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Abstract 
This work should show how traitor tracing can achieve 
the goal of piracy prevention and which measures can be 
taken against traitors and pirates in consideration of 
different assumptions. In the first part we define traitor 
tracing, its goals, usage and overview some of 
cryptographic schemes that help to trace the source of 
the leak. In the second part we go more detailed into 
asymmetric public-key traitor tracing, one of the 
techniques that support non-repudiation. Implementation 
of such scheme provides undeniable proof of the 
implication of the traitor subscribers. Therefore it gives 
the provider - in the context of pay television – more 
possibilities to take measures against the traitor/pirate.  
 

1. Introduction 
 
Traitor tracing schemes provide protection against illegal 
access to digital data of diverse types, including 
computer software and multimedia objects. The secure 
distribution of digital content stream to an exclusive set 
of subscribers is an important aim that should be 
achieved in the entertainment industry. A very relevant 
application is in the context of Pay-TV. A stream of 
content, which is broadcast through a network, is 
addressed to some privileged users. Only they should be 
able to view certain programs. In this application, the 
programs are normally encrypted. To get the content the 
subscriber need a decoder and some sensitive data – 
decryption keys. However it is desirable by catching any 
pirate decoder to reveal the source of its decryption keys. 
A combination of a traitor tracing scheme and a 
broadcast encryption scheme is a very powerful tool. 
When a traitor is traced, the subset of legitimate users 
can be changed by simply dropping the traced traitor 
from it. 
 
There are two different components in fighting piracy. 
Firstly identifying that piracy is going on and preventing 
the further transmissions of information to the pirate 

(excluding of recipient). Secondly identifying the source 
of the piracy and taking the measure against it. Here go 
traitor tracing schemes into action, they help in three 
aspects of piracy prevention: they deter users from 
cooperating with pirating, they identify the pirates and 
enable to take the legal actions against them. So they can 
be used to disable active pirates users. However the 
symmetric traitor tracing schemes do not support the 
non-repudiation and therefore cannot supply the 
undeniable evidence of the traitors’ treachery. The 
accused traitor can always defend himself by claiming, 
that the dishonest merchant has framed him by reusing 
his personal decryption key. Actually this really can 
happen, as long as the merchant knows the decryption 
key of the users. This is the reason why the asymmetric 
traitor tracing schemes, that support non-repudiation and 
supply the undeniable proof of the traitors fault, could be 
very useful.  We will describe those schemes more 
detailed in the second part of our assignment. 

1.1 Some definitions 
 
Traitor tracing schemes have the desirable property that 
identifying traitor can be achieved by considering the 
pirate decryption process as a black box. In order to 
identify a traitor, it suffices to capture one pirate decoder 
and examine its behavior. We use the term “pirate 
decoder” to represent the pirate decryption process. 
 
The traitor we call an authorized user of the system who 
allows the third party to obtain the data by for example 
leaking (some of) their key information. A pirate is the 
non-authorized party that uses subscriber-key 
information for illegal data reception.  
 
Throughout the paper we name any content that should 
be protected from pirates by encryption as “cleartext” 
and already encrypted form as “ciphertext”. 
 
In today it is often considered sufficient to prevent piracy 
by supplying the legitimate users with special designed 



 

hardware that prevent interference and access to enclosed 
cryptographic keys (token, smartcards). We call such 
solution “secure hardware” or more precisely a “tamper-
resistant box”. 
 

1.2 Problems and challenges 
 
Before any data supplier can take any measure against 
piracy it should first be desirable to determine the 
question of guilt. If only one person knows some secret 
the guilty party is evident. A more complex situation 
arises if a group of people has access to the secret and it 
next becomes public knowledge. Any data that should be 
kept secret from a unauthorized parties, while making it 
available to a certain set of users (e.g. paying subscribers 
of digital TV), can be protected by encryption. The 
subscribers are given keys that are required to decrypt 
the content. However it does not solve the problem 
above. If a pirate user has obtained content in encrypted 
form and all the keys that are required to decrypt it, there 
is technically not possible to prevent her from continuing 
to use the content. Thus the main aim should be to 
prevent traitors from distributing the keys that enable the 
decryption of encrypted content.  

