
 

Linköping University. 
2004 – 05 
Supervisor: Tina Lindkvist 

Authors: Francois Arpin fraar334@student.liu.se 
Peter Örnvall petor960@student.liu.se 

  
 

�
�
�
�
�

+RZ�VHFXUH�DQG�XVHU�IULHQGO\�LV�3*3�
�

Information security report 
 



 

 
 
 
 

�+RZ�VHFXUH�DQG�XVHU�IULHQGO\�LV�3*3�
 
 

 

Francois Arpin, Peter Örnvall 
fraar334@student.liu.se, petor960@student.liu.se  

 
 
 

$EVWUDFW�
In this document, we present the results of a study of the 
security and usability of PGP, which is a cryptographic 
tool to send emails on the Internet securely. We start by 
giving a brief introduction to the theoretical aspect of 
PGP schemes. Then, we investigate the user interface and 
the usability issues of the program. This investigation is 
based on our own experience as well as on the results of 
the article [4]. Finally we discuss the security problems 
that could affect PGP, looking at the possible types of 
attacks against PGP, practical as well as cryptanalytic.  
 

,QWURGXFWLRQ�
 

8WLOLW\�RI�3*3�
 
The Internet grew too fast to be secure. Especially it is 
difficult to talk about privacy when we exchange mails 
because it is quite easy to eavesdrop Internet 
communications of someone when he/she does not 
communicate on a protected local network. Even 
internally, certain malicious users may be interested by 
the content of the mails of another. It is also very easy for 
that user to study the traffic generated by the people on 
the network. Moreover, with the growth of wireless 
structure, it is even easier for anybody who is 
geographically close enough to simply listen to all the 
network traffic with as simple tools as a snack box and 
eavesdropping software.  
 
Another problem may be rising soon. Certain countries 
start to change their law so mail exchange will not be 
longer considered as private there. Soon it may be 
possible being without any juridical protection against 
mail watching.  
 
The problem of being sure of the identity of the sender of 
a mail is also crucial for justice or business matters. The 
email accounts are also very easy to hijack. So can we be 
sure that this person really sent the mail I am reading? 
Certainly no. So we have to find a tool to address those 
problems. PGP appears to be one solution. 

 
PGP is an encryption tool that provides the possibility for 
anyone to use strong encryption and digital signatures.  
With digital signatures we can verify the identity of our 
correspondents. This implies that we can trust the 
message not to be forge. PGP offers a choice of 
encryption methods for the advanced user. The software 
uses asymmetric encryption with a private and a public 
key. The keys can be sent directly to the user one want to 
communicate with or be uploaded to a dedicated key 
server where the users can search for persons they want to 
communicate with privately. 
 

+LVWRU\�RI�3*3�
 
One person with insight into cryptology followed what 
was happening in the cryptology community. From the 
middle of the 80's to the year of 1991 he had developed 
PGP (Pretty Good Privacy), an encryption program which 
was dependent on RSA, a strong encryption algorithm. 
The plan of releasing PGP as a shareware was not 
possible due to a patent on the RSA technology. PGP's 
inventor Phil Zimmerman claimed that he had been 
offered a free license from the owners of the RSA patent. 
But they denied that the case was so. In the same time it 
suddenly seemed that all encryption scheme, licensed or 
not, should be criminalized by the American government. 
Phil had put in years of work with PGP and had great 
debt to pay and felt desperate. He decided that PGP had 
to be spread to as many people and as fast as possible. He 
rewrote the conditions of the program to General Public 
License (GPL). Thereafter he gave the first version of 
source code to a friend who put the code out on Usenet. 
This lead to three year long investigation of Phil 
Zimmerman for crimes against the weapon export laws of 
the USA. The American government dropped the charges 
against Phil and by this time PGP had grown to be a de 
facto standard in the area of encryption tools for 
computers. After the charges had been dropped Phil 
founded the company PGP Inc (www.pgp.com). For more 
information, see [1]. 
 



 

+RZ�3*3�ZRUNV"�
 
We will roughly describe in this part the way PGP works. 
As PGP provides encryption scheme, it uses encryption 
techniques. Those techniques can be classified into two 
categories: symmetric and asymmetric. We describe the 
principles that characterize those kinds of schemes, 
explain how they can be used and in which conditions. 
That will allow us to explain why and how they are used 
in PGP. We have the same procedure for the digital 
signing feature of PGP. This uses hash functions. So we 
explain the general principle of digital signing and we 
then explain how it is used in PGP. For those parts we 
provide examples as well. For more information about the 
basics of cryptology theory, refer to [2]. Refer to [3] for 
the principles of PGP scheme.  
 

6\PPHWULF�HQFU\SWLRQ�
 
Encryption is the transformation of data to a form in 
which it is impossible to read without the appropriate 
knowledge of the key. In symmetric encryption key only 
one key is used for both encryption and decryption.  
 
The goal of using encryption is to keep a conversation 
private. If you talk in terms of computer security, the goal 
is to achieve confidentiality and integrity. Confidentiality 
would mean to keep the conversation private to others 
who may be listening and integrity would be the 
assurance that the unauthorized users do not alter the 
message. 

 

)LJXUH���

This method requires the key to be sent over a secure 
medium/channel to be effective. It would be a good idea 
not to send the key over the Internet. The benefit with 
symmetric encryption is that it is much faster than the 
asymmetric encryption. The drawback is that it is 
required to send the key in a secure way (over a secure 

channel). [Figure 1] gives an illustration of symmetric 
encryption. 
 
Some examples of cryptographic techniques would be 
IDEA, 3DES, CAST. 
 

,'($�,QWHUQDWLRQDO�'DWD�(QFU\SWLRQ�$OJRULWKP�
IDEA Operates on 64 bit plaintext blocks and uses a 128-
bit key. A 64 bit input block is divided into 4 blocks 
which becomes the input blocks of the first round of the 
algorithm. The total number of rounds is 8. In each round, 
the four sub-blocks are XOR:ed, added, and multiplied 
with one another and with 16-bit sub-blocks of key 
material. Between each round the second and the third 
sub blocks are swapped. Its speed is comparable with 
DES. 
 

