

TDDC 03 Project: Spring 2004

An Evaluation of RBAC Policy Languages
for Web Applications

Jing Zhang
Xiaojie Shen

Supervisor: Almut Herzog

An Evaluation of RBAC Policy Languages for Web
Applications

Jing Zhang
Institute of Technology
Linkoping University

SE-581 83 Linkoping, Sweden
jinzh122@student.liu.se

Xiaojie Shen
Institute of Technology
Linkoping University

SE-581 83 Linkoping, Sweden
xiash506@student.liu.se

ABSTRACT
The rapid growth of the Internet and a range of web applications
bring the urgency of security issues, especially for access control.
Role-based Access Control (RBAC) is recognized as a superior
alternative and less error-prone to traditional discretionary and
mandatory access controls. In this paper, we examine the
representation of RBAC policies in web applications under
distributed environments. Firstly, several important requirements
and features for RBAC policy languages, especially with the
consideration of web applications are identified. They are
expressive, inter-operable, applicable to heterogeneity, flexible,
manageable, and efficient. Then we categorized the existing
RBAC policy languages into four categories: XML-based, UML-
based, Object-oriented programming languages, and Constraint
logic languages. Each category is carefully examined and
evaluated, and a comparison with respect to the requirements is
given. We conclude with recommendations for XML as a basis
for a RBAC policy language.

Keywords
Policy language, RBAC, Web applications

1. INTRODUCTION
The rapid diffusion of the Internet and the growth of its key
enabling technologies are producing a significant growth of the
demand and unprecedented opportunities for web applications.
Security issue is getting more concerns. Particularly there are
great demands on access control services, which need to be
deployed in interconnected, and interactive environment. Users of
the system must be authenticated to be legitimate users, and must
only be permitted to retrieve and modify data in the ways that are
authorized by an access control policy.

Role-Based Access Control (RBAC) has emerged as a proven and
superior alternative to traditional discretionary and mandatory
access controls. RBAC greatly simplifies the management of
permissions by associating them to which users are assigned,
thereby acquiring the roles’ permissions [1]. Another advantage of
RBAC is being “policy-neutral”, which means that a sophisticated
RBAC-service may be configured to enforce many different
access control polices including DAC- or MAC-based policies [2].
RBAC is receiving constant interest in both research and industry,
but most of the work is about RBAC models and frameworks, or
implementations. Little attention is given to managing and
expressing access control policies, especially for web applications
in distributed environment. For web applications, beyond

providing strong protection, security systems must also be flexible
and promote inter-operability between different domains of trusts
under distributed environments. The nature of web applications
like transaction and activity intensive, written in a variety of
languages, running in different operating systems, and rapid
changes determines the security system must be efficient,
manageable, and flexible. There are special requirements for
policy control for web applications. The purpose of this paper is to
examine and evaluate existing policy languages for RBAC in web
applications.

2. ROLE-BASED ACCESS CONTROL
(RBAC)
Role-Based Access Control (RBAC), a policy neutral access
control mechanism, is widely known as being an inherently easier
and less error-prone way of administrating access control policies,
as compared to traditional discretionary and mandatory access
controls. The basic principle of RBAC is the separation of
permission assignments (PA) and user assignments (UA) [3]. With
RBAC, permissions are assigned to roles and roles are assigned to
users. A user thereby acquires the permissions assigned to that
specific role. As roles represent organizational responsibilities and
functions, a role-based model directly supports arbitrary,
organization-specific security policies. Since permissions are de-
coupled from users, changes to permission or user assignments
have minimal isolated impact on administration. Within an
organization the description of roles tend to change significantly
slower than the assignment of individuals to these roles.

The RBAC security model is only an abstract and general model;
there are many interpretations of it and it is a mechanism that can
implement a variety of policies. The central concepts of RBAC
are users, roles and permissions. RBAC policies such as Role
assignment, Role authorization, Permission assignment, Role
hierarchy, constraints, need to be represented in security systems.
RBAC policy language is the language used to represent access
control policies and to express constraints. Currently there is no
standard for RBAC policy language, people implement RBAC in
different ways using different languages.