1.3 Sample practical applications 
 
To prevent traitors form distributing their cryptographic 
keys the data supplier has different - more or less 
efficient – possibilities. We assume there are some 
television providers that encrypt the program before 
broadcasting them to the users. Every authorized user is 
given a different key for decrypting the ciphertext. 
Should the key used in a pirate decoder be discovered, it 
will be linked to a personal key of a traitor and this 
traitor will be identified. Obviously, a possible solution 
is to encrypt data separately under different personal 
keys. However it becomes impracticable in any 
broadcast environment for the very reason that the length 
of the ciphertext would grow n times the length of the 
cleartext, where n depicts the number of authorized users 
(as well as number of number of stored keys. It means 
inefficient managing of storage space by provider.).  It is 
also very problematic in the context of online database as 
well as media storage like CD-ROM and DVD because 
this requires producing every copy different form each 
other.  
 
The goal of a traitor tracing scheme is quite similar to 
what is often called fingerprinting with other types of 
data, except that it is not the broadcast data that is 
fingerprinted, but, at least in principle, a cryptographic 
key that is used to decrypt the broadcast data. It means 

simply that the cleartext redistribution is not addressed 
here. The reason for this restriction is that operating a 
pirate TV-broadcast station is too expensive and too 
risky. The formalization of it is that the traitors only 
redistribute information obtained during user 
initialization. This is a much stronger restriction; it 
permits that the traitors cannot be traced if they 
redistribute a tiny amount of data obtained after user 
initialization. Such a definition may fit applications 
where timelines are crucial and the traitors may not be 
able to redistribute even a tiny amount of data fast 
enough. Practical examples could be: services with 
current stock-exchange information, exchange rates of 
the currency, live transmissions from football games or 
others live sport presentations. 
 
In our further consideration we rule simply out cases of 
piracy, which deal with redistribution of cleartext 
because it seems to be not effective. In all such cases 
transmitting the cleartext from the traitor to a pirate-user 
is rather expensive compared to the mass distribution 
channels the legal data supplier uses. It might also be – 
as mentioned above - the case, as with on-line databases 
or newspapers, that the data is continuously changing 
and therefore it is very hard for the pirate to keep an 
updated copy of data.  

1.4 Related areas 
 
1.4.1Broadcast encryption 
The area of broadcast encryption has been studied by 
Fiat and Naor and has received much attention since 
then. It is intended for applications where an information 
provider broadcasts a lot of information in encrypted 
form, and only legitimate users are supposed to be able 
to decrypt it. The typically example is Pay-TV, if the 
information is actually transmitted over a broadcast 
channel. The broadcast encryption schemes in [1] have 
three phases: 

- Provider initialization, where the information 
provider generates some information that he 
will need with all users. (initial records) 

- User initialization, where an individual user 
registers with this information provider. The 
information that the user stores after this phase 
is called this user’s personal key. 

- Session sending. The data are transmitted, 
divided into smaller parts called sessions. Each 
session is encrypted with a different session 
key, and some additional information is 
broadcast that allows all the legitimate users and 
nobody else to decrypt the session key with 
their personal keys, and thus to decrypt the real 
data. 

 



 

Very important is that the model of broadcast encryption 
does not allow interaction between users, neither in 
initialization nor later. This is realistic for applications 
like Pay-TV, and it is one of the features that distinguish 
broadcast encryption from conference key distribution. It 
means that every end user has own set of keys, which he 
need to decrypt the data. Thus it should be guaranteed, to 
find this user, after his set of keys will be traced in any 
pirate decoder. 
 
1.4.2 Fingerprinting 
Fingerprinting is a technique extensively used by law 
enforcement to identify criminals when traces are left 
behind which uniquely match a suspect. Fingerprinting 
schemes are cryptologist mechanisms for the copyright 
protection of digital data. Buyers who redistribute the 
data illegitimately are called traitors. Fingerprinting 
schemes discourage traitors by enabling the original 
merchant of the data to identify the traitor who is the 
original owner of this copy. 
 
Boneh and Shaw [4] have suggested a scheme for 
fingerprinting different copies of an electronic document 
by inserting a different watermark into each copy. The 
scheme has the desirable property that it does not allow 
generation of a new copy whose fingerprint does not 
reveal at least one of the copies that were used. It is 
possible to use the scheme in traitor tracing, but the 
number of keys that each user should have is quite large 
and there are other more efficient solutions. 
 

