
Security Target for Online Game Architecture

David Eskilsson
Linköping University

daves801@student.liu.se

Abstract

This document is a security target as specified by the 
Common Criteria, aimed to describe the target of 
evaluation in terms of a general description as well as 
assumptions about the environment and possible 
perceived threats. From this information is derived 
certain security objectives which are then further refined 
to security requirements. Thereafter, a set of assurance 
requirements are outlined, which together comprise a 
specific assurance level. Finally, a rationale is included 
to show that the threats outlined have been met by the 
objectives, and that each objective is refined to the 
appropriate set of requirements.

1. Introduction

This section contains information about the document, 
such as an overview of the contents, a note on the 
organisation of the document, and a list of the limitations 
imposed on the report due to time constraints.

1.1. Identification

Title: Security Target for Online Game Architecture
Keywords: online game architecture security, client-

server structure

1.2. Overview

The Common Criteria (CC) specify a set of functional 
and assurance requirements which help to find and 
address security issues in a development project. The 
Security Target for Online Game Architecture (hereafter 
referred to as STOGA) outlines the perceived threats and 
security requirements on a client-server game architecture 
under development, and aims to outline these in such a 
way that a reasonably secure system can be developed.

1.3. Organisation

This document is developed as part of the course 
TDDC03 Information Security, given at Linköping 
University. It is not intended to have any commercial 
application whatsoever.

The purpose of writing this document has been to give 
the author some insight into the application of the 
Common Criteria, and as such, the document should 
under no circumstances be used as any kind of reference 
for future work.

1.4. Limitations

Due to time constraints in the course given, certain 
parts have been left out, or have not been fully developed. 
Most notably, the chapters TOE Summary Specification 
and PP Claims have been left out due to time constraints, 
and not all applicable assumptions, threats, objectives and 
requirements have been included, again due to time 
constraints in the course.

2. Target of evaluation description

The following section describes the general 
functionality and usage of the target of evaluation (TOE).

2.1. General description

The TOE described is a semi-massively multiplayer 
online strategy game architecture, meant to be used across 
some kind of wide network, primarily the Internet 
(although intranets are certainly an alternative). It is 
implemented in the programming language Java.

Client 1

Client 2

Client N

Proxy 1

Proxy 2

Proxy N

Moderator

Database

Client Side Server Side (TOE)

Figure 2.1 - General architecture of the TOE

Security functions



The product is implemented as a client/server solution 
where the server can host a number of sessions (hereafter 
referred to as games), and each of those is associated with 
a number of players through clients (there is a one-to-one 
mapping between players and clients). The main point of 
this architecture is then to allow a player to play his or her 
turn at their leisure, and if an action should be required of 
the player when he/she is not present, some kind of 
default action will be taken.

The general architecture of the system can be seen in 
figure 2.1.

2.1.1. The server. The server part of the system has three 
major components, which are described below.

The database - The database is the information 
repository for the system, and contains all actual game-
related information, which has been created in a modular 
fashion and is almost completely interchangeable and 
independent of the architecture implementation. This 
component is only operated on by the moderator (see 
below), and as such is a very separate part of the system, 
for security purposes.

The moderator - The moderator is the heart of the 
system execution, and has mainly two functions:

1. Establish and maintain a connection to the 
database, and perform database access functions. 
It also updates the database according to specific 
game rules on a regular basis.

2. Send information and receive input to and from 
the player proxy classes, to be incorporated in 
the database.

Player proxy - Each client has a player proxy assigned 
to it, which has two functions:

1. Establish and maintain an RMI connection to the 
client to which it is assigned, and handle any 
problems and issues which arise from this.

2. Incorporate an artificial intelligence function 
which determines the course of action if one 
should be requested or required while the client 
to which this proxy is assigned is not online or 
active.

2.1.2. The client. The client uses a fairly thin architecture, 
which is comprised of a fairly complex graphical user 
interface and a module which handles the connection to 
the server. Put simply, the client only has two functions: 
To display the information received from the server in a 
way which is visually appealing to the player and to make 
available actions to the player and refer these to the 
server. The client is not part of the TOE, and as such is 
only included for reference purposes.

3. TOE security environment

This section outlines the assumptions made about the 
TOE environment for security purposes. It also specifies 
the assets which require protection in the TOE, as well as 
any threats to these that have been identified. 
Furthermore, the different organisational policies which 
have to be enforced are specified.

3.1. Assumptions

The assumptions made about the security environment 
are listed below.

3.1.1. Physical assumptions. These assumptions relate to 
direct physical environment and operation of the system.

A.1.1 The software which comprises the server part of 
the TOE and the hardware it executes on are 
assumed to be located within controlled access 
facilities which will prevent unauthorised 
physical access.

A.1.2 The software critical to the server side secure 
execution of the TOE is assumed to be 
physically protected from potentially hostile 
outsiders.

3.1.2. Personnel assumptions. These assumptions relate 
to the personnel managing the TOE.

A.2.1 It is assumed that there is at least one 
administrator of the TOE. This person is 
assumed to have a high level of knowledge of 
the system on which the TOE is run and be 
completely trusted not to abuse his/her 
privileges.

A.2.2 Attackers are assumed to be willing only to 
spend time and/or money in proportion to the 
possible gain of an attack (see A.3.1 below).

3.1.3. Information assumptions. These assumptions 
relate to the kind of information which is stored in the 
TOE.

A.3.1 The data stored in the system, due to its nature, 
whether inside or outside of the database 
repository, is assumed to be of relatively low 
monetary value.

A.3.2 The database and its security functions are 
assumed to be part of the TCB, and as such it is 
assumed that any data entered in the database are 
for all intents and purposes secure.



3.1.4. Connectivity assumptions. These assumptions 
relate to the network and connectivity aspects of the TOE.

A.4.1 All connections to peripheral devices used by the 
server side of the TOE are assumed to reside 
within the controlled and secure access facilities 
(see A.1.1 above).