3. REQUIREMENTS FOR RBAC POLICY
LANGUAGES IN WEB APPLICATIONS
For web applications in distributed environments, beyond
providing strong protection, the security systems require more
features, thus there are more requirements for policy languages.
We have identified the following important features:

Expressive. As a policy language, one general requirement is
expressiveness, that is, it can express or represent the policies
clearly and precisely. Although it is not specific for RBAC policy
languages in web applications, we include it here as the basic
requirement or prerequisite when we evaluate a policy language.

Inter-operable. In web applications, usually under distributed
environments, authorization often requires cooperation among
separate, autonomous administrative domains. Maintaining a
consistent authorization strategy requires each system to maintain
at least some knowledge of its potential collaborators throughout
the entire system. Also any authorization decisions that span two
or more domains require the coordination of all participants [5].
Thus the policy languages should be inter-operable, able to work
across domains.

Applicable to Heterogeneity. The distributed environment means
heterogeneous environments, with different operating systems,
different management tools. The web applications can be written
in a variety of languages. The policy languages need to be
applicable to these environments.

Flexible. In nowadays’ information systems, especially in web
applications, changes happen very frequently. The changes can
mean access control policies, or technologies in use, or security
mechanisms. So the languages need to be flexible enough to adapt
to these changes.

Manageable. Often in a large networked systems, the security
administration is very complicated, costly and error prone. It
indicates that the policy languages should be manageable for
administration.

Efficient. In the web application environments, the activities and
transactions are very intensive. The process of authenticating and
authorizing needs to be fast. The policy languages are desirable to
be efficient.

4. POLICY LANGUAGES
This section is an evaluation of existing policy languages.
Currently there are policy languages for different developing
environments, for different applications, and for different
operating systems. We roughly classify them into four categories:
XML-based, UML-based, Object-oriented programming
languages, and Constraint logic programming languages.

4.1 XML-based
As a document markup language, XML (eXtensible Markup
Language) is being widely used on the Internet or in web
applications. There are also quite a lot of work and research being
done to exploit XML as a security policy language, in RBAC for
example. Vuong, Smith and Deng [3] present their work in using
XML to implement RBAC policy. Chandramouli [8] describes an
application of using XML to represent the RBAC policy.

XML is designed as a meta-language for Internet use. Its
objectives are to overcome the rigid HTML tagging scheme while
providing web users with a means for defining their own domain
specific tags and attributes. In implementing RBAC, XML
Document Type Definition (DTD) is used for representing the
schema of a RBAC model and a conforming XML document will
contain the actual RBAC-based access control data. Then

normally some Java program is developed to read the data in the
XML documents.

For example, Vuong, Smith and Deng [3] model each RBAC
component as an XML element:
A User is represented as
<!ELEMENT USER EMPTY>

<!ATTLIST USER NAME ID #REQUIRED>

The above syntax defines a new XML tag of type USER with a
required NAME attribute of type ID that by default is unique.

A Role is represented as
<!ELEMENT ROLE EMPTY>

<!ATTLIST ROLE TITLE ID #REQUIRED>

A Permission is implementation-specific; therefore, it is modeled
as an abstract representation that requires definition when defining
policies. A Permission is represented as
<!ELEMENT PERMISSION EMPTY>

<!ATTLIST PERMISSION %DEFINITION;>

A Permission Assignment assigns a set of permissions to a role; it
is represented as
<!ELEMENT PERMISSION_ASSIGNMENT EMPTY>

<!ATTLIST PERMISSION_ASSIGNMENT

ROLE IDREF #REQUIRED

PERMISSIONS IDREFS #REQUIRED>

A Role Assignment assigns a set of users to a role; it is represented
as
<!ELEMENT ROLE_ASSIGNMENT EMPTY>

<!ATTLIST ROLE_ASSIGNMENT ROLE IDREF
#REQUIRED

USERS IDREFS #REQUIRED>

A Role Hierarchy is represented as a set of INHERITS elements,
each of which associates a set of junior roles to a senior role:
<!ELEMENT INHERITS EMPTY>