'(6�'DWD�(QFU\SWLRQ�6WDQGDUG�
DES became outdated since the computer power is 
regularly increasing. DES was defined in 1976. It was 
built upon an algorithm from IBM, which was called 
Lucifer. DES is a block cipher, which means that the it 
operates on a fixed-length block of plaintext and converts 
it into a block of cipher text of the same size by using the 
secret key. In DES, the block size for plaintext is 64 bits. 
The length of the key is also 64 bits but 8 bits are used as 
parity bits. The key length used is therefore only 56 bits. 
Decryption is done by applying the reverse 
transformation to the block of cipher text using the same 
key.  
 
The encryption process of DES is as follows: 
The block of 64 bits plaintext is split in 2 halves (L0, R0), 
each of the halves is 32 bits long. DES also uses the 56-
bit key to generate 16 keys of 48 bits each (Ki). These sub 
keys are used in 16 rounds. In each round the function F 
is applied to one half using a sub key (Ki). Then the result 
is XOR:ed with the other half. The two halves are then 
swapped and the process is repeated. All the rounds 
follow the same pattern except the last one, where there is 
no swap. The final result is the cipher text (L1, R1). So the 
plaintext (L0, R0) us transformed to the encrypted (L1, 
R1). 
 
Decryption process of DES: 
Decryption uses the same principles as encryption. The 
input is instead (L1, R1) which will generate the plaintext 
(L0, R0). The input keys are applied in reverse order. 
Other than that it is the same process as encryption. 
 



 

3DES (or triple DES) is a further development of DES. In 
3DES 3 stages of DES is used with a separate key for 
each stage. So the key length in 3DES is 168 bits. 
 

$V\PPHWULF�(QFU\SWLRQ�
 

�

)LJXUH���

 
Public-key encryption [Figure 2] (also called asymmetric 
encryption) involves a pair of keys -one public key and 
one private key- associated with an entity that needs 
authentication and encryption. Each public key is 
published, and the corresponding private key is kept 
secret. Data encrypted with your public key can be 
decrypted only with your private key. You can freely 
distribute a public key, and only you will be able to read 
data encrypted using this key. In general, to send 
encrypted data to someone, you encrypt the data with that 
person’s public key, and the person receiving the 
encrypted data decrypts it with the corresponding private 
key. It is computationally infeasible to deduce the private 
key from the corresponding public one. 

56$�
RSA works in a fairly simple way. First you have to 
generate your private key and your public one. This takes 
five steps: 
 
   1. Generate two large prime numbers, p and q 
   2. Let n = p*q 
   3. Let m = (p-1)(q-1) 
   4. Choose a small number e, co prime to m 
   5. Find d, such that de mod m = 1  
 
Then you just have to publish e and n as the public key 
and keep d and n as the secret key. 
 
The encryption formula is C = P^e mod n where C is 
the cipher text and P is the plaintext. To decrypt, you 
perform: P = C^d mod n 
 

'LIILH�+HOOPDQ�
Alice and Bob select two numbers, q and n. Then Alice 
selects the secret number xa. Bob selects the secret 
number xb. From the two public numbers, q and n, and 
her secret number xa, Alice calculates ya and sends the 
number to Bob. Using the same two public numbers, q 
and n, and his secret number xb, Bob calculates yb and 
sends the number to Alice. Alice and Bob have completed 
step one of the Diffie-Hellman process. 
 
Alice calculates ya using the formula: 
 

ya = (n ^ xa) mod q 
 
This says, multiply n by itself xa times, then divide the 
product by q and save only the remainder. 
 
Alice sends the number ya to Bob. In the meantime, Bob 
applies the same formula to the numbers n, xb and q to 
calculate the number yb: 
 

yb = (n ^ xb) mod q 
 
Bob sends the number yb to Alice. They are ready for 
step two. 
Using the number yb received from Bob, Alice calculates 
 

ka = (yb ^ xa) mod q 
 
Again, this means multiply yb by itself xa times, and 
then save the remainder after dividing the product by q. 
When Bob receives Alice’s number ya he calculates: 
 

kb = (ya ^ xb) mod q 
 
Alice and Bob have completed the Diffie-Hellman 
encryption process. Alice applied her secret number xa to 
Bob’s value yb and calculated ka. Bob applied his secret 
number xb to Alice’s value ya and calculated kb. It turns 
out that ka = kb, a number now known to Alice and 
Bob, but to no one else. Even though Eve, the 
eavesdropper, may have been monitoring their 
communications studiously, Eve cannot discover the 
number ka easily.  
 

%HQHILWV�DQG�GUDZEDFNV�
The main benefit of using an asymmetric scheme is that 
you do not need a secure channel to exchange your 
private keys with other people. Moreover, the number of 
keys the system needs to make people communicate with 
each other is considerably reduced. Instead of having a 
private key for every possible couple-communicating 
people, you just need a couple of keys for every 
participant. It is also a great help for newcomers because 



 

everybody does not need to get a private key to talk with 
them; they just have to get the public key from a server. 
This will be freely available. 
 
PKI’s privacy and authentication measures work well for 
any two-way communication. Authentication also works 
well for one-to-many communication, such as signing a 
document or an email that many people will read. 
However, privacy is another matter. Remember that 
privacy works by having the sender encrypting the 
information with the recipient’s public key. What if there 
were multiple recipients on an email message that should 
be kept private? There is no simple answer for this. 
 
This drawback of the public key infrastructure will have 
consequences in PGP use. But the drawback which has 
the most influence on PGP design is that public key 
encryption produces a lot of overhead (at least the output 
size of this kind of scheme is the twice bigger than the 
size of the input) and the processing time is unacceptable 
when data size shows up to be too big. 
 

(QFU\SWLRQ�DQG�'HFU\SWLRQ�LQ�3*3 
�

(QFU\SWLRQ�
PGP uses both conventional (symmetric) and public key 
encryption. When a plaintext is encrypted PGP will first 
compress the plaintext (unless it is too few bytes). Data 
compression saves transmission time, disk space and it 
also strengthens the cryptographic security. Most 
cryptanalysis techniques exploit patterns found in the 
plaintext to crack the cipher. Compression reduces these 
patterns in the plaintext and thereby enhances the 
resistance against cryptographic attacks.  
 
PGP then creates a session key, which is secret and only 
used one time. This key is a random number generated 
from the keystrokes and random mouse movement 
collected from the user. The session key uses a 
conventional encryption algorithm to transform the 
plaintext into cipher text. When the data has been 
encrypted the session key is encrypted with the recipients 
public key. The encrypted session key and the cipher text 
are then sent over to the recipient [Figure 3]. 
 