2. Traitor Tracing Schemes 
 
The notion of tracing system was first introduced by 
Chor, Fiat and Naor in [1], and was later refined to the 
Threshold Traitor model. Its goal is to distribute 
decryption keys to the users so as to allow the detection 
of the key that is used in any pirate decoder or on a new 
created key by colluding traitors using keys of at most 
“t” users. Black-box tracing assumes that only the 
outcome of the decoding box can be examined. Chor and 
Naor provide combinatorial and probabilistic 
constructions that guarantee tracing with high 
probability. The public key tracing scheme of Boneh and 
Franklin [2] provides a number-theoretic deterministic 
method for tracing. 
 
2.1 Assumptions 
 
2.1.1 Cleartext redistribution is not addressed. 
In our further consideration we rule out cases of piracy, 
which deal with redistribution of cleartext because it 

seems to be not effective. It means simply that the 
cleartext redistribution is here not addressed. 
 
2.1.2 No tamper-resistant box. 
We do not assume that the personal keys are in tamper-
resistant boxes, which would prevent the traitors from 
redistribution their secret information. The reason for 
that is that there are several methods that use hardware 
faults in order to reveal the keys that are enclosed inside. 
Furthermore the secure software solutions with good 
tamper-resistant boxes are deemed too expensive. Thus 
we disregard the possibility of application of any tamper-
resist box and assume in our assignment that the traitors 
have found the access to their own personal keys and can 
redistribute them. The goal is to trace them if they do so, 
both for punishment after the fact and for deterring them 
from redistribution in the first place. 
 
2.1.3 Underlying encryption scheme is secure 
The common assumption is that it is hard to break the 
underlying encryption scheme so the pirates will rather 
try to obtain the key information to decrypt the 
scrambled message.  
 
2.2 Different approaches to traitor tracing 
schemes 
 
Fully resilient versus threshold tracing schemes: 
Traitors may conspire and give an unauthorized user (or 
users) a subset of their keys, so that the unauthorized 
user will also able to compute the real message key from 
the values he has been able to decrypt. The goal of the 
system designer is to assign keys to the users so that 
when a pirate decoder is captured it should be possible to 
detect at least one traitor. We distinguish between two 
kinds of tracing schemes. Fully resilient schemes, 
which can be used against any decoder which decrypts 
with non-negligible success probability (tracing of 
source of any pirate decoder), however in many 
application such security is not needed and it is enough 
to fight the pirate decoders which have a considerable 
success probability. (For example, in the pay-TV 
applications pirate decoders, which decrypt only a part of 
the content are probably useless). Thus there are 
threshold schemes, which trace decoders, which decrypt 
with probability greater than some threshold. (q, which is 
a parameter of the scheme. These schemes are 
considerably more efficient than fully resilient schemes.) 
 
Within fully resilient and threshold tracing we can 
distinguish between one or two level tracing and between 
open and secret scheme. Open scheme treats 
circumstances where the decryption schemes used by all 
users are in the public domain, and the decryption keys 
themselves are the only information that is kept secret. 



 

The secret type is where the actual decryption scheme as 
well as the keys are kept secret.  
 
We can combine the different approaches to get different 
schemes, which can be used, as it is desirable. Thus we 
can obtain: fully resilient, open, one-level; fully resilient, 
open, two-level; fully resilient, secret, one-level; fully 
resilient, secret, two-level; threshold, one-level; 
threshold two-level. All the schemes are based on the 
usage of hash functions combined with any symetric 
cryptosystem and do not require of public key 
operations. The basic usage of hash functions is to assign 
decryption keys to authorized users. The two level 
schemes are more complicated but reduce the size of the 
enabling block. The fully resilient scheme has a short 
key length but the data redundancy overhead is quite 
large. The threshold schemes feature a tradeoff between 
the length of the personal key and the data redundancy 
overhead. It is possible to make one parameter very 
small by increasing the other parameter, and it is possible 
to achieve reasonable results for both measures. 
 
Which of the previous schemes will be applied depend 
on the aim of the security scope and on the requirements 
(generally equipment) for an authorized user or 
requirements for the data supplier. The efficiency of the 
solution to fighting piracy can be measured in terms of 
several performance parameters. The parameters are the 
memory and computation requirements for both: an 
authorized user and the data supplier. It seems to get 
special importance if the user has limited computation 
and storage capabilities. Nowadays these parameters are 
less important for the data suppliers since they can use 
large storage space and perform its computation offline. 
A further efficiency parameter is the data redundancy 
overhead. It means the increase in data size that is 
needed in order to enable the tracing. This refers to the 
communication overhead (in broadcast or online 
systems) or the additional “wasted” storage on CD-ROM 
or DVD type systems. 
 