A.4.2 The connection between the server and the 
client(s) in the TOE is assumed to be the only 
connection open to the area outside the 
controlled and secure access facilities (See A1.1 
and A.4.1 above).

3.2. Threats

The perceived threats to the TOE are listed below, 
sorted by security aspect compromised (confidentiality, 
integrity and availability).

3.2.1. Threats to confidentiality. Outlined below are the 
threats to the confidentiality aspect of the TOE.

T.1.1 A compromise of the personal or game related 
information stored in the database part of the 
TOE may result from a player performing 
actions he/she is authorised to perform, 
intentionally or not.

T.1.2 A player may access information (game related 
or otherwise) without having permission from 
the owner of said information.

T.1.3 A player may, intentionally or accidentally, 
observe game related and other information that 
he/she is not cleared to see.
Example: A player learns – through direct 
observation of results or other methods – of rules 
for the game mechanics, giving the player an 
unfair advantage.

T.1.4 An unauthorised entity may eavesdrop on, or 
otherwise overhear, information which may be 
sensitive to one or more players.
Example: By intercepting packages being sent 
across the network, an attacker may discover 
information about a player that should be kept 
secret.

3.2.2. Threats to integrity. Outlined below are the threats 
to the integrity aspect of the TOE.

T.2.1 The integrity of the information stored and being 
changed in the database may be compromised if 
a player connects to the TOE at an inappropriate 
time.
Example: A player connects to the server while 
the moderator is applying game rules to the 
database, and sends actions to the server, which 

in turn interferes with the moderation of the 
database.

T.2.2 The information being sent between the client 
and the player proxy – in either direction – may 
be altered by an outside entity.
Example: A person may intercept a package 
being sent, and either prevent it from arriving at 
its destination, corrupt the contents or change 
the contents so that the client-server 
communication is disrupted.

T.2.3 The system will use at least once semantics, ie. 
any information sent between client and server 
will always arrive at least once, but possibly 
more than once. This creates the problem of 
detecting duplicate actions, so that the integrity 
of the intent of the player is not jeapardised.
Example: A player performs the action of giving 
another player a certain amount of resources. 
Due to poor connectivity, the action is resent 
several times, and as a result arrives several 
times at the server, and the server interprets this 
as the player giving a larger sum of resources to 
the other player.

T.2.4 An entity may gain access to a player’s account, 
either by hacking into the TOE, or by somehow 
gaining access to the player’s login information. 
Note: This is a threat to confidentiality, integrity 
and availability, but is placed here due to the 
integrity aspect being considered the most 
important.
Example: A person steals the password for a 
certain player and logs into the system with that 
information, and proceeds to sabotage for that 
player.

T.2.5 The TOE might suffer from some kind of general 
fault or crash, either as the result of an attack, or 
through a bug or accident, which would be a 
threat to both integrity and availability, the 
former being considered more important.
Example: A hacker makes the system halt 
through some kind of attack.

3.2.2. Threats to availability. Outlined below are the 
threats to the availability aspect of the TOE.

T.3.1 A player, through his/her client, consumes 
network bandwidth, processor power and
memory from the server when being connected, 
which can compromise the ability of other player 
clients connecting to and performing actions on 
the server.

T.3.2 An entity may use some kind of Denial of 
Service attack (DoS) to compromise the 
availability of the server to other players.



Example: An ill-meaning person might create a 
program which repeatedly pings or other sends 
other messages to the server, to such an extent 
that the server becomes unavailable to 
authorized players.

T.3.3 The database will be using some kind of locking 
scheme to assure that concurrent access to the 
data is handled in a proper way. This can 
compromise the availability of the data for write 
and read operations.
Example: A player may be unable to perform 
actions while the server is updating the data in 
the database according to the rules.

3.3. Organisational security policies

The organisational security policies which have been 
outlined for the TOE are listed below.

P.1.1 Only those users who have been authorised to 
access the TOE may do so.

P.1.2 There will be at least one person who will 
assume the role of administrator, and have the 
privileges to manage the TOE and all player 
information (see assumption A.2.1 above).

4. Security objectives

This section outlines the intended response to the 
security problem outlined in the previous chapter (see 
chapter 3 – TOE security environment). It is intended to 
bridge the gap between the assumptions and threats 
outlined in the previous chapter, and the formal 
requirements outlined in chapter 5.

4.1. Security objectives for the TOE

These security objectives specify what measures are 
taken by the TOE to counter the threats specified in 
chapter 3.2, taking into account the assumptions of 
chapter 3.1. The objectives identified are divided into 
three broad categories (preventative, detective and 
corrective).

4.1.1. Preventative objectives. The following objectives 
are such that aim to prevent or limit the ways in which a 
threat can be carried out.

O.1.1 The TOE will make available functions such that 
an administrator can configure and manage the 
server, database and the security functions, and 
will also ensure that only the authorised 
administrator can access those functions. 

O.1.2 The TOE will uniquely identify all clients 
connecting, and will authenticate the claimed 

identity before granting the client access to the 
TOE.

O.1.3 The TOE will encrypt the information being sent 
to the client, to make it more difficult for 
unauthorised entities to intercept and modify said 
information.

O.1.4 The TOE will only accept a certain number of 
connection requests from one source per minute.

O.1.5 The TOE will maintain a pseudonym for each 
registered player, and will only make available 
references by that pseudonym to other players. 
The personal information of all players will be 
hidden from all but the administrator.

O.1.6 The TOE will implement mechanisms for 
detection and handling of duplicated messages 
received.

O.1.7 The TOE will assign different priorities to 
different actions on behalf of the players, such 
that – in case of resource shortage – players can 
still perform their most important actions.

O.1.8 The TOE will ensure that a given user can only 
be connected through one session at a time. The 
player will also automatically be logged out after 
a certain amount of time has passed.