'HFU\SWLRQ�
Decryption works in the reverse to encryption [Figure 4]. 
The receiver uses his private PGP generated key to 
recover the temporary session key. This key is then used 
to decrypt the conventionally encrypted cipher text. 
 

 

)LJXUH���

 
The combination of conventional and public key 
encryption combines the convenience of public key 
encryption with the speed of conventional encryption. 
Public key encryption provides a solution for key 
distribution. Conventional encryption is about 1000 times 
faster than public key encryption. Used together the 
performance will increase and key distribution issue is 
solved without a decrease of the security 
 

'LJLWDO�VLJQLQJ�
Digital signatures enable the recipient of information to 
verify the authenticity of the information’s origin, and 
also to check the integrity of the information. From a 

 

)LJXUH���



 

technical point of view, the digital signing of a message is 
performed in two steps [Figure 5]: 
 
In the first step of the process, a hash-value of the 
message (often called the message digest) is calculated by 
applying some cryptographic hashing algorithm (for 
example, MD2, MD4, MD5, SHA1, or other). The 
calculated hash-value of a message is a sequence of bits, 
usually with a fixed length, extracted in some manner 
from the message. All reliable algorithms for message 
digest calculation apply such mathematical 
transformations that when just a single bit from the input 
message is changed, a completely different digest is 
obtained. 
 
In the second step of digitally signing a message, the 
information obtained in the first step is encrypted with the 
private key of the person who signs the message and thus 
an encrypted hash-value, also called digital signature, is 
obtained. For this purpose, some mathematical 
cryptographic encrypting algorithm for calculating digital 
signatures from given message digest is used. This can be 
summarized with the following schema: 
 

+RZ�XVHU�IULHQGO\�LV�3*3"�
 
PGP is a tool for using cryptography. Since it is an 
advanced security program this will have influence on the 
usability issues. In this section we will first give a 
definition of usability of security software. Then we 
provide the results of our own experience of the use of 
PGP as well as the result of a test with inexperienced 
computer users from the article [4]. We divide this into 
two parts before and during the use of PGP.  
 
 
 

8VDELOLW\�LQ�VHFXULW\��GHILQLWLRQ�
 

Usability issues are specific when a software involving 
security has to be designed. [4] establishes a definition for 
usability in security software: 
 
"Security software is usable if the people who are 
expected to use it:  
 
1. are reliably made aware of the security tasks they need 
to perform;  
2. are able to figure out how to successfully perform those 
tasks;  
3. don t make dangerous errors; and  
4. are sufficiently comfortable with the interface to 
continue using it.” 
 
In order to start using PGP you probably have to know a 
lot on how cryptology is working. An essential part for 
the user to know about would be public key 
cryptography. It is shown [ref. Johnny] that inexperienced 
users with both computers and cryptology tried to encrypt 
messages with their own private key. Also PGP asks the 
user during the installation to generate keys. Maybe it is 
not clear to an inexperienced user that you have to 
generate keys in order to start using PGP. Knowledge 
about different types of keys would be good to have, 
since PGP have the option of letting the user choose. 
However using PGP would not be impossible for 
inexperienced users but their task could be made easier by 
a more usable interface. 
 

%HIRUH�WKH�DFWXDO�XVH��

*HWWLQJ�WKH�FRUUHFW�YHUVLRQ��
Before you start using PGP you have to download a copy 
of the freeware version (or a commercial one if you need 
the extra features). However there are here a couple of 
things to be aware of. First you have to find a copy on a 
website that is located on an official domain like pgp.com 
for instance. Since the name PGP is protected, it will be 
safe to download a copy from a source like this. If you 
download from some other link belonging to some private 
person or other Internet sources there is a chance that you 
could suffer from a Trojan horse as mentioned in the 
practical attacks section of this document. 
 
We first tried to use the freeware version of PGP 8.0 (the 
latest version of PGP) but when we tried to use it as a 
plug in of a web client, we were asked of paying for basic 
functions like encrypting or signing. After installing an 
earlier version (6.5.8) we could actually start using it. We 
got it from the website www.pgpi.com. 
 

 

)LJXUH���



 

.H\�VHWWLQJV�
Before actually generating the keys, you get some 
information about the public key structure. For people 
who got knowledge about this before, we think it is 
enough, but [4] shows that for average users, it can take 
more than that to be aware enough for using and 
managing keys correctly. Here we see that the key 
generation is not a problem by itself because the default 
settings are well adapted to average users but the problem 
is that they cannot understand from this phase what they 
are actually doing and why they are doing it. 
 
In the version that we used, the configuration for key 
generation was done in four steps: 
 
1. the choice of the key types 
2. the choice of the key size 
3. the choice of the key expiration 
4. the choice of a pass phrase 
 
In step 1, you have the choice between using DSS/DH 
(alias DSA/Elgamal) and RSA. Most of the users have 
DSS/DH. There is a clear explanation during this step 
justifying why DSS/DH is recommended as default. 
Another positive point for usability is the possibility to 
know about this specific problem by pushing the help 
button. By doing that you can get a more complete 
explanation. As a consequence, the amount of 
information does not frustrate you and, at the same time, 
you feel confident in your choice. It is also likely that you 
actually make the most suitable choice. 
 
In step 2, you can select the size of the key pair that you 
will use. By default, it is set to a reasonable size to both 
keeping good security for most users (who are not 
supposed to be the target of heavy cryptanalytic 
structures) and staying small enough not to slowing 
encryption too much. The message from Philip 
Zimmerman might not be very useful as most of the 
people do not know whom he is but the content is clear 
enough to choose the key size without problem. 
 
We have the same comments for step 3. We may add that 
the default setting of an infinite expiring time can be 
dangerous for beginners who are likely to perform tests 
on the first keys they generate. As a matter of fact, for 
reasons that we will see below, they might not be able 
anymore to revoke the public key they are going to 
generate. So these testing keys lasting forever might be a 
source of "pollution" for the key server. It will be even 
worst if people send information with no longer used 
public keys. It is very likely that those messages will 
remain secret for good. 
 