<!ATTLIST INHERITS FROM IDREFS #REQUIRED

TO IDREF #REQUIRED>

With the defined RBAC components as XML elements, then an
instance of an RBAC model is the composition of various RBAC
components. For example, an RBAC1 security model is
represented as a production rule.
<!ELEMENT RBAC1_MODEL (USER+, ROLE+,
INHERITS*,PERMISSION+,
PERMISSION_ASSIGNMENT*, ROLE_ASSIGNMENT*)>

A sample XML representation of a hypothetical RBAC policy is
given as follows:
<?xml version="1.0" encoding="UTF-8"
standalone="no" ?>

<!DOCTYPE RBAC1_MODEL SYSTEM

"htpp://www.cs.fiu.edu/~nvuong01/RBAC1_MODEL
.dtd">

<RBAC1_MODEL TYPE_NAME="RBAC1_POLICY">

<!-- User set definition -->

<USER NAME="a"></USER>

<USER NAME="b"></USER>

...

<!-- Role set definition -->

<ROLE TITLE="Caregiver"></ROLE>

<ROLE TITLE="Nurse"></ROLE>

...

<!-- Role hierarchy definition -->

<INHERITS FROM="Caregiver"

TO="Registrar"></INHERITS>

<INHERITS FROM="Caregiver"

TO="Nurse"></INHERITS>

...

<!-- Permission set definition -->

<PERMISSION PERMID="P1"

OPERATION="RW" RESOURCE="AMD">

</PERMISSION>

<PERMISSION OPERATION="R" PERMID="P2"

RESOURCE="PST"></PERMISSION>

...

<!-- Permission assignment -->

<PERMISSION_ASSIGNMENT

ROLE="Psychiatrist"

PERMISSIONS="P1">

</PERMISSION_ASSIGNMENT>

<PERMISSION_ASSIGNMENT

PERMISSIONS="P2 P4 P6 P10 P11"

ROLE="Physician">

...

<!-- Role assignment -->

<ROLE_ASSIGNMENT ROLE="Psychiatrist"

USERS="a"></ROLE_ASSIGNMENT>

<ROLE_ASSIGNMENT ROLE="Technician"

USERS="d f"></ROLE_ASSIGNMENT>

...

</RBAC1_MODEL>
XML, as a structured language, is very expressive and flexible.
And if properly designed, a structured language is closer to natural
language than any other method for representing security policies
[3], thus makes it more readable. It provides a very accessible
notation for expressing the semantics of RBAC policies. Also
XML is a platform independent data exchange format; combined
with Java program, it has no problem with different platforms and
inter-operability. So it is possible for web applications on multiple
servers under distributed environment. Depending on different
DTDs, the same XML document can be applied to different
models or schemas. So it is quite flexible. With the proliferation of
XML in the industry, there is a high probability that future
systems will be equipped with an XML parser.
Although XML format is very simple, the writing and maintaining
of the documents are very tedious. Currently there are no standard
and satisfied tools for it. So the administration work is quite error

prone and difficult. This can be a drawback for XML as a policy
language used for an enterprise that requires large and complex
security policies.
On top of XML, OASIS ratified XACML (eXtensible Access
Control Markup Language), a standard, general-purpose access
control policy language [5]. It was designed to accommodate most
system needs, so it may serve as a single interface to policies for
multiple applications and environments. In [9], PERMIS provides
a Privilege Management Infrastructure (PMI), uses X.509
Attribute Certificates to specify subject attributes such as roles
and permissions. The RBAC policy is in XML format to control
access to all the targets within the policy domain and is composed
of a number of sub-policies. The PERMIS project is currently
investigating the use of XACML as a core language to replace
parts of their proprietary policy language. XACML, as the
standard, can be very promising to support RBAC in distributed
systems under heterogeneous environments.

