as we cannot detect the relocation of any substring of length
less than k. Thus, it is important to choose k to be the
minimum value that eliminates coincidental matches. We
will continue with the previous example text, with the
parameter k of 5.

A do run run run, a do run run
(a) Some text.

adorunrunrunadorunrun
(b) The text with irrelevant features removed.

adoru dorun orunr runru unrun nrunr runru unrun

nruna runad unado nador adoru dorun orunr runru unrun
(c) The sequence of 5-grams derived from the text.

77 72 42 17 98 50 17 98 8 88 67 39 77 72 42 17 98
(d) A hypothetical sequence of hashes of the 5-grams.

Define a window of size w to be w consecutive hashes of

k-grams in a document (w is a parameter set by the user).
By selecting at least one fingerprint from every window the
algorithm limits the maximum gap between fingerprints. In
fact, the algorithm is guaranteed to detect at least one k-
gram in any shared substring of length at least w + k − 1.

Given a sequence of hashes h1 . . . hn, if n > t − k, then at
least one of the hi must be chosen to guarantee detection of
all matches of length at least t. This suggests the following
simple approach. Let the window size be w = t − k + 1.
Consider the sequence of hashes h1h2 . . . hn that represents
a document. Each position 1 ≤ i ≤ n − w + 1 in this
sequence defines a window of hashes hi . . . hi+w−1.

(77, 72, 42, 17) (72, 42, 17, 98)
(42, 17, 98, 50) (17, 98, 50, 17)
(98, 50, 17, 98) (50, 17, 98, 8)
(17, 98, 8, 88) (98, 8, 88, 67)
(8, 88, 67, 39) (88, 67, 39, 77)
(67, 39, 77, 72) (39, 77, 72, 42)
(77, 72, 42, 17) (72, 42, 17, 98)
(e) Windows of hashes of length 4.

To maintain the guarantee it is necessary to select one

hash value from every window to be a fingerprint of the
document. In each window select the minimum hash value.
If there is more than one hash with the minimum value,
select the rightmost occurrence. Now save all selected
hashes as the fingerprints of the document.

(77, 72, 42, 17) (72, 42, 17, 98)
(42, 17, 98, 50) (17, 98, 50, 17)
(98, 50, 17, 98) (50, 17, 98, 8)
(17, 98, 8, 88) (98, 8, 88, 67)
(8, 88, 67, 39) (88, 67, 39, 77)
(67, 39, 77, 72) (39, 77, 72, 42)
(77, 72, 42, 17) (72, 42, 17, 98)
(f) Minimum hash values are selected from each window.

In our example, each hash that is selected is shown in

boldface (but only once, in the window that first selects that
hash) in (f). The intuition behind choosing the minimum
hash is that the minimum hash in one window is very likely

6

to remain the minimum hash in adjacent windows, since the
odds are that the minimum of w random numbers is smaller
than one additional random number. Thus, many
overlapping windows select the same hash, and the number
of fingerprints selected is far smaller than the number of
windows while still maintaining the guarantee. (g) shows
the set of fingerprints selected by Winnowing.

17 17 8 39 17
(g) Fingerprints selected by Winnowing.

In many applications it is useful to record not only the

fingerprints of a document, but also the position of the
fingerprints in the document. For example, we need
positional information to show the matching substrings in a
user interface. An efficient implementation of Winnowing
also needs to retain the position of the most recently
selected fingerprint. (h) shows the set of [fingerprint,
position] pairs for this example (the first position is
numbered 0).

[17,3] [17,6] [8,8] [39,11] [17,15]
(h) Fingerprints paired with 0-base positional

information.

To avoid the notational complexity of indexing all

hashes with their position in the global sequence of hashes
of k-grams of a document, we suppress most explicit
references to the position of k-grams in documents in our
presentation.

4.1 Queries

This section, also taken from [15], is about how to
choose hashes well and how hashes can be used once
selected. In a typical application, one first builds a database
of fingerprints and then later queries the fingerprints of
individual documents against this database. Winnowing
gives us some flexibility to treat the two fingerprinting
times (database-build time and query time) differently.

Consider a database of fingerprints (obtained from k-
grams) generated by Winnowing documents with window
size w. Now, query documents can be fingerprinted using a
different window size. Let Fw be the set of fingerprints
chosen for a document by Winnowing with window size w.
The advantage of Winnowing query documents with a
window size w’ ≥ w is that Fw’ ⊆ Fw, which means fewer
memory or disk accesses to look up fingerprints. This may
be useful if, for example, the system is heavily loaded and
we wish to reduce the work per query, or if we are just
interested in obtaining a faster but coarser estimate of the
matching in a document.

We can extend this idea one step further. Fingerprint a
query document with the same window w used to generate
the database, and then sort all of the selected fingerprints in

ascending order. Next, look up some number of the
fingerprints in the database, starting with the smallest. If we
stop after a few, fixed number of hashes, we have realized
Broder’s approach [1] for testing document resemblance. If
we use all of the hashes as fingerprints, we realize the
standard notion of testing for document containment.

There is also a spectrum where we stop anywhere in
between these two extremes. Broder’s paper [1] on
resemblance and containment gives distinct algorithms to
compute these two properties; Winnowing naturally
realizes both.

4.2 Chaffing and Winnowing

Another slightly changed version of the Winnowing
algorithm is Chaffing and Winnowing [14]. However, this
algorithm is used for providing confidentiality or
information hiding not for copy detecting. Therefore it
deals with terminologies like sender and receiver,
encryption and decryption, key, authentication, MAC and
packets etc. The rest of the description in this section is
from [14].