Step 4 is more likely to be the cause for compromised 
security because it is a classic choice of password. Most 
of the users will choose bad quality pass phrases. 
However, a good point for PGP here is that it indicates 
graphically the quality of a pass phrase but it does not 
give any tip to the user for getting a good password. We 
will see that this choice for the password is crucial 
because it should be brute force resistant and easy to 
remember. For reasons that we see later, we think that the 
interface should warn the users to a greater extent on the 
importance of the choice of the password. 
 

&UHDWLRQ�RI�NH\�EDFNXSV��
Due to the lack of warning about the consequences of 
accidentally revoking a public key or deleting a private 
key, the user may not understand why it is crucial to 
create key backups. It is also a bad point that it does not 
recommend to make a backup elsewhere than the used 
hard drive because a system crash is always possible. 
Here the interface just proposes to make a back up of the 
keys, without even recommending the creation of those 
backups. 
 

'XULQJ�WKH�XVH�
 
As we saw in the definition of usability in security 
software, for a relevant use of PGP, users have to be 
aware of the tasks they have to perform for ensuring 
security. In the case of PGP, we think that users should 
know and realize the difference in using private and 
public keys. For example, to encrypt a message, users 
should use the public key of their recipient. Therefore, if 
they do not have already this key in their key ring, they 
should perform some actions to import it somehow. As 
we will see later, this is not always easy to do so. So, the 
users should be motivated for this task.  Here, we study if 
the way this version of PGP is designed allows the users 
to understand what they are actually doing and why they 
are doing it.  
 

7KH�JUDSKLFDO�GHVFULSWLRQ�RI�WKH�DFWLRQV�LQ�3*3�
[4] shows also that the icons used to represent the 
possible actions in the PGPTools are quite 
straightforward for novice users but they should be 
modified to give a better understanding to the user.  
[Figure 6] shows the principal icons that a user has to 
manipulate during the use of PGP. 
 



 

 

)LJXUH���

 
First, the icon for encryption button should be more 
helpful to distinguish between public keys and private 
keys (used actually to decrypt). The problem with the 
metaphor of the lock is that it could mislead the user to 
think that the same key is used both for locking and 
unlocking. So the user may think that it is the same key 
for both encrypting and decrypting. Actually, when we 
push this encrypt button we do not know with which key 
we are doing it. Is it crucial? Would it be worthy to use 
more sophisticated metaphors to give this level of 
understanding to the user, risking confusing the user 
looking for a button to simply encrypt? The answer to 
those questions relies on the possibility of giving this 
understanding somewhere else in the software. 
 
The same problem occurs with the signing button. It is 
even more problematic because the metaphor of the 
pencil does not link the signature with the use of any key. 
Users might not even realize that they use a key to sign 
(and as a consequence they are not aware of which key is 
used). The problem is also that this metaphor is one of the 
best for just giving the information about the nature of the 
action: signing. 
 

 

)LJXUH���

 

 

)LJXUH���

 
Figures 7 and 8 show the interface of plug in for both 
Eudora and Outlook Express. Concerning the 
decrypting/verifying button, things are getting worse 

because signature verification is not even represented 
graphically. This button with the open lock only refers to 
decryption. We encounter of course also the problem of 
knowing which key is used. 
 
In the Windows Outlook mail client plug in [Figure 7], 
there is the same button without any icon. Because there 
might be already a lot of buttons used in the window for 
composing a new mail, it might occur the user cannot see 
all the buttons at first. In this case, you should push a 
button to scroll down the hidden buttons.  
 
It would have been a good idea to group the PGP plug in 
buttons in Eudora [Figure 8] in a better way. Instead of 
spreading the PGP related icons out over the mail client 
as well as having different sizes of the buttons. Grouping 
the icons and using the same size would have been 
preferable. Another thing that would be better is to 
distinguish between verifying and decryption of messages 
with two buttons instead of one. �
 

 

)LJXUH���

 
Finally the first contact you have with PGP when you are 
not using an email client is a quick launch shortcut 
represented with a lock [Figure 9]. Clicking on it, you 
have the choice between two main modules: PGPTools 
and PGPKeys. They respectively correspond to the access 
to the usual possible actions offered by PGP like signing 
or encrypting and to the management of the keys. This 
idea of separating the two tasks is good but the icons used 
are not sufficient to infer this separation. The user may be 
disturbed by this choice because he/she might not 
understand at first the management of the keys is actually 
as important as the normal actions. 



 

 
(QFU\SWLRQ�GHFU\SWLRQ�SKDVH�

 

 

)LJXUH����

 

,PSRUWLQJ�WKH�NH\V�
To perform the action of encrypting you have to first get 
the key of the recipient. This is the point that caused us 
the most troubles. Even if you know the theory about the 
public key structure you might encounter difficulties in 
getting the right key to encrypt with. First if you are using 
the versions 2.x and less you are simply not able to 
encrypt a message to people using DSS/DH keys because 
this algorithm is not supported at all by those versions. 
Then, if you want to get the key of a user through a server 
you have to know on which server to search. There is no 
global public key searching tool that would consult all the 
servers. Once you finally ended up on the right server 
[Figure 10], other problems related to search by words in 
general might occur. We had the problem of having a too 
common name as user id. By just giving our first name, 
we could not easily retrieve our public keys on the server 
by searching by user id. Searching by email was not more 
successful for it was not giving any match. Several 
attempts proved it was not due to mistyping. The other 
search options like by key length and key value were not 
very useful since they appear like advanced user options.  
 
Then we tried to exchange our public keys by mail. With 
the Outlook software, this was quite difficult as even if 
we could copy and paste the key block from the key file, 
you have to keep the overhead messages -----PGP 
BEGIN---- and -----PGP END------ to be able to generate 
an asc file from it. You have also to give some obscure 
suffix (asc), which is far from average computer user 
skills. The simple copy and paste in the key management 
window from the email window, as indicated in the help 
documentation, was simply not working and generated an 
error message. Using Eudora we encountered less 

problem since we just needed to click on an asc file to 
import it to the key ring. 
 
[4] also stresses the fact that it is very difficult to 
understand the meaning of the difference in 
representation of RSA keys and DSS/DH keys. So if 
someone is using the two types of keys, one is likely not 
to know which key to use.  
 