O.1.9 The TOE will enforce certain access and 
information policies that will make it more 
difficult or impossible for players to gain more 
information than the designer of the game rules 
intend.

4.1.2. Detective objectives. These objectives aim to 
provide means to detect and monitor the events involved 
in a threat.

O.2.1 The TOE will create a log of the events sent to 
and from the client program connected to each 
server proxy, which will be stored for a certain 
amount of time on the server. This log will be 
accessible only to the administrator of the TOE.

O.2.2 The TOE will make available information to the 
player about any failed logins since the last 
successful login, and also information about 
where the last successful login was made from.

4.1.3. Corrective objectives. The following objectives 
provide the TOE with the ability to return to a safe state in 
the case of damage inflicted in connection to a threat.

O.3.1 The TOE will make available functions to return 
the information stored in the database to a 
previous state, without ending up in an 
inconsistent state.

O.3.2 Upon restart of the TOE after a malfunction, the 
TOE will aim to return to a functioning state, but 
failing that, the TOE will enter an administrative 



state where the administrator can find the error 
and correct it.

4.2. Security objectives for the environment

These security objectives are such objectives that are 
to be satisifed by the environment of the TOE. These 
objectives aim to counter the threats which are not 
addressed by the TOE. Due to time constraints, no such 
security objectives have been formulated.

5. IT security requirements

This chapter specifies the security requirements for the 
TOE, as taken from the Common Criteria. Certain 
operations are defined in the Common Criteria, and 
completed such operations are denoted through italicized 
text.

5.1. TOE security functional requirements

Below follow the functional requirements for the TOE, 
sorted by the requirement type.

5.1.1. Security audit (FAU).

FAU_GEN.1.1 The TSF shall be able to generate an 
audit record of the following auditable 
events:

a) Start-up and shutdown of the audit 
functions.

b) All auditable events for the not 
specified level of audit; and

c) The events specified in table 5.1.

FAU_GEN.1.2 The TSF shall record within each audit 
record at least the following 
information:

a) Date and time of the event, type of 
event, subject identity, and the 
outcome (success or failure) of the 
event; and

b) For each audit event type, based on 
the auditable event definitions of the 
functional components included in 
the ST, the information in the 
appropriate details column.

Table 5.1. Auditable events.
Component Event for audit

FAU_GEN.1 Start-up and shutdown of the audit 
functions.

FAU_GEN.2 None.
FAU_SAR.1 None.
FDP_ACC.1 None.
FDP_ACF.1 None.
FDP_IFC.1 None.
FDP_IFF.1 None.
FDP_ROL.2 The rollback of the database.
FIA_AFL.1 The failure to login.
FIA_ATD.1 None.
FIA_UAU.1 None.
FIA_UAU.7 None.
FIA_UID.1 None.
FIA_USB.1 None.
FMT_MOF.1 Any of the specified actions.
FMT_MSA.1 Any changes to the attributes.
FMT_MSA.3 Any change to the default values.
FMT_MTD.1 None.
FMT_SMR.1 None.
FPR_PSE.2 None.
FPT_AMT.1 The tests being run.
FPT_ITT.1 None.
FPT_RCV.2 Restart of the system or entrance into 

maintenance mode.
FPT_RPL.1 The event being removed.
FPT_STM.1 Changes to the time.
FPT_TST.1 The tests being run.
FRU_PRS.1 None.
FRU_RSA.1 Any attempts to exceed the quota.
FTA_MCS.1 Any attempts to exceed the session limit
FTA_SSL.3 Timeouts.
FTA_TAH.1 None.

FAU_GEN.2.1 The TSF shall be able to associate each 
auditable event with the identity of the 
user that caused the event.

FAU_SAR.1.1 The TSF shall provide the 
administrator with the capability to 
read all information from the audit 
records.

FAU_SAR.1.2 The TSF shall provide the audit records 
in a manner suitable for the user to 
interpret the information.

5.1.2. User data protection (FDP).

FDP_ACC.1.1 The TSF shall enforce the access 
control policy on the clients, database 
and any defined client actions 
pertaining to the database.



FDP_ACF.1.1 The TSF shall enforce the access 
control policy to objects based on the 
identified and authorised identity of the 
client in question.

FDP_ACF.1.2 The TSF shall enforce the following 
rules to determine if an operation 
among controlled subjects and 
controlled objects is allowed: The 
subject must be identified and 
authorised and the operation must be 
made according to the rules specified in 
the game system.

FDP_ACF.1.3 The TSF shall explicitly authorise 
access of subjects to objects based on 
the following additional rules: No 
additional rules.

FDP_ACF.1.4 The TSF shall explicitly deny access of 
subjects to objects based on the failure 
of the subject to identify and/or 
authorise itself.

FDP_IFC.1.1 The TSF shall enforce the information 
flow control policy on the clients, the 
information repository (database) and 
any information flow between the 
database and clients.

FDP_IFF.1.1 The TSF shall enforce the information 
flow control policy based on the 
following types of subject and 
information security attributes: The 
information flow control policy must at 
least

a) function in conjunction with the 
access control policy

b) be able to determine the rights of 
subjects to access certain kinds of 
information, as given in the specified 
game rules

c) allow for the identification of 
information flow sources

FDP_IFF.1.2 The TSF shall permit an information 
flow between a controlled subject and 
controlled information via a controlled 
operation if the following rules hold: 
The identity of the subject must be 
known and confirmed.

FDP_IFF.1.3 The TSF shall enforce the information 
flow control policy in that information 
flow between the TOE and any trusted 
clients takes precedence over any 
information flow between the TOE and 
untrusted clients.

FDP_IFF.1.4 The TSF shall provide the ability to 
specify the specific rules for 
information flow control in addition to 

those stated above as required by the 
specific implemented game rules.

FDP_IFF.1.5 The TSF shall explicitly authorise an 
information flow based on the 
following rules: An administrator 
connecting to the TOE through some 
kind of trusted path.