Table 1 shows an example of complexity of different 
tracing  traitors schemes. 
 
 
Public Key Traitor Tracing: Boneh and Franklin [2] 
investigated public key traitor tracing schemes, which 
enable public key encryption and, being based on a 
number-theoretic assumption, are more efficient than 
combinatorial tracing (described below). In public-key 
traitor tracing, there is one authority that is responsible 
for the broadcasting infrastructure (which we call the 
system manager) and several, non-trusted, content-

distributors that may take advantage of the public-key 
encryption procedure (published by the system manager) 
to distribute content to the subscribers of the system. 
 
The combinatorial Tracing Schemes: Their properties 
were presented by Stinson and Wei in [10], and Staddon 
[11] investigated the relations between combinatorial 
tracing schemes and broadcast encryption schemes. 
 
Self-enforcement schemes: In conjunction with 
identifying the traitor by copyright protection there has 
been suggested a lot of different schemes. Dwork, 
Lotspiech, and Naor [3] presented self-enforcement 
schemes, where the content is encrypted and each 
legitimate user receives a different decryption key which 
includes some sensitive information related to the user 
(e.g. his credit card number). Users will be not willing to 
disclose their keys to other since the keys contain this 
sensitive information. However this scheme is less 
efficient because of the size of the personal key and of 
the data redundancy. 
 
Dynamic traitor tracing schemes: Finally, Fiat and 
Tassa [5] introduced dynamic tracing schemes in which, 
in order to locate the traitor, the tracing algorithm 
dynamically changes the content that is being broadcast 
to different subsets of the users. These schemes enable 
tracing even if the traitor is revealing the content itself 
and not only the keys that encrypt it.  
 
2.3 Construction of traitor tracing schemes 
 
The message in a traitor tracing scheme consists of an 
enabling block and cipher block. The cipher block is a 
part of the encrypted content of data (a few seconds of 
music or video clip) under some secret random key ‘s’. 
The enabling block allows authorized users to obtain key 
‘s’. It consists of several encrypted elements and every 
user will be able to compute ‘s’ by decrypting the values 
from the enabling block for which he has keys and then 
computing the actual key from these elements. 
 
An adversary who wants to decrypt the message can 
either break the encryption scheme that was used in the 
cipher block (without using any information from the 
enabling block), or try to learn some information from 
the enabling block, that might help in the decryption 
process. The common assumption is that it is hard to 
break the underlying encryption scheme so one is 
interested in preventing attacks of the latter kind. 
 
 

 
 



 

 
Table1. Examples of the complexity of different Tracing Traitors Schemes, using n=106, k=500, p=10-3, q=3/4, 

 
p – Error probability, (probability that pirates cannot be traced. 
q – Threshold parameter 
n – Number of users 
k – Number of traitors 
 
 PROPERTY PERSONAL 

KEY 
DATA 

REDUNDANCY 
DECRYPTION 
OPERATIONS 

Trivial  1 1.000.000 1 
Secret two-
level 

Best fully-res 493 11.300.000 493 

Threshold One-level, min. data redun. 26.500 2000 1 
Threshold Two-level, min.key 1.570 82.000 8 
Threshold Two-level min.key 370 574.000 12 
Threshold tradeoff 6.300 27.500 3 
 
 
 
 
We restrict ourselves to the so-called one-level schemes 
from the Chor-Fiat-Naor Schemes. They consist of the 
following common elements: 

- Provider initialization, where the information 
provider generates l sets of b keys each. These 
keys also belong to the given symmetric 
encryption scheme. We call each   such  set  a  
bucket.  The  keys  in  the   i-th   bucket   are    
denoted: keyi,1, keyi,2, …keyl,b. 

- User initialization, where each user gets one key 
from each bucket. We call the indices of these 
keys the user’s codeword.  

- Session key s is the xor (the bitwise exclusive 
or), of l random values s1, s2, …sl, which we 
call shares of the session key. 

- The enabling block contains for all i, the 
encryptions of si under each key of the i-th 
bucket. Each user that has one key from the i-th 
bucket, can decrypt one of these b encryptions 
of the i-th share and finally reconstruct the 
session key s. 