Once we finally got the key needed to encrypt to a 
recipient, we used our mail client to send each other an 
encrypted message. The problem was that we did not get 
much feedback about what we were actually doing. [4] 
shows also that a user might send a message plaintext, 
assuming that encryption was automatically done. So just 
remember the fact the buttons may be hidden, we 
understand that the accidental sending of plaintext 
message is possible with PGP for inexperienced users. 
What we did to be sure it worked as we thought was to 
send a message to ourselves and then looked at it on our 
web-mail site. 
 
The encryption and signing buttons are not grouped 
together with the other PGP icons. They are also smaller. 
[Figure 11] 
 

 

)LJXUH����

56$� 'LIILH�+HOOPDQ� FRKDELWDWLRQ� LV� D� VRXUFH� RI�
SUREOHPV�
Originally, PGP used the RSA algorithm for encryption 
and signing. The versions after 5.0 use Diffie-Hellman. 
Most of the users nowadays use Diffie-Hellman. Those 
two algorithms use different types of keys. For 
compatibility reasons, the latest versions still support 
RSA, in the sense that one user is still able to use RSA 
keys to communicate with people using Diffie-Hellman. 
They just have to get his/her public RSA key. The RSA 
algorithm is also working in the last versions. But [4] 
shows this possible use of several types of keys leads to 
problems. 



 

First there is an obvious compatibility problem since the 
users of the first versions supporting only RSA might not 
be able to check a message signed with Diffie-Hellman. 
The logarithm is not implemented on their software. So 
one Diffie-Hellman user might sign with his private DH 
key. The recipient can only check RSA signed message. It 
is even trickier when you are sending signed messages for 
several mixed recipients. 
 

 

)LJXUH����

 
Secondly, the user should be conscious of the existence of 
the two types of key and should realize there is a 
compatibility problem. We saw before that it was already 
not easy to understand the difference of use between 
private and public keys. If there exists some extra 
distinction to make between types of public keys, we can 
be sure some users will be lost for good. When you have 
a look to the figure 10, you can see there is a difference of 
representation for RSA and Diffie-Hellman keys. Now 
imagine you are a novice user, who took the default key 
configuration without paying too much attention to the 
choice of the type of key. When you have a look to this 
difference of representation [Figure 12], you might take 
enough time to look into the documentation for forgetting 
what you were looking for.  
 
Third, some users may use different types of keys for 
being able to communicate with old versions users. As we 
just saw, it is difficult to know what is the type of a key 
and if you do not know there is a difference between keys 
it is even more annoying because you have to make a 
choice and you are not motivated for it. So in the best 
case, you choose the key that the recipient is used to 
receive message encrypted with. But you might choose to 
encrypt with the RSA key although you are DH 
compatible. The recipient would not understand why you 
would have chosen RSA encrypting and try to decrypt 
first with his DH private key. This can disturb even 
experimented users. 

 

3DVV�SKUDVH�UHODWHG�SUREOHPV�
To forget the pass phrase in PGP can be even more 
serious than in other secure systems because it encrypts 
messages with very strong algorithms. To forget the pass 
phrase can prevent you for good to access anymore a file 
that you would have encrypted. You can create a backup 
copy of the secret message/content but it is not the default 
settings. 
 

.H\�0DQDJHPHQW�
 

7RR� PXFK� LQIRUPDWLRQ� DW� WKH� EHJLQQLQJ� RI� NH\�
PDQDJHPHQW�
As default in key management we automatically get a 
group of users from the PGP inc like Phil Zimmerman. 
We did not choose to import them in our key ring. In 
addition to this, we think that there is too much 
information in the key rings display by default. The users 
who not have particular needs or who are not experts 
don’t need that. This is somewhat useless and may 
confuse a less experienced user. In the view menu this 
can be changed to only view the users, which we are 
communicating with. Therefore it is not the most serious 
problem. 
 

&KHFNLQJ�WKH�YDOLGLW\�RI�D�NH\��
A big issue in key management is to have information 
about the safety using the public key of someone we do 
not know. We have two ratings for helping us in decision-
making. The first rating is “validity”. It is a rating that 
users directly have an influence on. They set it according 
to their own experience of using the key they consider. 
They set it to “valid”, for example, if they have tried the 
key and they have the proof it is a reliable one. This 
parameter says how sure the user is that using this key is 
safe. The second rating is “trust” and indicates how much 
faith the user has in the key from the information of how 
many users signed it and who signed it. The number of 
other users certifying that the key is valid influences this. 
But it is the user who actually sets this rating. That is why 
it is rather confusing. 
 
[4] shows that this system of “web of trust” may appear 
quite vague too inexperienced users. The words “validity” 
and “trust” can be interpreted in rather similar ways so it 
might be confusing to make the difference between the 
concepts behind and to know where the trust we can have 
for a key comes from. It can be from our own experience 
(validity) or from the other users ‘s experience. We do not 
know at first why we should trust a key. There is no 



 

information about those ratings except if we look deep in 
the documentation. We never get any message explaining 
the “web of trust” ’s scheme.  
 

'HOHWLQJ�WKH�SULYDWH�NH\�
You have the option of deleting your own private key. 
This option is rather dangerous because if you delete your 
private key, you will not be able anymore to decrypt the 
messages encrypted with your public keys. A message 
asking the users if he/she is really sure of deleting the key 
appears but the user is not informed about the 
consequences of what he/she may do. 
 

$FFLGHQWDO�SXEOLFL]LQJ�RI�WKH�NH\�
In PGP information is easier to add to a key server, than 
to remove. A user who is trying the program and is 
experimenting may end up generating a number of key 
pairs that are added to the key server without knowing 
that these keys cannot be removed if he/she forgets the 
corresponding pass phrase. As a matter of fact the keys 
can be revoked later giving the pass phrase. But without 
pass phrase it is impossible. The user can wait for them to 
expire but the key will remain on the server anyway. It is 
an idea to warn the user before uploading a key to a 
server. It is also better to have a default life length of a 
year during the installation of PGP.  
 
The consequence of this kind of error is that the user has 
to notify all his correspondents. However there is one 
solution to this problem. PGP suggests that the user make 
a backup revocation certificate, so that if the pass phrase 
is lost, the user is able to use that certificate to revoke the 
public key. This may be a useful thing, but probably only 
to the expert users of PGP. 
 