4.2 UML-based
In recent years, UML (Unified Modeling Language) has emerged
as a de facto standard for object-oriented modeling of software
intensive systems. It is also being used as an approach to represent
RBAC policies.
Basin, Doser and Lodderstedt [6] propose the UML-based security
modeling language SecureUML for modeling access control
requirements that generalized RBAC. Figure 1 presents the
metamodel that defines the abstract syntax of SecureUML. The
types User, Role, and Permission and the relations
UserAssignment, PermissionAssignment, and RoleHierarchy are
directly adopted from RBAC standard.
There are also some additions. An AuthorizationConstraint is a
logical predicate that is attached to a permission by the association
ConstraintAssignment and makes the permission’s validity a
function of the system state. The types Resource and Action
roughly correspond to the terms Operation and Object. Each
resource offers one or more actions and each action belongs to
exactly one resource, which is denoted by the composite
aggregation ResourceAction. There are two categories of actions
AtomicAction and CompositeAction. Atomic actions are low-level
actions that can be mapped directly to actions of the target
platform. While composite actions are high-level actions that may
not have direct counterparts on the target platform. Additional
constraints are given using expressions in the Object Constraint
Language (OCL). (OCL is used to specify constraints on objects
in UML. It has the power but not syntax of the Lower order
Predicate calculus plus simple set theory.)
An example policy is shown as the Figure 2. Member and
GoldMemeber are the roles, they have several permissions to the
process Ordering. The up left corner is the constraint.
Epstein and Sandhu [10] also present the usage of UML to define
RBAC models in an existing RBAC Framework for Network
Enterprises (FNE). It is quite similar to the above, only they use a
different UML notation and document application constraints as
preconditions in plain English, whereas in SecureUML, OCL is
used.
In most cases, UML is able to represent an RBAC cleanly. It can
be expressive enough to naturally and concisely describe complex
security policies. Compared to other languages, UML is more
straightforward and visually clear. Also if the UML generator can

create more detailed code, it can save programming time. It
enhances portability since models are technology independent and
hence the migration to new technologies can be realized by
changing the generation rules, not the models themselves. In a
wider view, it integrates security models with UML process
models, which closes the gap between software engineering and
security engineering. This means that security can be tightly
integrated into a system during design, rather than after-the-fact,
increasing the security and maintainability of the resulting system
[6].
But there are some weaknesses in using UML to document RBAC
models [10]. The expressiveness of the language still has some
room for improvements. Although there is a check on the UML
syntax, there is no logic or semantic check. It is solely the
designers’ responsibility to accurately depict the model.

4.3 Object-Oriented Programming Language
In the last few years, Java is becoming one of the most popular
programming languages. Its advantages like platform independent,
object-oriented have made it quite successful in web applications.
Besides its own security features and services, Java is also
explored to implement other security policies like RBAC policies
[11] [12].

Giuri [11] [12] presented a JRBAC-99 (Java RBAC) model, which
takes advantage of a Java security model in JDK 1.2 based on the
concept of protection domain, and the JAAS (Java Authentication
and Authorization Service) to implement RBAC policies for Java-
based web applications. There are two new Principal
implementations defined: UserPrincipal and RolePrincipal. The
permission-role-assignment (PRA) and permission-user-
assignment (PUA) relationships are directly implemented using
the JAAS Policy. To implement the role-role-assignment (RRA)
and the user-role-assignment (URA) relationships it is necessary
to provide a new RolePolicy class, which can use a file
represented with a syntax that is similar to the JAAS policy file
syntax:

grant [role "role-name" | user "user-name"]

{

role "role-namel" [default];

. . .

role "role-nameN" [default];

};
To manage role activation, the RoleController class provides the
following methods:
- reset(): disables every role;
- resetDefaults(): disables every role and enables default roles

only;
- enableRole(String roleName): adds the role identified by

roleName to the set of enabled roles;
- enabledRoles(): retrieves the set of currently enabled roles.