 
 

 

 
 

Fig.1. A high-level view of the traitor tracing scheme 
 



 

 

l \ b 1 2 … b 
 

1 key 1,1 key 1,2 … key 1,b set / bucket 

2 key 2,1 key 2,2 … key 2,b 
 

… … … … … 
 

l key l,1 key 1,2 … key l,b 
 

 
Fig.2. Keys for the simple one-level scheme. 

 

3. Asymmetric traitor tracing 
 
The traitor tracing schemes as we described in the first 
part of our assignment are intended for tracing people 
who betray the content provider by giving away their 
decryption keys to the unauthorized users (pirates). 
These schemes should provide an evidence of the 
traitor’s treachery, thus allowing the content provider to 
take some actions against the dishonest user. However, 
the symmetric traitor tracing schemes cannot provide the 
undeniable proof of the traitor’s fault that could 
unambiguously convince a third party. The reason for 
this is the symmetry assumption underlying the scheme. 
The legitimate users share all their secrets with the 
information provider so it is not possible to distinguish 
the source of the leak. The seemingly redistributed 
information could just as well be produced by the 
dishonest user, as by the content provider himself (or 
some of his employees). Actually this property seems 
very undesirable in the context of the efficiency of the 
tracing scenario against piracy. It prevents the system 
manager from pressing criminal charges against 
subscribers that leak their key-information, thus 
significantly lowering the commercial viability of piracy. 
In our opinion this is a very important aspect of the 
piracy problem in conjunction with digital content 
distribution. In the times, when key information can be 
easily redistributed on the Internet with only low 
probability of being traced, the seriousness of possible 
consequences should be the factor that deters users from 
treachery.  For this reason we want to focus in our 
assignment on asymmetric traitor tracing algorithms and 
how they can be used against the illegal users of the 
digital content distribution systems. 

3.1 Assumptions 
 
In the asymmetric variant of traitor tracing the merchant 
is not considered as trusted and may attempt to frame a 
buyer by embedding the buyer's codeword in a second 
copy of the object. Thus the tracing procedure must 
produce undeniable proof of the implication of the traitor 
subscribers. In this scheme the content provider that 
finds the pirate decoder is confronted with information 
that he could not have produced on his own.  
 
3.1.1 The goal: non-repudiation 
The underlying assumption of asymmetry should provide 
for achieving non-repudiation. The tracing algorithm 
should produce a solid proof for the implication of the 
traitor that could convince a third party of the user’s 
guilt. Such a proof lets the content provider not only take 
some unilateral measures against the traitor (e.g. 
disconnect him from the service) but is also a base for 
pressing criminal charges. 
 
3.1.2 First asymmetric traitor tracing schemes 

 
The existence of asymmetric traitor tracing scheme was 
first shown by Pfitzmann in [6], who also introduced the 
setting of asymmetric traitor tracing. She presented 
several example constructions of asymmetric traitor 
tracing based on combining the symmetric scheme with a 
protocol for secure two party computation. However 
these schemes were of little practical importance because 
of their inefficiency for practical use. 
 
Later another scheme was presented by Kurosawa and 
Desmedt in [7]. They make use of threshold mechanism 
to ensure the non-repudiation property. In this scheme 
the capability to implicate the innocent user is shared 
between a number of authorities.  
 
In [12] the involvement of trusted third parties has been 
eliminated. This scheme uses the oblivious polynomial 
evaluation and it was meant to be the first concrete 
construction of a practical asymmetric public-key traitor 
tracing scheme that does not rely on trusted agents. 
However, a flaw has been shown in this scheme by 
Kiayias and Yung in [8], who have provided a proof that 
“Any collusion of traitors of more than a single user can 
generate keys that are not traceable in the scheme of 
[12]”.  
 
In the same paper the authors also break another 
asymmetric scheme, presented in [9]. They claim in 
some circumstances tracing in the scheme of [9] would 
require exponential time, “as the tracer will have to use 
in the decoding algorithm all possible values of the 
underlying finite field Zq which is exponentially large 



 

(the size of an element in the underlying finite field 
coincides with the security parameter of the system).” 
 
Finally most our attention has been focused on the 
already mentioned [8]. Authors of the scheme not only 
critically analyze the already existing schemes, break 
their efficiency claims (by providing convincing proofs), 
but also present their own suggestion for efficient 
asymmetric public-key traitor tracing scheme, that 
should be comparable in efficiency to previous non-
asymmetric schemes. The efficiency has been proved in 
the “non-black box” traitor tracing model. We want to 
present the idea of this proposition as an example of an 
asymmetric traitor tracing scheme, because we believe 
that this is the most efficient and practical solution 
suggested so far in this area. 
 