$FFLGHQWDO�UHYRNLQJ�RI�WKH�NH\�
If a user decide to revoke a key he should realize that the 
only way to undo the revocation is to restore the key is 
from a backup copy. Once the key is revoked, other will 
be unable to encrypt messages to this key. Here a 
message that explains to the user what is about to happen 
and that other will be unable to send encrypted messages 
to the user would be preferable. 
 

,QIOXHQFH� RI� WKH� XVHU�IULHQGOLQHVV� RQ�
VHFXULW\�
 
In the previous part about the user-friendliness of PGP, 
we saw that this software was not easy to use and that 
mistakes could easily be done. The problem is that those 

difficulties the user can encounter can affect directly the 
security of his/her data.  
 

6HQGLQJ�HQFU\SWHG�VHQVLWLYH�GDWD�
 
First, the user can seriously misunderstand the way the 
software works and the action he/she has to perform to 
encrypt data. For example, like we saw above, because of 
hidden button the user can simply forget to push encrypt 
button and send plaintext. 
 

7KH�ZHE�WUXVW�PRGHO�
 
The level of difficulty to understand the web of trust 
model is a factor of insecurity in the sense that a user who 
would be confused by it would not use it as a tool. As a 
consequence, those users who are generally beginners 
who would be more vulnerable to corrupted public key 
attacks. On the other hand they are more likely not to be 
the target of such planned attacks. 
 

)RUJHWWLQJ�SDVV�SKUDVH�
 
Forgetting the pass phrase could be dangerous for the 
access to archived files. As a matter of fact, to decrypt a 
file, you need both your private key and your pass phrase. 
We can imagine that after years, it would be easy to 
forget the pass phrase corresponding to the public key a 
file was encrypted with. Then the access to the file, 
because of the robustness of the encrypting algorithms, is 
seriously compromised. 
 

%DG�FKRLFH�IRU�SDVV�SKUDVH�
 
Like for all other security schemes, it is proven that most 
of the users will choose an easy to guess pass phrase so 
they can remember it more easily. We saw that the system 
helps a little bit the user to evaluate the quality of a 
password. But it is likely that the user is still not 
motivated enough to be careful enough for this choice. 
The software does not stress enough on this aspect during 
the key generation 
 

3UDFWLFDO�DWWDFNV�
In this part, we study the practical attacks that are 
possible to make against PGP. These are quite general in 
the sense they are not specific to only PGP. They mostly 
attack the environment of the user. For more information 
about those practical attacks, you can refer to [5], [6] and 
[7]. 



 

 
7URMDQ�KRUVH�DWWDFNV�

 
A trojan horse is a version of PGP, which has features 
unknown and unwanted by the user. The code of the 
software can be deliberately and maliciously modified to 
weaken the security for the user. 
 
The Trojan horse attacks can hold in different ways: 
 

- The Trojan horse could be hidden in the code 
of the binary patches ( like in the installation 
files or in some upgrade sources). One can 
distribute a weakened version over the 
Internet with the same name as the legitimate 
version. 

- It is possible to physically replace the 
legitimate copy with a weakened copy when 
the user is not present. 

- The "man in the middle attack" is possible: a 
malicious user can operate between an official 
website and a user who wants to download 
PGP. The malicious user would substitute a 
weakened version to the normal one. 

 
The possible malicious modifications would be: 
 

- The random number generation routine is 
modified so that it will produce predictable 
results. 

- The Session key routine could be modified so 
the same key is always used. IDEA, RSA or 
MD5 routines could be weakened. 

- Wipe routine could be modified to leave data 
remnants. 

- Messages could always be encrypted with an 
additional covert key. 

 
The countermeasures are to download your copy from 
trusted reputable source, compile your own source code 
and validate all signatures. 
 

2SHUDWLQJ�V\VWHP�DWWDFNV�
 

'HOHWHG�ILOHV�
If a file is deleted it is only the file allocation information 
that is changed, the contents of the file is still there on the 
hard drive of the computer and the contents still reside on 
the disk until it is overwritten by another file. There are 
many software packages available to retrieve files or parts 
of them when they are deleted. It is not only these files 
that are vulnerability. Some programs use temporary 
copies of a document as you work on it. The file is 

deleted when the session is finished. Users may not be 
aware that temporary files exist but if someone has access 
to the hard drive the contents of that file could be viewed. 
 
Wipe utilities is a feature of PGP that overwrites data 
several times before the file is deleted. This prevents the 
snoopers from using a file recovery tool to retrieve 
sensitive deleted file or scan a hard disk for information. 
 

6ZDS�ILOHV�
In Windows for example where swap files are used to 
make an effective use of the memory, data and code are 
written from memory to a cache file and then swapped in 
and out as necessary. All it takes is a copy of the swap 
file and a file editor then scanning through the bytes 
�
A solution would be to wipe the swap file before turning 
the computer off, install lots of memory and turn the 
swapping off. 
 

6ODFN�VSDFH�
DOS/Windows OS allocates disk space in clusters. Slack 
space is the space between the end of the physical file and 
the end of the allocated cluster. While a wipe utility 
overwrites the physical file, bytes in the slack space 
typically remain. 
 
When bits and plaintext is left on the hard drive this is of 
course a risk. What the eavesdropper does is simply to 
search the hard drive for a text string related to some 
secret/private information. Defragmenting the hard drive 
will not remove data stored in the slack space. The only 
option is to use a utility designed to wipe the unallocated 
bytes at the end of the clusters. 
�
The only countermeasure for this is to use a slack space 
eraser tool on a regular basis. 
 

.H\ERDUG�PRQLWRULQJ�
Routines of an operating system can be patched to capture 
keystrokes. The recorded keystrokes are then transmitted 
over the network or stored to disk. There are numerous 
keyboard-monitoring tools available on the Internet that 
could subvert a pass phrase. 
�
The solution here would be to use tools designed to 
protect against keyboard monitoring. 
 



 

1HWZRUN�DWWDFNV�
As the Internet continues to grow the threats to users 
connected to the WWW increases. The days when PC’s 
only where connected to a small network are in most 
cases over. Remote attacks launched over the Internet are 
now a realistic threat. This type of attack is very much 
likely to increase in the future. 
 

9LUXV�DWWDFNV�
If a virus infects a computer, and the virus sends 
information over the network then the damage is done. 
The virus could have a keyboard monitor feature or it 
could open connections to the infected computer that 
could allow other computers to connect to the infected 
computer. 
�
This problem can be addressed by using a virus checking 
utility and keep it up to date. 
 