FDP_IFF.1.6 The TSF shall explicitly deny an 
information flow based on the 
following rules: in accordance with the 
security policy setting to deny 
information flow to and from an 
untrusted client.

FDP_ROL.2.1 The TSF shall enforce the access 
control policy and the information 
control flow policy to permit the 
rollback of all the operations on the 
database.

FDP_ROL.2.2 The TSF shall permit operations to be 
rolled back within the last week of 
operations performed.

5.1.3. Identification and authentication (FIA).

FIA_AFL.1.1 The TSF shall detect when 3
unsuccessful authentication attempts 
occur related to the initial client-server 
authentication procedure.

FIA_AFL.1.2 When the defined number of 
unsuccessful authentication attempts 
has been met or surpassed, the TSF 
shall deny further login attempts from 
that address for a configurable amount 
of time.

FIA_ATD.1.1 The TSF shall maintain the following 
list of security attributes belonging to 
individual users:

a) User identifier
b) Authentication data

FIA_UAU.1.1 The TSF shall allow invocation of 
server status information services on 
behalf of the user before the user is 
authenticated.
Note: Server status information services 
are functions which return the current 
status of the server (such as whether it 
is accepting login requests or not).

FIA_UAU.1.2 The TSF shall require each user to be 
successfully authenticated before 
allowing any other TSF-mediated 
actions on behalf of that user.

FIA_UAU.7.1 The TSF shall provide only obscured 
feedback to the user while the 
authentication is in progress.



Note: Obscured feedback means that 
the user is provided no visible feedback 
while entering the required 
authentication information.

FIA_UID.1.1 The TSF shall allow invocation of 
server status information services on 
behalf of the user to be performed 
before the user is identified.
Note: Server status information services 
are functions which return the current 
status of the server (such as whether it 
is accepting login requests or not).

FIA_UID.1.2 The TSF shall require each user to be 
successfully identified before allowing 
any other TSF-mediated actions on 
behalf of that user.

FIA_USB.1.1 The TSF shall associate the appropriate 
user security attributes with subjects 
acting on behalf of that user.
Note: The subject mentioned above is 
the server proxy associated with the 
user.

5.1.4. Security management (FMT).

FMT_MOF.1.1 The TSF shall restrict the ability to 
determine the behaviour of the 
functions

a) Deleting user accounts
b) Arbitrary modification of  accounts
c) Configuring the server options
d) Modifying the game state

to the administrator.
FMT_MSA.1.1 The TSF shall enforce the access 

control policy and information flow 
control policy to restrict the ability to 
modify the security attributes user 
identity and identification information
to the user in question and the 
administrator.

FMT_MSA.3.1 The TSF shall enforce the access 
control policy and information flow 
control policy to provide permissive
default values for security attributes that 
are used to enforce the SFP.

FMT_MSA.3.2 The TSF shall allow the administrator
to specify alternative initial values to 
override the default values when an 
object or information is created.

FMT_MTD.1.1 The TSF shall restrict the ability to 
query and modify the the user 
information to the administrator and to 
the player in possession of said 
information.

FMT_SMR.1.1 The TSF shall maintain the roles

a) Player
b) Administrator

FMT_SMR.1.2 The TSF shall be able to associate users 
with roles.

5.1.5. Privacy (FPR).

FPR_PSE.2.1 The TSF shall ensure that the players
are unable to determine the real user 
name bound to the players and the 
administrators.

FPR_PSE.2.2 The TSF shall be able to provide one
alias of the real user name to the 
players.

FPR_PSE.2.3 The TSF shall accept the alias from the 
user and verify that it conforms to the 
specified rules governing names and 
aliases for the actual game system.

FPR_PSE.2.4 The TSF shall provide the 
administrator a capability to determine 
the user identity based on the provided 
alias only for communication purposes 
in case of any need for external 
communication.

5.1.6. Protection of the TSF (FPT).

FPT_AMT.1.1 The TSF shall run a suite of tests at the 
request of an authorised user to 
demonstrate the correct operation of the 
security assumptions provided by the 
abstract machine that underlies the TSF.

FPT_ITT.1.1 The TSF shall protect TSF data from 
disclosure and modification when it is 
transmitted between separate parts of 
the TOE.

FPT_RCV.2.1 When automated recovery from a 
failure or service disconuity is not 
possible, the TSF shall enter a 
maintenance mode where the ability to 
return the TOE to a secure state is 
provided.

FPT_RCV.2.2 For network failures and certain 
software failures, the TSF shall ensure 
the return of the TOE to a secure state 
using automated procedures.

FPT_RPL.1.1 The TSF shall detect replay for the 
following entities: Players.

FPT_RPL.1.2 The TSF shall perform removal of the 
last part of replay when replay is 
detected.

FPT_STM.1.1 The TSF shall be able to provide 
reliable time stamps for its own use.

FPT_TST.1.1 The TSF shall run a suite of self tests 
periodically during normal operation to 



demonstrate the correct operation of the 
TSF.

FPT_TST.1.2 The TSF shall provide authorised users 
with the capability to verify the 
integrity of the TSF data.

FPT_TST.1.3 The TSF shall provide authorised users 
with the capability to verify the 
integrity of stored executable code.

5.1.7. Resource utilisation (FRU).

FRU_PRS.1.1 The TSF shall assign a priority to each 
subject in the TSF.

FRU_PRS.1.2 The TSF shall ensure that each access 
to the database shall be mediated on the 
basis of the subjects assigned priority.

FRU_RSA.1.1 The TSF shall enforce maximum quotas 
of the following resources:

a) bandwidth
b) database access

that players can use simultaneously.

5.1.8. TOE access (FTA).

FTA_MCS.1.1 The TSF shall restrict the maximum 
number of concurrent sessions that 
belong to the same user.

FTA_MCS.1.2 The TSF shall enforce, by default, a 
limit of one session per user.