The sender breaks the message into packets, and
authenticates each packet using a secret authentication key.
That is, the sender appends to each packet a “message
authentication code” or MAC computed as a function of the
packet contents and the secret authentication key, using
some standard MAC algorithm [10].

The packet is still “in the clear'”; no encryption has been
performed. We note that software that merely authenticates
messages by adding MACs is automatically approved for
export, as it is deemed not to encrypt.

There is a secret key shared by the sender and the
receiver to authenticate the origin and contents of each
packet. The legitimate receiver, knowing the secret
authentication key, can determine that a packet is authentic
by recomputing the MAC and comparing it to the received
MAC. If the comparison fails, the packet and its MAC are
automatically discarded. The sender and the receiver can
initially create and agree upon the secret authentication key
with any standard technique, such as authenticated Diffie-
Hellman.

We note that it is typical for each packet to contain a
serial number as well. For example, when a long file is
transmitted it is broken up into smaller packets, and each
packet carries a unique serial number. The serial numbers
help the receiver to remove duplicate packets, identify
missing packets, and to correctly order the received packets
when reassembling the file. The MAC for a packet is
computed as a function of the serial number of the packet as
well as of the packet contents and the secret authentication
key.

As an example, we might have a sequence of the form:

 (1,Hi Bob,465231)
 (2,Meet me at,782290)

7

 (3,7PM,344287)
 (4,Love-Alice,312265)

of triples of sequence number, message, and MAC.
The second process involved in sending a message is

adding chaff: adding fake packets with bogus MACs. The
chaff packets have the correct overall format, have
reasonable serial numbers and reasonable message contents,
but have MACs that are not valid. The chaff packets may
be randomly intermingled with the good (wheat) packets to
form the transmitted packet sequence. Extending the
preceding example, chaff packets might make the received
sequence look like:

 (1,Hi Larry,532105)
 (1,Hi Bob,465231)
 (2,Meet me at,782290)
 (2,I'll call you at,793122)
 (3,6PM,891231)
 (3,7PM,344287)
 (4,Yours-Susan,553419)
 (4,Love-Alice,312265)

In this case, for each serial number, one packet is good

(wheat) and one is bad (chaff). Instead of randomly
intermingling the chaff with the wheat, the packets can also
be output in sorted order, sorting first by serial number, and
then by message contents.

To obtain the correct message, the receiver merely
discards all of the chaff packets, and retains the wheat
packets. But this is what the receiver does anyway. In a
typical packet-based communication system the receiver
will automatically discard all packets with bad MACs. So
the “winnowing” process is a normal part of such a system.

5. Conclusion

In this report we have discussed about fingerprinting, a
copyright protection technique and its example methods
with their advantages and disadvantages. We also took
document fingerprinting as a case and have shown that
though document plagiarism is the most difficult to detect,
there are certain bounds when using hashes of k-grams for
selecting document fingerprints. Finally, we have presented
the Winnowing, a document fingerprinting algorithm that is
both efficient and guarantees that matches of a certain
length are detected in documents.

6. References

[1] Broder A. Z., On the resemblance and containment of

documents, Proceedings of the Compression and
Complexity of Sequences 1997, 1997.

[2] Chor B., Fiat A., Naor M. and Pinkas B., Tracing Traitors,
Proceedings of the 14th Annual International Cryptology
Conference on Advances in Cryptology, 1994.

[3] Collberg Christian, SANDMARK,
http://sandmark.cs.arizona.edu.

[4] Cox I. J., Killian J., Leighton F. T., Shamoon T., Secure
Spread Spectrum Watermarking for Multimedia, IEEE
Transactions on Image Processing, 1997.

[5] Dittmann Jana, Behr Alexander, Stabenau Mark, Schmitt
Peter, Schwenk Jörg, Ueberberg Johannes, Combining
digital Watermarks and collusion secure Fingerprints for
digital Images, German National Research Center for
Information Technology, Darmstadt, Germany, 1999.

[6] Heintze Nevin, Scalable document fingerprinting, In 1996
USENIX Workshop on Electronic Commerce, 1996.

[7] Karp Richard M. and Rabin Michael O., Pattern-matching
algorithms. IBM Journal of Research and Development,
1987.

[8] Katzenbeisser S., and Petitcolas F.A.P., Information hiding
techniques for steganography and digital watermarking,
Artech House, 2000.

[9] Kilian Joe, Resistance of Digital Watermarks to Collusive
Attacks, 1998.

[10] Krawczyk, H., Bellare M., and R. Canetti, HMAC: Keyed-
Hashing for Message Authentication, 1997.

[11] Manber Udi, Finding similar files in a large file system, In
Proceedings of the USENIX Winter 1994 Technical
Conference, 1994.

[12] Moss – a system for detecting software plagiarism,
http://www.cs.berkeley.edu/ aiken/moss.html.

[13] Pfitzmann B. and Schunter M., Asymmetric fingerprinting,
Springer-Verlag Berlin Heidelberg, 1996.

[14] Rivest Ronald L., Chaffing and Winnowing: Confidentiality
without Encryption, MIT Lab for Computer Science, 1998.

[15] Schleimer Saul, Winnowing: Local Algorithms for
Document Fingerprinting, University of Illinois, 2003.

[16] Sumit Ganguly and Gaurav Veda, A new randomized
algorithm for Document Fingerprinting, Indian Institute of
Technology, 2000.

[17] Wang Yiwei, Doherty John F., Dyck Robert E. Van, A
Watermarking Algorithm for Fingerprinting Intelligence
Images, Conference on Information Sciences and Systems,
The Johns Hopkins University, 2001.

[18] Weir George R S, Gordon Margaret Anne and McGregor
Grant, Work in Progress – Technology in plagiarism
detection and management, 4th ASEE/IEEE Frontiers in
Education Conference, 2004.