%URZVHU�DQG�KRVWLOH�DSSOHW�DWWDFNV�
As the browsers is one of the most common tools used for 
today’s computer users, the risk of someone exploiting 
security flaws increases. The flaws could allow remote, 
unauthorized access of a users hard drive. These flaws 
could be used against PGP to. 

 
1) Steal a key ring 
2) Modify a key ring 
3) Install a Trojan horse 
4) Access plaintext files. 
 
While the vendor’s releases patches that address the 
flaws, not all users may be aware of the security problems 
with older versions of the browsers. 
 
As the companies are competing and rushing to release 
their new versions of browsers, many more bugs are seen 
than in a normal development life cycle. The more bugs 
that the software contains the greater the chance is that 
these bugs will lead to a security hole. 
 
The architecture of the mobile code programming 
languages provides a possibility of remote attacks through 
web page access. 
 
Even though the java security model offers a theoretical 
model named the sandbox to keep away the applets from 
access to the users file system security bugs have 
occurred. ActiveX is relying on a signature based trust 
model where the users common sense is the 
countermeasure against malicious code. Also one trusted 
program might be designed to let all the other ActiveX 

programs have access to the users file system and thereby 
get access to some sensitive files. ActiveX there provides 
no real security apart from the common sense of the 
users. 
�
Here we advice several solutions for defeating malicious 
mobile code: 
 

- Download the latest browser patches for 
security. 

- Do not trust web pages that contain mobile 
code. 

- Use two computers: One for secure 
information and is isolated from the network 
and the other the browse the WWW 
containing unsecured information.  

 
7HPSHVW�DWWDFN�

 
The word tempest includes the study of electromagnetic 
emanations and the countermeasures required for 
preventing leakage of information. For example, CRT 
monitors give off electromagnetic emanations. Under the 
right conditions with the right equipment, it would be 
possible to recreate the contents of the screen from a 
remote location. With this type of attacks you would be 
able to see the pass phrase when it is visible on the 
screen. As a matter of fact, because it may be difficult to 
type correctly a long pass phrase, PGP offers the 
possibility to the user to enter the pass phrase in an 
unmasked way. So the pass phrase can actually be 
displayed on the screen. That is why this type of attack 
could be dangerous for PGP users. However, for the 
majority of the users, tempest attacks are not a realistic 
threat. It is also very difficult to recreate a captured 
computer screen. Only if the target computer has high 
value information and the eavesdroppers have access to 
very high amount of resources there may be a concern 
about tempest attacks. But if the user wants to protect 
against that type of attack, he/she should use common 
radio frequency shielding techniques and components to 
reduce electromagnetic leakage from the PC, peripherals 
and cablings and purchase tempest-shielded hardware. 
 

1RQ�WHFKQLFDO�DWWDFNV�
 
Technology is not the only solution to security problems, 
consider social engineering and the attacks that are using 
people, which are usually more effective and cost 
efficient. So users should not underestimate the human 
element. Think of threats and bribery, breaking and 
entering theft, and misplaced thrust. All these are very 
realistic risk and could compromise the security of a 
computer system including PGP. 
�



 

Counter measures consist in not writing the pass phrase 
down neither entering the pass phrase in front of anyone 
and keeping key rings on a floppy disk in a secure 
location.  
 

&U\SWDQDO\WLF�DWWDFNV�
 
We will briefly study here the robustness of the 
algorithms used in PGP to see if any cryptanalytic attack 
is possible.  
 

%UXWH�IRUFH�RQ�V\PPHWULF�FLSKHUV��
 
The size of IDEA keys is 128 bits. One has to search for 
half of the key space: 127bits. this is big enough to 
prevent anyone from even hoping to success. 
 

%UXWH�IRUFH�RQ�DV\PPHWULF�FLSKHUV�
 
Here we present the different forms of attacks on 
asymmetric ciphers. 

%UXWH�IRUFH�IDFWRULQJ�DJDLQVW�56$�� �
Let’s recall the math’s of RSA, we have: 
   1. p and q are two large prime numbers 
   2. n = pq 
   3. Let m = (p-1)(q-1) 
   4. e, co prime to m 
   5. d, such that d*e = 1 mod m 
An attacker has access to the public key. So he knows 
what is e and n. He wants d. The difficulty is to factor n 
in p and q. Trying to deduce (p-1)(q-1) from e*d = 1 mod 
m is even more difficult. For factoring n, different algo-
rithms exist. 
The Trial Division consists in trying all the primes 
numbers less than sqrt(n). This is the least efficient 
solution. 
"Quadratic Sieve (QS)", "Multiple Polynomial Quadratic 
Sieve (MPQS)", "Double Large Prime Variation of the 
MPQS", "Number Field Sieve (NFS)" are faster 
algorithms to solve the problem. NFS is the fastest one. 
 
We can present the times taken for breaking some keys: 
.H\�6L]H�� 0,36�\HDUV�UHTXLUHG�WR�IDFWRU�

512  30,000 

768  200,000,000 

1024    300,000,000,000 

2048      300,000,000,000,000, 000,000 

 
A MIPS-year is a 1,000,00 instructions per second 
computer running for one year. So we see that RSA still 

can be considered as secure enough for most users even if 
technologies are more powerful years after years. 
 

'LVFUHWH�ORJ�DWWDFN�DJDLQVW�'LIILH�+HOOPDQ�
The complexity of this type attack is comparable to the 
brute force factoring of RSA 
 

&KRVHQ�FLSKHU�WH[W�DWWDFN�RQ�56$�
We can imagine the following scenario: an attacker Eve 
has access to a covert channel between Alice and Bob. 
Eve can listen to all the encrypted messages that Bob 
sends to Alice. When Bob sends the cipher text c, we 
have, if p is the plaintext: c=p^e mod n. 
So Eve, who knows n, decides to choose a number r<n. 
Then she computes x=r^e mod n. She multiplies x 
modulo n with the cipher c she got from the covert 
channel, and she gets y. Finally she computes t=r^(-1) 
mod n, the multiplicative inverse of r mod n, which will 
be useful after a while. 
She just has to ask to Bob to sign the message. By doing 
this, he performs the decryption for Eve. As a matter of 
fact, he does: y^d = (r^e)^d *(c)^d mod n= r*p mod n. 
Then Eve just has to perform:  t * (r*p) mod n =p mod n 
and she has access to p. A more precise description of 
chosen- cipher text attacks is done in [8] 
 

7LPLQJ�DWWDFNV�
[7] shows that cryptographic operations take discrete 
amounts of time. An attacker can exploit timing 
differences in RSA and Diffie-Hellman operations. 
 