FTA_SSL.3.1 The TSF shall terminate an interactive 
session after a 30 minute period of user 
inactivity.

FTA_TAH.1.1 Upon successful session establishment, 
the TSF shall display the date, time and 
location of the last successful session 
establishment to the user.

FTA_TAH.1.2 Upon successful session establishment, 
the TSF shall display the date, time and 
location of the last unsuccessful attempt 
to session establishment and the number 
of unsuccessful attempts since the last
successful session establishment.

FTA_TAH.1.3 The TSF shall not erase the access 
history information from the user 
interface without giving the user an 
opportunity to review the information.
Note: The actual user interface is not 
actually within the control of the TOE, 
and therefore this last capability is not 
particularly relevant.

5.2. TOE security assurance requirements

Below follow the assurance requirements for the TOE, 
sorted by the requirement type. Requirements ending with 

D are aimed at the developer, those ending with C refer to 
the actual document in question, and the ones ending with 
E are aimed at the evaluator.

The assurance requirements below compose EAL2.

5.2.1. Configuration management (ACM).

ACM_CAP.2.1D The developer shall provide a 
reference for the TOE.

ACM_CAP.2.2D The developer shall use a CM system.
ACM_CAP.2.3D The developer shall provide CM 

documentation.
ACM_CAP.2.1C The reference for the TOE shall be 

unique to each version of the TOE.
ACM_CAP.2.2C The TOE shall be labelled with its 

reference.
ACM_CAP.2.3C The CM documentation shall include 

a configuration list.
ACM_CAP.2.4C The configuration list shall describe 

the configuration items that comprise 
the TOE.

ACM_CAP.2.5C The CM documentation shall describe 
the method used to uniquely identify 
the configuration items.

ACM_CAP.2.6C The CM system shall uniquely 
identify all configuration items.

ACM_CAP.2.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

5.2.2. Delivery and operation (ADO).
ADO_DEL.1.1D The developer shall document 

procedures for delivery of the TOE or 
parts of it to the user.

ADO_DEL.1.2D The developer shall use the delivery 
procedures.

ADO_DEL.1.1C The delivery documentation shall 
describe all procedures that are 
necessary to maintain security when 
distributing versions of the TOE to a 
user’s site.

ADO_DEL.1.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

ADO_IGS.1.1D The developer shall document 
procedures necessary for the secure 
installation, generation and start-up of 
the TOE.

ADO_IGS.1.1C The documentation shall describe the 
steps necessary for secure 
installation, generation and start-up of 
the TOE.



ADO_IGS.1.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

ADO_IGS.1.2E The evaluator shall determine that the 
installation, generation and start-up 
procedures result in a secure 
configuration.

5.2.2. Development (ADV).

ADV_FSP.1.1D The developer shall provide a 
functional specification.

ADV_FSP.1.1C The functional specification shall 
describe the TSF and its external 
interfaces using an informal style.

ADV_FSP.1.2C The functional specification shall be 
internally consistent.

ADV_FSP.1.3C The functional specification shall 
describe the purpose and method of 
use of all external TSF interfaces, 
providing details of effects, 
exceptions and error messages, as 
appropriate.

ADV_FSP.1.4C The functional specification shall 
completely represent the TSF.

ADV_FSP.1.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

ADV_FSP.1.2E The evaluator shall determine that the 
functional specification is an accurate 
and complete instantiation of the 
TOE security functional 
requirements.

ADV_HLD.1.1D The developer shall provide the high-
level design of the TSF.

ADV_HLD.1.1C The presentation of the high-level 
design shall be informal.

ADV_HLD.1.2C The high-level design shall be 
internally consistent.

ADV_HLD.1.3C The high-level design shall describe 
the structure of the TSF in terms of 
subsystems.

ADV_HLD.1.4C The high-level design shall describe 
the security functionality provided by 
each subsystem of the TSF.

ADV_HLD.1.5C The high-level design shall identify 
any underlying hardware, firmware, 
and/or software required by the TSF 
with a presentation of the functions 
provided by the supporting protection 
mechanisms implemented in that 
hardware, firmware or software.

ADV_HLD.1.6C The high-level design shall identify 
all interfaces to the subsystems of the 
TSF.

ADV_HLD.1.7C The high-level design shall identify 
which of the interfaces to the 
subsystems of the TSF are externally 
visible.

ADV_HLD.1.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

ADV_HLD.1.2E The evaluator shall determine that the 
high-level design is an accurate and 
complete instantiation of the TOE 
security functional requirements.

ADV_RCR.1.1D The developer shall provide an 
analysis of correspondence between 
all adjacent pairs of TSF 
representations that are provided.

ADV_RCR.1.1C For each adjacent pair of provided 
TSF representations, the analysis 
shall demonstrate that all relevant 
security functionality of the more 
abstract TSF representation is 
correctly and completely refined in 
the less abstract TSF representation.

ADV_RCR.1.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

5.2.3. Guidance documents (AGD).

AGD_ADM.1.1D The developer shall provide 
administrator guidance addressed to 
system administrative personnel.

AGD_ADM.1.1C The administrator guidance shall 
describe the administrative functions 
and interfaces available to the 
administrator of the TOE.

AGD_ADM.1.2C The administrator guidance shall 
describe how to administer the TOE 
in a secure manner.

AGD_ADM.1.3C The administrator guidance shall 
contain warnings about functions and 
privileges that should be controlled in 
a secure processing environment.

AGD_ADM.1.4C The administrator guidance shall 
describe all assumptions regarding 
user behaviour that are relevant to 
secure operation of the TOE.

AGD_ADM.1.5C The administrator guidance shall 
describe all security parameters under 
the control of the administrator, 



indicating secure values as 
appropriate.

AGD_ADM.1.6C The administrator guidance shall 
describe each type of security-
relevant event relative to the 
administrative functions that need to 
be performed, including changing the 
security characteristics of entities 
under the control of the TSF.