The JRBAC-99 model also allows the specification of constraints
on users and roles. For example, to specify activation constraints,
the role policy file must be extended to accept the following
syntax:

grant [role "role-name" | user "user-name"]

{

role "role-namel" [default];

 constraint ConstraintClass "par1" …;

. . .

role "role-nameN" [default];

};

role "role-name"

 constraint ConstraintClass "par1" …;

user "user-name"

 constraint ConstraintClass "par1" …;

Direct RBAC support by the JDK would be very helpful for
application developers, and it diminishes the need for proprietary
extension. On the other hand, it only applies to Java applications.
Although it is possible to add RBAC features to the current JDK,
they are still limited to policies where it is sufficient that the set of
permissions for a given CodeSource is fixed, and is statically
computed at object creation time [11]. This also causes a
proliferation of permission-related structures within the system,
with a possible reduction of the overall system performance. The
policies written in the code itself can cause many problems:
inflexible to changes, not applicable to non-developers for
administration.

We have also seen using of some other object-oriented
programming languages to implement RBAC polices and models,
such as Alloy language in [13], and XOTcl in [2]. They are used
for different developing environments and different operating
systems. By that we know it is possible to implement the policies
in the programming languages, but the problems like Java we
stated above still remain.

4.4 Constraint Logic Language
Another branch is using constraint logic languages to specify
RBAC policies. Barker and Stuckey [15] show their use of CLP
(Constraint Logic Programming) for formulating and
implementing RBAC polices. Covington etc. [14] choose to use a
prolog-style logical language for expressing polices. Ahn and
Sandhu [7] introduce a formal language RCL 2000 (Role-based
Constraint Language) for specifying role-based authorization
constraints.
Take RCL 2000 for example, it has six entity sets called users (U),
roles (R), objects (OBJ), operations (OP), permissions (P), and
sessions (S). They are defined as follows:
-U = a set of users, {u1, …,un}
-R = a set of roles, {r1,…,rm}
-OP = a set of operations, {op1, …,opo}
-OBJ = a set of objects, {obj1,…,objr}
-P = OP x OBJ, a set of permissions, {p1,…, pq}
-S = a set of sessions, {s1,…,sr}
…
There are functions user gives us the user associated with a
session and roles gives us the roles activated in a session. The user
assignment relation UA is a many-to-many relation between users
and roles. Similarly the permission-assignment relation PA is a
many-to-many relation between permissions and roles. Users are

authorized to use the permissions of roles to which they are
assigned.
Besides that, additional elements and system functions beyond the
RBAC model are defined in RCL2000, CR (a collection of
conflicting role sets), CP (a collection of conflicting permission
sets), CU (a collection of conflicting user sets), and two
nondeterministic functions, OE (oneelement) and AO (allother).
The OE(X) function allows us to get one element xi from set X.
And with AO(X) we can get a set by taking out one element. To
illustrate how to use these functions to specify role-based
constraints, here is an example: No user can be assigned to two
conflicting roles. In other words, conflicting roles cannot have
common users. It can be expressed as |roles(OE(U))∩OE(CR)|≤
1. Similarly, all the other RBAC constraints can be easily
specified.
Constraint logic languages are powerful in representing role-based
authorization constraints, succinct and concise, strong technical
results that enable properties of a policy to be proved, efficient in
performance. But in practice, it would be frustrating and clumsy
for a policy administrator to manage, especially when editing
large, complex policy files. It also requires the administrator to
have knowledge in logic languages and semantics. A user-friendly
front-end to the language is more preferable to make the roles and
policy rules more visual and easy-to-understand.

4.5 Comparison
After the examination and evaluation of the different policy
languages above, we know how each language is used for
specifying RBAC policies, and every one of them has some
advantages and disadvantages. To get a better view, we have a
comparison of these languages in Table 1, with respect to the
requirements for policy languages of RBAC in web applications.
XML-based language is very expressive, the same for Object
oriented languages and Constraint logic language, and they all can
represent the policies and constraints precisely. While UML-based
has its limitations in expressing and checking of constraints.
As for Inter-operable requirements, XML-based language works
quite fine, and is becoming a standard for security policies in
distributed environment. As for UML-based, it is possible to
migrate models across domains. For Object oriented language and
Constraint logic language, it is possible to inter operate, but it may
has more requirements for different domains.
Applicable to heterogeneity: XML-based is platform independent,
and it usually works with Java, so it is no problem here. For UML-
based it is possible to migrate the models. For Object oriented
language, probably only Java is good at this requirement. But
Constraint logic language is usually depending on specific
environments or operating systems.
Except for Object oriented language, which combine the policy
inside the code itself, has the problem of inflexible to change, the
other three categories are good at adapting to changes and quite
flexible. Among them, XML-based is the best in flexibility.
Depending on different DTDs, it can be applied to different
models or schemas.
For a large web application, the access control policies are always
complicated and difficult to manage. UML-based is very good at
this requirement, and it is more straightforward and visually clear.
XML-based is also quite good, with easy semantics. But if the