$WWDFNV�RQ�0'��

%UXWH�IRUFH�DJDLQVW�0'��
We can draw the same conclusions as for the brute force 
against IDEA. The key size is the same: 128 bits. 
�

%LUWKGD\�DWWDFNV�RQ�0'��
It is proven there is an acceptable probability to find two 
messages which give the same output through any given 
hash function. This can be exploited by the attacker to 
break the signing scheme. Given n inputs and k possible 
outputs, (MD5 being the function to take n -> k) there are 
n(n-1)/2 pairs of inputs. For each pair, there is a 
probability of 1/k of both inputs producing the same 
output. So, if you take k/2 pairs, the probability will be 
50% that a matching pair will be found. If n > sqrt(k), 
there is a good chance of finding a collision. In MD5’s 
case, 2^64 messages need to be tried. This is not a 
feasible attack given today’s technology. If you could try 



 

1,000,000 messages per second, it would take 584,942 
years to find a collision. (A machine that could try  
1,000,000,000 messages per second would take 585 
years, on average.) 
 

&RQFOXVLRQV�
 
PGP does not fulfil the usability requirement for security 
software. As we experienced by ourselves and also by 
reading Whitten’s investigations, we realized that PGP is 
not user-friendly software.  
 
First, key management is really the key problem in PGP. 
Just to get the public key of a correspondent into our key 
ring is a very difficult task, even for expert users. The 
web of trust model is also hard to understand. A 
theoretical background is required to manage this 
software in a proper way. So if you are a normal user, you 
have to get this needed knowledge from the software. 
This is another big issue in PGP. The interface in mail 
plugins could be revised in order to give the user a better 
understanding of what is going on. But this problem 
remains of teaching users about encryption/decryption 
concepts remains open. 
 
Even if PGP is not that user-friendly, it is the most 
relevant attempt to provide cryptography to a broader 
audience. We believe that it would be possible for novice 
computer users to grasp the main functionality and 
principles if they read some documents about 
cryptography concepts like public keys. They can try to 
collaborate in learning the software to start sending 
signed/encrypted messages to each other. 
 
PGP encounters security problems that all software are 
likely to have. PGP is just a strong link in the security 
chain. Most of the security issues it encounters are related 
to the use environment Cryptanalytic attacks are quite 
hard to perform compared to practical ones. The users 
mistakes are likely to be the most dangerous source of 
problems for security. 
 



 

$SSHQGL[���
,QWHUYLHZ� ZLWK� DGYDQFHG� FRPSXWHU� XVHUV� ZKR�

ZRUNV�ZLWK�FU\SWRORJ\�
Q: What kind of user are you? 
A: Advanced computer users, good knowledge in 
cryptology. 
 
Q: Which OS are you using? 
A: Unix Solaris 
 
Q: Why did you start to use PGP? 
A: To show an example to make people start using PGP 
   Continuing for sending certain mail, and signed emails. 
 
Q: Which version are you using? 
A: GnuPG 1.2.3, Enigmail (GUI), and Mozilla mail 
client. 
 
Q: Installation 
A: Pre installed by admin 
 
Q: Did the Configuration go well? 
A: Some problems with signing keys, an issue about a 
user using  
   PGP and we used GPG. 
    
Q: How long time did it take to get GPG working, and 
that you could do what you want with the software? 
A: Maybe one week, but effective time a couple of hours. 
 
Comments 
New buttons in the graphical interface lets the user easy 
encrypt/decrypt mails.  
 
Q: Which features of PGP are you using? 
A: Sign email primary use, encryption some times with 
sensitive files. 
 
Comments from the interview: 
The users do not use any key server. They send their 
public key by mail to each other. GPG checks 
automatically the integrity of the mails. Sometime they 
don’t fully understand how PGP works even if they are 
experts in cryptology. 
 
Q: Do you change your keys often? 
A: No, except when we forget the password. Yes once a 
year. 
 
Q: What kind of encryption do you use? 
A: Default. Diffie-Hellman, key length 1024. 
 
Comments 
They know only one user using RSA 

They don’t check public keys of other users. 



 

 

5HIHUHQFHV�
 
[1] B. Leuf 
6HNUHWHVV��NU\SWHULQJ�RFK�3*3�
Datormagazin 
2001 – 08 
 
[2] W. Trappe, L. Washington 
,QWURGXFWLRQ�WR�&U\SWRJUDSK\�ZLWK�&RGLQJ�7KHRU\�
2001 – 09 
Prentice-Hall; ISBN: 0130618144 
 
[3] Network Associates, Inc. and its Affiliated &RPSDQLHV�
+RZ�3*3�ZRUNV, 
Chapter 1 of the document Introduction to Cryptography 
in the PGP 6.5.1 documentation 
URL: http://www.pgpi.org/doc/pgpintro/ 
1999 
 
[4] A. Whitten, J. D. Tygar, 
:K\� -RKQQ\� FDQ¶W� (QFU\SW�� $� 8VDELOLW\� (YDOXDWLRQ� RI�
3*3�����
Proceedings of the 9th USENIX Security Symposium, 
1999 
 
[5]  Joel McNamara,  
3UDFWLFDO�$WWDFNV�RQ�3*3 
URL: http://www.privacy.com.au/pgpatk.html,  
1997 - 08 – 07 
 
[6]  Philip Zimmermann,  
URL:http://www.stud.uni-
hannover.de/stud/serv/pgpdoc/pgpdoc2/pgpdoc2.html 
1994 -11 – 04 
 
[7] W. Unruh, 
3*3�$WWDFNV�
URL: http://axion.physics.ubc.ca/pgp-attack.html 
1996 – 02 
 
[8] K. Jallad, J. Katz, B. Schneier,  
,PSOHPHQWDWLRQ� RI� &KRVHQ�&LSKHUWH[W� $WWDFNV� DJDLQVW�
3*3�DQG�*QX3*, 
Information Security Conference 2002 Proceedings, 
Springer-Verlag. 
 