AGD_ADM.1.7C The administrator guidance shall be 
consistent with all other 
documentation supplied for 
evaluation.

AGD_ADM.1.8C The administrator guidance shall 
describe all security requirements for 
the IT environment that are relevant 
to the administrator.

AGD_ADM.1.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

AGD_USR.1.1D The developer shall provide user 
guidance.

AGD_USR.1.1C The user guidance shall describe the 
functions and interfaces available to 
the non-administrative users of the 
TOE.

AGD_USR.1.2C The user guidance shall describe the 
use of user-accessible security 
functions provided by the TOE.

AGD_USR.1.3C The user guidance shall contain 
warnings about user-accessible 
functions and privileges that should 
be controlled in a secure processing 
environment.

AGD_USR.1.4C The user guidance shall clearly 
present all user responsibilities 
necessary for the secure operation of 
the TOE, including those related to 
assumptions regarding user behaviour 
found in the statement of TOE 
security environment.

AGD_USR.1.5C The user guidance shall be consistent 
with all other documentation supplied 
for evaluation.

AGD_USR.1.6C The user guidance shall describe all 
security requirements for the IT 
environment that are relevant to the 
user.

AGD_USR.1.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

5.2.4. Tests (ATE).

ATE_COV.1.1D The developer shall provide evidence 
of the test coverage.

ATE_COV.1.1C The evidence of the test coverage 
shall show the correspondence 
between the test identified in the test 
documentation and the TSF as 
described in the functional 
specification.

ATE_COV.1.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

ATE_FUN.1.1D The developer shall test the TSF and 
document the results.

ATE_FUN.1.2D The developer shall provide test 
documentation.

ATE_FUN.1.1C The test documentation shall consist 
of test plans, test procedure 
descriptions, expected test results and 
actual test results.

ATE_FUN.1.2C The test plans shall identify the 
security functions to be tested and 
describe the goal of the tests to be 
performed.

ATE_FUN.1.3C The test procedure descriptions shall 
identify the tests to be performed and 
describe the scenarios for testing each 
security function. These scenarios 
shall include any ordering 
dependencies on the results of other 
tests.

ATE_FUN.1.4C The expected test results shall show 
the anticipated outputs from a 
successful execution of the tests.

ATE_FUN.1.5C The test results from the developer 
execution of the tests shall 
demonstrate that each tested security 
function behaved as specified.

ATE_FUN.1.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

ATE_IND.2.1D The developer shall provide the TOE 
for testing.

ATE_IND.2.1C The TOE shall be suitable for testing.
ATE_IND.2.2C The developer shall provide an 

equivalent set of resources to those 
that were used in the developer’s 
functional testing of the TSF.

ATE_IND.2.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.



ATE_IND.2.2E The evaluator shall test a subset of 
the TSF as appropriate to confirm that 
the TOE operates as specified.

ATE_IND.2.3E The evaluator shall execute a sample 
of tests in the test documentation to 
verify the developer test results.

5.2.6. Vulnerability assessment (AVA).

AVA_SOF.1.1D The developer shall perform a 
strength of TOE security function 
analysis for each mechanism 
identified in the ST as having a 
strength of TOE security function 
claim.

AVA_SOF.1.1C For each mechanism with a strength 
of TOE security function claim the 
strength of TOE security function 
analysis shall show that it meets or 
exceeds the minimum strength level 
defined in the ST.

AVA_SOF.1.2C For each mechanism with a specific 
strength of TOE security function 
claim the strength of TOE security 
function analysis shall show that it 
meets or exceeds the specific strength 
of function metric defined in the ST.

AVA_SOF.1.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

AVA_SOF.1.2E The evaluator shall confirm that the 
strength claims are correct.

AVA_VLA.1.1D The developer shall perform and 
document an analysis of the TOE 
deliverables searching for obvious 
ways in which a user can violate the 
TSP.

AVA_VLA.1.2D The developer shall document the 
disposition of obvious vulnerabilities.

AVA_VLA.1.1C The documentation shall show, for all 
identified vulnerabilities, that the 
vulnerability cannot be exploited in 
the intended environment for the 
TOE.

AVA_VLA.1.1E The evaluator shall confirm that the 
information provided meets all 
requirements for content and 
presentation of evidence.

AVA_VLA.1.2E The evaluator shall conduct 
penetration testing, building on the 
developer vulnerability analysis, to 
ensure obvious vulnerabilities have 
been addressed.

5.3. Security requirements for the environment

No environmental security requirements have at this time 
been identified.

6. TOE summary specification

Due to time constraints and the lack of progress of the 
implemented system, the TOE summary specification will 
be presented in a later project.

7. Rationale

This chapter aims to show that:
a) All security needs, as defined by the threats and 

organisational policies, are dealt with through 
the use of appropriate security objectives.

b) All security objectives are suitably met by the 
identified IT security requirements, which in turn 
are met by the specified functional and assurance 
requirements.

7.1. Security objectives rationale

This section maps threats to security objectives, and 
states why the outlined security objectives address the 
issues specified in the threats in an appropriate way. For 
the actual mapping, see table 7.1.

Table 7.1. Threats to objectives mapping.
Threat/policy Security Objective

T.1.1 O.1.5
T.1.2 O.1.5
T.1.3 O.1.9
T.1.4 O.1.3
T.2.1 O.2.1

O.3.1
T.2.2 O.1.3
T.2.3 O.1.6
T.2.4 O.2.1

O.2.2
O.3.1

T.2.5 O.3.2
T.3.1 O.1.4

O.1.7
O.1.8

T.3.2 O.1.4
T.3.3 O.1.7
P.1.1 O.1.2
P.1.2 O.1.1



Below follows a more specific discussion about the 
relevance of each objective to address the issues specified 
in the threats and policies.