3.2 Preliminaries 

3.2.1 Decisional Diffie Hellman 
The scheme we present assumes working in a 
multiplicative cyclic group G1 of large prime order2 over 
which solving the Decisional Diffie Hellman (DDH) 
problem is hard. 
 
The hardness of computing discrete logarithms in some 
large finite groups has been the basis for many 
cryptographic schemes and protocols, starting form the 
Diffie-Hellman key exchange protocol, and continuing 
with encryption and signatures schemes, as well as 
protocols for numerous other applications. However, 
since the unconditional statements regarding the 
computational hardness of computing discrete logarithms 
could not been proved, mathematical assumptions 
regarding the computational hardness of this set of 
problems are formulated. Based on these assumptions 
properties of the protocols are proved. One of those 
assumptions is Decisional Diffie Hellman, formulated as 
follows: 
 
The Decisional Diffie-Hellman (DDH) Problem: 
Given a group G, a generator3 g of G, and three elements 

                                                 
1 Def. The multiplicative group Zm is the set of elements 
in Zm that are relatively prime to m. It is denoted by Zm*. 
If p is prime then Zp* = {1, … , p – 1}. For every prime 
p, Zp* is cyclic. 
2 Def. For a ∈ Zm*, the order of a is the smallest positive 
integer t such that at = 1 (mod m). 
3 If there exists an element α  ∈ Zn* whose order is σ(n) 
then this element is called a primitive element, or a 
generator of Zn*, and Zn* is said to be cyclic.  
 

a, b, c ∈ G, decide whether there exist integers x, y such 
that a = gx,    b = gy, and c = gxy. 
 
The Decisional Diffie-Hellman (DDH) Assumption: 
Any probabilistic polynomial time algorithm solves the 
DDH problem only with negligible probability. 
 
For example G can be the subgroup of order q of Zp*, 
where q | p – 1 and p, q are large primes. In the following 
g will denote a generator of G. Arithmetic in the 
exponents is performed in the finite field Zq. 
Let h0, h1, … , hv be random elements of G so that hj := 
grj for j = 0, … , v. For a certain element y := gb of G a 
representation of y with respect to the base h0, … , hv is a 
(v + 1) - vector δ := < δ0, … , δv> such that y = h0 δ0 … hv 
δv, or equivalently δ . r = b where . denotes the inner 
product between two vectors. Obtaining representations 
of a given y w.r.t. some given base h0, … , hv is as hard 
as the discrete-log problem over G. 

3.2.2 Oblivious Polynomial Evaluation 
The basic building block to achieve asymmetry and non-
repudiation property in [8] is oblivious polynomial 
evaluation (OPE). 
 
An OPE protocol involves two parties: 

- The sender S, who possesses a secret 
polynomial P ∈ Zq[x], 

- The receiver R, who possesses a secret value α  
∈ Zq. 

The protocol allows the receiver to compute the 
evaluation of the sender’s polynomial P over its secret 
value α in such a way that: 

- The sender S cannot extract any non-trivial 
information about the value α. 

- The receiver R cannot extract any information 
about the polynomial P, other than what can be 
trivially extracted from the value P(α). 

 
In [8] a two communication flow protocol is assumed, 
where {OPE}(α) denotes the data transmitted by the 
receiver R to the sender S in the first flow, and 
{OPE}(P(α)) denotes the data transmitted by the sender 
to the receiver in the second communication flow. 
According to the properties of oblivious polynomial 
evaluation {OPE}(α) does not yield any non-trivial 
information about the value α, and {OPE}(P(α)) contains 
enough information for the receiver to compute P(α) but 
not any further non-trivial information about the secret 
polynomial P.  
 
Additionally the OPE used in [8] has two properties: 

1. It is malleable: given {OPE}(α) the sender can 
easily compute {OPE}(α + α’), for a random α’. 



 

2. It is performed over a publicly committed value 
(α can be thought of as a private key whose 
public key is publicly known). 

 

3.3 General scheme of asymmetric public-key 
traitor tracing 
 
Asymmetric Traitor Tracing scheme usually involves 
following parties: 

- the system-manager – the system-manager is 
responsible for administrating the system, 
issuing subscriber information and tracing pirate 
devices. 