policies are huge, it is preferable to have some tools to manage
XML documents. But as for Object-oriented language, it requires
programming knowledge, which only is applicable to developers;
and for Constraint logic language, it is also not practical for
administrators to manage, since it requires the knowledge of logic
language.
And finally efficiency, here the best one is Constraint logic
language, which has the mathematics foundation and strong
technical properties.
From the comparison, we can see the XML-based policy language
has fulfilled almost all of the requirements, while others are good
at some aspects in some situations. Thus we consider XML is a
very promising language for RBAC policy in web applications.

5. CONCLUSION
The Internet provides the opportunities to a range of web
applications. The access control issue is still a hot topic. As a
proven and superior alternative to traditional discretionary and
mandatory access controls, RBAC has many of its advantages.
There are many tries in both industry and research to implement it
in web applications and under distributed environments. In this
paper we are interested in how the RBAC policies can be
represented in web applications.

First, we identified several important requirements and features
for RBAC policy languages, especially with the consideration of
web applications. Then we examined different types of existing
RBAC policy languages, and classified them into four categories:
XML-based, UML-based, Object-oriented programming
languages, and Constrain logic languages. Evaluations of each
category are given and followed a comparison with respect to the
requirements we stated before. Compared to others, XML shows
its advantages in aspects like interoperable and manageable. We
consider it as a basis for RBAC policy language.

We realize, however, our search of policy languages is not
exhaustive, and the comparisons are not complete in every aspect.
For different situations, under different environments, some policy
languages will be better than others. So our recommendation is
only for general purpose in most cases. And most likely there will
emerge some new policy languages, which is more suitable and
superior. We will be looking forward to that.

6. ACKNOWLEDGMENTS
Here we would like to give our deepest gratefulness to our advisor,
for her valuable advice and support.

7. REFERENCES
[1] Al-Kahtani M., Sandhu R., “Access Control Models and
Mechanisms: Induced role hierarchies with attribute-based
RBAC”, Proceedings of the eighth ACM symposium on Access
control models and technologies, July 2-3 2003, pp142-148
[2] Neumann G., Strembeck M., “Access Control: Design and
implementation of a flexible RBAC-service in an object-oriented
scripting language”, Proceedings of the 8th ACM conference on
Computer and Communications Security, November 5-8, 2001,
pp58-67
[3] Vuong N., Smith G., Deng Y., “Managing security policies in
a distributed environment using eXtensible markup language

http://portal.acm.org/citation.cfm?id=775430&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=775430&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=775430&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=501992&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=501992&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=501992&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=372386&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=372386&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529

(XML)”, Proceedings of the 2001 ACM symposium on Applied
computing, March 2001, pp405-411
[4] Sandhu R., Coyne E., Feinstein H., Youman C., “Role-Based
Access Control Models”, IEEE Computer, 29(2), pp38-47
[5] Lorch M., Proctor S., Lepro R., Kafura D., Shah S., “Access
control: First experiences using XACML for access control in
distributed systems”, Proceedings of the 2003 ACM workshop on
XML security, October 2003, pp25-37
[6] Basin D., Doser J., Lodderstedt T., “RBAC for Collaborative
Environments: Model driven security for process-oriented
systems”, Proceedings of the eighth ACM symposium on Access
control models and technologies, June 2-3 2003, pp100-109
[7] Ahn G., Sandhu R., “Role-based authorization constraints
specification”, ACM Transactions on Information and System
Security (TISSEC), November 2000, Volume 3 Issue 4, pp207-
226
[8] Chandramouli R., “Application of XML tools for enterprise-
wide RBAC implementation tasks”, Proceedings of the fifth ACM
workshop on Role-based access control, July 2000, pp11-18
[9] Chadwick D., Otenko A., “Applications: The PERMIS X.509
role based privilege management infrastructure”, Proceedings of
the seventh ACM symposium on Access control models and
technologies, June3-4 2002, pp135-140