T.1.1
A compromise of the personal or game related 
information stored in the database part of the TOE may 
result from a player performing actions he/she is 
authorised to perform, intentionally or not.
Due to each player being assigned and referenced through 
a pseudonym (O.1.5), it is very difficult for another player 
to partake of user information he/she should not partake 
in, if the inter-TOE communication channels are 
followed, as stated in the threat.

T.1.2
A player may access information (game related or 
otherwise) without having permission from the player 
possessing said information.
Due to each player being assigned and referenced through 
a pseudonym (O.1.5), it is not trivial to gain access to 
personal information, even when accessing information 
through some extra-TOE channel.

T.1.3
A player may, intentionally or accidentally, observe game 
related and other information that he/she is not cleared to 
see.
The implementation of access and information flow 
policies (O.1.9) ensures that players logged into the 
system at least through legitimate means cannot gain 
access to more information than necessary.

T.1.4
An unauthorised entity may eavesdrop on, or otherwise 
overhear, information which may be sensitive to one or 
more players.
Encryption of the messages sent to the client (O.1.3) will 
serve to address the problem of entities eavesdropping on 
the information, and will most certainly make sure that 
such eavesdropping, if successful, is not accidental. Since 
the client is not part of the TOE, the security of the 
information being sent from the client to the server cannot 
be assured, but this is not particularly important for 
confidentiality reasons.

T.2.1
The integrity of the information stored and being changed 
in the database may be compromised if a player connects 
to the TOE at an inappropriate time.
The logs created by the TOE of any events sent (O.2.1) 
will detect any cause of error in the above case. If this 
should occur, this information can be used to roll back the 
state of the database to a previous consistent state (O.3.1), 
losing only some of the information stored.

T.2.2
The information being sent between the client and the 
player proxy – in either direction – may be altered by an 
outside entity.
As T.1.4 above, encryption of the messages sent to the 
client (O.1.3) will serve to address the problem of entities 
changing the information being sent. The problem 
remains for messages originating from the client, 
however, and this can cause a problem since the integrity 
of the messages travelling in this direction is the most 
important aspect to consider. However, since the client is 
not part of the TOE, this cannot be addressed through 
security functions in the TOE.

T.2.3
The system will use at least once semantics, ie. any 
information sent between client and server will always 
arrive at least once, but possibly more than once. This 
creates the problem of detecting duplicate actions, so that 
the integrity of the intent of the player is not jeapardised.
The objective to detect and handle any duplicate messages 
received directly takes care of this threat.

T.2.4
An entity may gain access to a player’s account, either by 
hacking into the TOE, or by somehow gaining access to 
the player’s login information.
Logging any events sent from a client to the server 
(O.2.1) helps detect the occurence of something like this. 
Furthermore, displaying information about the recent 
failed login attempts, and information about the last 
successful login (O.2.2) makes it possible for the player to 
see whether or not someone has been trying to guess 
his/her password, and/or actually succeeded. Finally, the 
TOE will make available – as a last resort – to return the 
state of the system to a previous consistent one as an 
administrator function (O.3.1).

T.2.5
The TOE might suffer from some kind of general fault or 
crash, either as the result of an attack, or through a bug 
or accident, which would be a threat to both integrity and 
availability, the former being considered more important.
The TOE will aim to restart itself automatically after 
crashing, or failing that, enter an administrative state 
where the administrator can try to find the error and return 
the server to normal functionality (O.3.2).

T.3.1
A player, through his/her client, consumes network 
bandwidth, processor power and memory from the server 
when being connected, which can compromise the ability 
of other player client connecting to and performing 
actions on the server.



The objective specifying that a client may only try to 
connect a certain number of times per time period (O.1.4) 
takes care of part of this problem. Moreover, the 
limitations specified about the resources available to 
players (O.1.7) and the limitation to one session per client 
(O.1.8) serve to further address this threat.

T.3.2
An entity may use some kind of Denial of Service attack 
(DoA) to compromise the availability of the server to 
other players.
Due to the nature of this attack, this threat is much more 
difficult to counter than T.3.1 above. However, objective 
O.1.4 (see above) helps counter this to some extent.

T.3.3
The database will be using some kind of locking scheme 
to assure that concurrent access to the data is handled in 
a proper way. This can compromise the availability of the 
data for write and read operations.
Considering that the database will not be locked for too 
long, the objective to assign priorities and perform actions 
based on those (O.1.7) should suffice to counter this 
threat.

P.1.1
Only those users who have been authorised to access the 
TOE may do so.
The objective specifying that all clients connecting must 
be identified and authorised (O.1.2) makes sure that the 
policy is satisfied.

P.1.2
There will be at least one person who will assume the role 
of administrator, and have the privileges to manage the 
TOE and all player information.
The functions made available through objective O.1.1 
ensures that the policy is satisfied.

7.2. Security requirements rationale

This section maps objectives to requirements, and 
states why the outlined functional and assurance 
requirements help reach the objectives outlined, and by 
extension address the perceived threats and organisational 
policies. For the actual mapping, see table 7.2.

Table 7.2. Objectives to requirements mapping.
Security 

Objective
Functional/assurance requirement

O.1.1 FMT_MOF.1. Management of security 
functions behaviour
FMT_SMR.1. Security roles

O.1.2 FIA_ATD.1. User attribute definition
FIA_UAU.1. Timing of authentication
FIA_UAU.7. Protected authentication 
feedback
FIA_UID.1. Timing of identification
FIA_USB.1. User-subject binding
FMT_MTD.1. Management of TSF data

O.1.3 To be determined.
O.1.4 FIA_AFL.1. Authentication failures
O.1.5 FPR_PSE.2. Reversible pseudonymity
O.1.6 FPT_RPL.1. Replay detection

FPT_STM.1. Reliable time stamps
O.1.7 FRU_PRS.1. Limited priority of service

FRU_RSA.1. Maximum quotas
O.1.8 FTA_MCS.1. Basic limitation on 

multiple concurrent sessions
FTA_SSL.3. TSF-initiated termination

O.1.9 FDP_ACF.1. Security based access 
control
FDP_IFF.1. Simple security attributes

O.2.1 FAU_GEN.1. Audit data generation
FAU_GEN.2. User identity association
FAU_SAR.1. Audit review

O.2.2 FTA_TAH.1. TOE access history
O.3.1 FDP_ROL.2. Advanced rollback

FPT_STM.1. Reliable time stamps
O.3.2 FPT_RCV.2. Automated recovery

Below follows a more specific discussion about the 
relevance of each requirement to enforce the objectives.