- the subscribers (users) 
- the content providers – merchants that use the 

system to distribute encrypted data to some set 
of subscribers 

- the judge – a third party (not necessarily 
trusted) that will perform the verification of the 
proof provided by the system-manager. On the 
basis of the verification results the judge should 
decide of the user’s guilt or innocence.  

 
Asymmetric traitor tracing scheme consists of following 
elements: 

- Join. 
Initialization of the new user. As the result of 
the protocol each new user will be assigned a 
personal key. The personal key should be 
assigned in such a way that it guarantees non-
repudiation on the one hand, but is not entirely 
known to the system-manager on the other 
(otherwise the asymmetry would be broken). 

- Encryption. 
The procedure for sending encrypted data to the 
set of users that can be used by any third party 
(any content provider). 

- Decryption. 
An algorithm that can be used in conjunction 
with secret key material by the user to decrypt 
the scrambled data and obtain plaintext. 

- Traitor Tracing and Trial. 
An algorithm that can be applied by the system-
manager to the information found in pirate 
decoder to find out the identities of the users 
that have revealed their keys. This algorithm 
should provide non-repudiable information, 
which can be verified in a trial by a judge. 
 

We say that a scheme is asymmetric if it satisfies the 
following properties: 

- frameproof: the system manager cannot frame 
any of the innocent users   

- direct non-repudiation: tracing algorithm should 
produce undeniable proof of the implication of 
the traitors in the construction of pirate decoder.  
Such a proof should be verifiable for any third 
party (a judge) without the participation of the 
subscribers of the system. 

 

3.4 The sample implementation. 
 
The following section presents one of the possible 
implementations of asymmetric traitor tracing schemes 
introduced in [8], which as we believe is the most 
practical and efficient one developed as far. 
 
3.4.1 Assumptions. 
We assume that every user that wants to join the protocol 
possesses a digital signature mechanism, signu, which 
he/she can use to uniquely sign messages. There is also a 
corresponding verification algorithm, verifu, that can be 
used by any third party to verify the authenticity of the 
signed message.  
 
3.4.2 Initialization. 
During the system initialization the system-manager 
selects one random polynomial in the form of: Q1(x) = a0 

+ a1x + … + a2vx2v over Zq, and a random b ∈ Zq and sets 
y = a0 and h0 = g, h1 = g-a1,…, h2v = g-a2v, h’ = g-b. Let 
Q(x,y) := Q1(x) + by. 
The public key of the system, that can be used by any 
content provider to encrypt the transmitted data is 
published as the tuple <y, h0, … , h2v, h’>. 
 
3.4.3 Join protocol. 
To let a new user obtain a subscription service the 
system-manager and the user must carry out the join 
procedure. The goal of this procedure is to allow the new 
user u to compute a point <zu, αu, Q(zu, αu)> of the 
polynomial Q so that: zu is randomly selected by the 
system-manager and αu = αu

C + αu
R where αu

C  is a values 
selected and committed by the user (and remains secret 
to the system-manager), and the value αu

R is randomly 
selected by the system  manager.  The commitment  of 
the  user  u  to the  value  αu

C  will be of the  form  
<Cu = g αuC, signu (Cu)>, where signu (Cu) means the 
value Cu signed with the private key of the user. The 
value αu equals αu

C + αu
R. 

The join protocol can be implemented by employing an 
instantiation of a OPE over a committed value. 
After the completion of the Join procedure, the user’s u 
secret personal key is the vector Ku := <Q(zu, αu), zu, zu

2
, 

… , zu
2v

, αu>.  



 

 
At this place the following two goals are achieved, that 
serve the purpose of the system’s asymmetry and non-
repudiation: after the Join protocol the user is in 
possession of a valid secret-key of the system and is not 
known to the system-manager and  the system-manager 
holds a non-repudiable commitment of the user to the 
secret portion of the user’s secret key.  
 