[10] Epstein P., Sandhu R., “Towards a UML based approach to
role engineering”, Proceedings of the fourth ACM workshop on
Role-based access control, October 1999, pp135-143
[11] Giuri L., “Role-based access control on the Web using Java”,
Proceedings of the fourth ACM workshop on Role-based access
control, October 1999, pp11-18
[12] Giuri L., “Role-based access control in Java”, Proceedings of
the third ACM workshop on Role-based access control, October
1998, pp91-100
[13] Schaad A., Moffett J., “Access Control Policies and
Specifications: A lightweight approach to specification and
analysis of role-based access control extensions”, Proceedings of
the seventh ACM symposium on Access control models and
technologies, June 2002, pp13-22
[14] Covington M., Long W., Srinivasan S., Dev A., Ahamad M.,
Abowd G., “Securing context-aware applications using
environment roles”, Proceedings of the sixth ACM symposium on
Access control models and technologies, May3-4 2001, pp10-2
[15] Barker S., Stuckey P., “Flexible access control policy
specification with constraint logic programming”, ACM
Transactions on Information and System Security
(TISSEC), Volume 6, Issue 4, November 2003, pp501-546

http://portal.acm.org/citation.cfm?id=372386&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=968563&coll=ACM&dl=ACM&CFID=20124836&CFTOKEN=64079078
http://portal.acm.org/citation.cfm?id=968563&coll=ACM&dl=ACM&CFID=20124836&CFTOKEN=64079078
http://portal.acm.org/citation.cfm?id=968563&coll=ACM&dl=ACM&CFID=20124836&CFTOKEN=64079078
http://portal.acm.org/citation.cfm?id=775425&coll=ACM&dl=ACM&CFID=20124836&CFTOKEN=64079078
http://portal.acm.org/citation.cfm?id=775425&coll=ACM&dl=ACM&CFID=20124836&CFTOKEN=64079078
http://portal.acm.org/citation.cfm?id=775425&coll=ACM&dl=ACM&CFID=20124836&CFTOKEN=64079078
http://portal.acm.org/citation.cfm?id=382913&coll=ACM&dl=ACM&CFID=20124836&CFTOKEN=64079078
http://portal.acm.org/citation.cfm?id=382913&coll=ACM&dl=ACM&CFID=20124836&CFTOKEN=64079078
http://portal.acm.org/citation.cfm?id=344297&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=344297&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=507732&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=507732&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=319184&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=319184&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=319173&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=507714&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=507714&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=507714&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=373258&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=373258&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=950194&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529
http://portal.acm.org/citation.cfm?id=950194&coll=ACM&dl=ACM&CFID=20138707&CFTOKEN=87229529

Figure 1 SecureUML metamodel

Figure 2 An Access Control Policy Example

 XML-based UML-based Object-oriented
programming languages

Constraint logic languages

Expressive Yes Not very good Yes Yes
Inter-operable Yes Yes Not very good Not very good
Applicable to
heterogeneity

Yes Can be supported Yes for Java Probably not

Flexible Yes Yes No Yes
Manageable Yes, but tools

are preferred
Good Applicable only to developers Require knowledge of logic

language
Efficient Yes Not very good Not very good Yes

Table 1 Comparison of policy languages

	INTRODUCTION
	ROLE-BASED ACCESS CONTROL (RBAC)
	REQUIREMENTS FOR RBAC POLICY LANGUAGES IN WEB APPLICATIONS
	POLICY LANGUAGES
	XML-based
	UML-based
	Object-Oriented Programming Language
	Constraint Logic Language
	Comparison

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