O.1.1
The TOE will make available functions such that an 
administrator can configure and manage the server, 
database and the security functions, and will also ensure 
that only the authorised administrator can access those 
functions.
Through the use of security roles (FMT_SMR.1) it is 
established that there is one role called the administrator 
and one called user. Furthermore, the requirement about 
management of security functions behavior 
(FMT_MOF.1) specifies that certain security-relevant 
functions are restricted such that only the administrator 
may use them.



O.1.2
The TOE will uniquely identify all clients connecting, and 
will authenticate the claimed identity before granting the 
client access to the TOE.
The user attribute definition (FIA_ATD.1) specifies 
which security attributes exist for each user, and the 
timing of authentication (FIA_UAU.1) and timing of 
identification (FIA_UID.1) require the user to identify 
and authorise himself before he attempts any action other 
than requesting information about the server status. The 
protected authentication feedback (FIA_UAU.7) makes 
sure that no feedback is given to the client while the 
authorisation is in progress. Finally, user-subject binding 
(FIA_USB.1) is used to bind the client to the proxy, 
which can then act on the user’s behalf, and it is specified 
through the management of TSF data that only the 
administrator and the player in possession of the data can 
access the user information and authorisation data.

O.1.3
The TOE will encrypt the information being sent to the 
client, to make it more difficult for unauthorised entities 
to intercept and modify said information.
The encryption algorithms and key lengths to be used 
have not yet been determined, and as such, these 
functional requirements are lacking.

O.1.4
The TOE will only accept a certain number of connection 
requests from one source per minute.
The requirement about authentication failures 
(FIA_AFL.1) takes care of this by making sure that the 
server will only accept a certain number of requests 
before refusing further connection requests from that 
source for a period of time.

O.1.5
The TOE will maintain a pseudonym for each registered 
player, and will only make available references by that 
pseudonym to other players. The personal information of 
all players will be hidden from all but the administrator.
Reversible pseudonymity (FPR_PSE.2) makes sure that 
the player specifies an alias that he/she will go by, to 
make sure that all personal information belonging to 
him/her cannot be accessed by any other entity save by 
the administrator.

O.1.6
The TOE will implement mechanisms for detection and 
handling of duplicated messages received.
The requirement about replay detection (FPT_RPL.1) 
makes sure that any duplicated messages received by the 
server can be identified and addressed in a correct 
fashion. Reliable time stamps (FPT_STM.1) helps to 

determine which messages are actually replays and which 
are separate messages.

O.1.7
The TOE will assign different priorities to different 
actions on behalf of the players, such that – in case of 
resource shortage – players can still perform their most 
important actions.
Limited priority of service (FRU_PRS.1) makes sure that 
no player can “hog” all resources for himself. The 
maximum quotas (FRU_RSA.1) are intented to support 
this by assigning a configurable amount of resources 
available to each player.

O.1.8
The TOE will ensure that a given user can only be 
connected through one session at a time. The player will 
also automatically be logged out after a certain amount of 
time has passed.
The requirement about basic limitation on multiple 
concurrent sessions (FTA_MCS.1) states that only one 
session is allowed for each user at a time. The TSF-
initiated termination (FTA_SSL.3) makes sure that if the 
player remains inactive for a certain amount of time, 
he/she is automatically logged out of the system.

O.1.9
The TOE will enforce certain access and information 
policies that will make it more difficult or impossible for 
players to gain more information than the designer of the 
game rules intend.
The security attribute based access control (FDP_ACF.1) 
and simple security attributes (FDP_IFF.1) ensure that 
player accesses to the database are mediated by a certain 
policy, and that the information flow between players and 
the database are regulated through a customizable policy.

O.2.1
The TOE will create a log of the events sent to and from 
the client program connected to each server proxy, which 
will be stored for a certain amount of time on the server. 
This log will be accessible only to the administrator of the 
TOE.
The audit data generation (FAU_GEN.1) and user identity 
association (FAU_GEN.2) make sure that the relevant 
events are logged. Through the audit review requirement 
(FAU_SAR.1), it is ensured that only the administrator 
has access to the audit information.

O.2.2
The TOE will make available information to the player 
about any failed logins since the last successful login, and 
also information about where the last successful login 
was made from.



The TOE access history requirement (FTA_TAH.1) 
makes sure that the server makes available information 
about the login history of the player, most importantly any 
failed logins and the last successful login.

O.3.1
The TOE will make available functions to return the 
information stored in the database to a previous state, 
without ending up in an inconsistent state.
Through the use of advanced rollback (FDP_ROL.2), the 
database can be restored to a previous state in case of 
error or sabotage. Reliable time stamps (FPT_STM.1) is 
necessary to ensure that the rollback can be done in a safe 
and correct fashion.

O.3.2
Upon restart of the TOE after a malfunction, the TOE will 
aim to return to a functioning state, but failing that, the 
TOE will enter an administrative state where the 
administrator can find the error and correct it.
Automated recovery (FPT_RCV.2) makes it possible for 
the system to enter an administrative state in case it 
cannot restart properly after an error.

7.3. Assurance requirements rationale

EAL2 was chosen to provide a low to moderate level 
of independently assured security since the value of data 
stored in the system combined with the likelihood of data 
loss and/or revelation only motivates such security.

8. PP claims

No PP claims have been made.