3.4.4 Encryption. 
Any content provider can use the encryption function to 
distribute data to the selected set of subscribers. To do so 
he must obtain the public-key of the system (calculated 
by the system-manager during the system initialization), 
pk := <y, h0, … , h2v, h’>.  He can then encrypt a 
plaintext M as follows: <yr  . M, h0

r, … , h2v
r, (h’)r > 

where r is a random integer less than q. So the encryption 
function is defined as follows: 
 

Ε(pk, M) = <yr  . M, h0
r, … , h2v

r, (h’)r > 
 
 
3.4.5 Decryption. 
Any ciphertext can be decrypted using a representation 
of y w.r.t. the base h0, … , h2v, h’. Given a ciphertext G̃ 
:= <G, G0, G1, …, G2v, G’> and a representation of the 
key K := <δ0, … , δ2v, δ’> the decryption function is 
defined as follows: 

                    2v 
D(G̃, K) := G/((G’) δ’ Π (Gj) δj) 

                                         j=0 

 
3.4.6 Traitor Tracing. 
The set of all possible decryption keys is identified with 
the set of all representations of y, because every 
representation of y w.r.t. the base h0, … , h2v, h’ can be 
used as a decryption key. If some of the dishonest users 
collude to produce a new decryption key they can make 
up an arbitrary representation of it, but only as a linear 
combinations of the secret-keys the traitors possess. 
 
We can define following the problem to be resolved in 
order to achieve asymmetric traitor tracing. 
Input. A vector K = Σt

l=1 µlKul, where {u1, … , ut} ⊆ {1, 
…, n} is the set of traitor users and n is the number of all 
users in the system and integers z1, … , zn,  that defined a 
portion of the secret-key Ku of every user. 
Output. The indices {u1, … , ut} and the values {µ1, … , 
µt}. 
 
The efficient algorithmic construction for the Traitor 
Tracing problem as presented above based on Decoding 
of Algebraic Codes has been introduced in [8]. The 
efficiency of this algorithm is O(n2) (if the Berlekamp-
Welch algorithm is implemented), but more efficient 

implementations are possible to reduce the complexity to 
O(n(log n)2). For the detailed construction of this 
algorithm the reader is referred to [8]. 
 
3.4.7 The Trial. 
The system-manager carry out traitor tracing procedure 
on the pirate key  
K = <K0, K1, … , K2v, K’>  with K = Σt

l=1 µlKul where 
{u1, … , ut} ⊆ {1, …, n} is the set of traitor users and 
obtains as output the vector v = <v1, … , vn> where vul = 
ul for l = 1, … , t and v1 = 0 for all i ∈ {1, … , n} – {u1, 
… ,ut}.  He must afterwards convince the judge of the 
implication of the users {u1, … , ut} into construction of  
the pirate key K. This is performed in the following way: 
the system-manager presents to the judge the vector v, 
the pirate key K, the values αu1

R, … , αut
R and the 

commitments of the suspected users Cu1;signu1(Cu1), … , 
Cut;signut(Cut) (generated during the join procedure). The 
judge first verifies all signatures by applying the 
verification algorithms  
verifu1, … , verifut on them. Afterwards he verifies if the 
following equation is true: 

t 

Π (Culg αu1R) vul = g K’ 
                     l=1 

If the equation holds the judge concludes that indeed the 
users {u1, … ,ut} were implicated in the construction of 
the pirate device with the key K. As we can notice the 
direct non-repudiation is obtained: any third party can 
obtain a proof of the traitors’ implication in the treachery 
using the information provided by the tracer without the 
direct participation of the suspected users.  
 

4. Summary and Outlook 
 
In our assignment we have presented traitor tracing as 
one of the mechanisms that can be applied to prevent 
illegal digital content distribution. The idea behind traitor 
tracing algorithms is to deter the legal subscribers form 
leaking their key information to the pirates, as it will 
prevent the creation of pirate decoders. For that reason 
traitor tracing can be a powerful tool (especially in 
conjunction with fingerprinting methods) for tracing the 
dishonest users and punishing them for the treachery. 
However, the most popular and best developed 
symmetric traitor tracing algorithms have, in our 
opinion, a major drawback: they cannot be used for 
obtaining legal evidence that can convince any third 
party (a judge) of the implication of the suspected user in 
the construction of pirate device. The existence of such 
evidence would allow the system-manager to undertake 
some legal actions against the traitors, thus making the 
treachery less attractive and more dangerous. The 



 

asymmetric traitor tracing schemes belong, 
unfortunately, to the least developed and researched area, 
although some interesting publications presenting more 
practical and convincing implementations of the 
asymmetric algorithms have appeared recently. We have 
presented in our assignment one of them as an example 
of how such a problem can be solved theoretically. For 
the time being we do not know about any real life 
implementation of such solutions, but the economical 
need for digital rights protection will most probably 
force the deployment of similar schemes in the future. 
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