

Copyright Protection with Traitor Tracing schemes and supplying undeniable
proof of the traitor’s treachery by means of Asymmetric Traitor Tracing

Agnieszka Dembczynska and Pawel Kaniewski

Departament of Computer Science,
Linköping Institute of Technology, Sweden

agnde942@student.liu.se
pawka317@student.liu.se

Abstract
This work should show how traitor tracing can achieve
the goal of piracy prevention and which measures can be
taken against traitors and pirates in consideration of
different assumptions. In the first part we define traitor
tracing, its goals, usage and overview some of
cryptographic schemes that help to trace the source of
the leak. In the second part we go more detailed into
asymmetric public-key traitor tracing, one of the
techniques that support non-repudiation. Implementation
of such scheme provides undeniable proof of the
implication of the traitor subscribers. Therefore it gives
the provider - in the context of pay television – more
possibilities to take measures against the traitor/pirate.

1. Introduction

Traitor tracing schemes provide protection against illegal
access to digital data of diverse types, including
computer software and multimedia objects. The secure
distribution of digital content stream to an exclusive set
of subscribers is an important aim that should be
achieved in the entertainment industry. A very relevant
application is in the context of Pay-TV. A stream of
content, which is broadcast through a network, is
addressed to some privileged users. Only they should be
able to view certain programs. In this application, the
programs are normally encrypted. To get the content the
subscriber need a decoder and some sensitive data –
decryption keys. However it is desirable by catching any
pirate decoder to reveal the source of its decryption keys.
A combination of a traitor tracing scheme and a
broadcast encryption scheme is a very powerful tool.
When a traitor is traced, the subset of legitimate users
can be changed by simply dropping the traced traitor
from it.

There are two different components in fighting piracy.
Firstly identifying that piracy is going on and preventing
the further transmissions of information to the pirate

(excluding of recipient). Secondly identifying the source
of the piracy and taking the measure against it. Here go
traitor tracing schemes into action, they help in three
aspects of piracy prevention: they deter users from
cooperating with pirating, they identify the pirates and
enable to take the legal actions against them. So they can
be used to disable active pirates users. However the
symmetric traitor tracing schemes do not support the
non-repudiation and therefore cannot supply the
undeniable evidence of the traitors’ treachery. The
accused traitor can always defend himself by claiming,
that the dishonest merchant has framed him by reusing
his personal decryption key. Actually this really can
happen, as long as the merchant knows the decryption
key of the users. This is the reason why the asymmetric
traitor tracing schemes, that support non-repudiation and
supply the undeniable proof of the traitors fault, could be
very useful. We will describe those schemes more
detailed in the second part of our assignment.

1.1 Some definitions

Traitor tracing schemes have the desirable property that
identifying traitor can be achieved by considering the
pirate decryption process as a black box. In order to
identify a traitor, it suffices to capture one pirate decoder
and examine its behavior. We use the term “pirate
decoder” to represent the pirate decryption process.

The traitor we call an authorized user of the system who
allows the third party to obtain the data by for example
leaking (some of) their key information. A pirate is the
non-authorized party that uses subscriber-key
information for illegal data reception.

Throughout the paper we name any content that should
be protected from pirates by encryption as “cleartext”
and already encrypted form as “ciphertext”.

In today it is often considered sufficient to prevent piracy
by supplying the legitimate users with special designed

hardware that prevent interference and access to enclosed
cryptographic keys (token, smartcards). We call such
solution “secure hardware” or more precisely a “tamper-
resistant box”.

1.2 Problems and challenges

Before any data supplier can take any measure against
piracy it should first be desirable to determine the
question of guilt. If only one person knows some secret
the guilty party is evident. A more complex situation
arises if a group of people has access to the secret and it
next becomes public knowledge. Any data that should be
kept secret from a unauthorized parties, while making it
available to a certain set of users (e.g. paying subscribers
of digital TV), can be protected by encryption. The
subscribers are given keys that are required to decrypt
the content. However it does not solve the problem
above. If a pirate user has obtained content in encrypted
form and all the keys that are required to decrypt it, there
is technically not possible to prevent her from continuing
to use the content. Thus the main aim should be to
prevent traitors from distributing the keys that enable the
decryption of encrypted content.

1.3 Sample practical applications

To prevent traitors form distributing their cryptographic
keys the data supplier has different - more or less
efficient – possibilities. We assume there are some
television providers that encrypt the program before
broadcasting them to the users. Every authorized user is
given a different key for decrypting the ciphertext.
Should the key used in a pirate decoder be discovered, it
will be linked to a personal key of a traitor and this
traitor will be identified. Obviously, a possible solution
is to encrypt data separately under different personal
keys. However it becomes impracticable in any
broadcast environment for the very reason that the length
of the ciphertext would grow n times the length of the
cleartext, where n depicts the number of authorized users
(as well as number of number of stored keys. It means
inefficient managing of storage space by provider.). It is
also very problematic in the context of online database as
well as media storage like CD-ROM and DVD because
this requires producing every copy different form each
other.

The goal of a traitor tracing scheme is quite similar to
what is often called fingerprinting with other types of
data, except that it is not the broadcast data that is
fingerprinted, but, at least in principle, a cryptographic
key that is used to decrypt the broadcast data. It means

simply that the cleartext redistribution is not addressed
here. The reason for this restriction is that operating a
pirate TV-broadcast station is too expensive and too
risky. The formalization of it is that the traitors only
redistribute information obtained during user
initialization. This is a much stronger restriction; it
permits that the traitors cannot be traced if they
redistribute a tiny amount of data obtained after user
initialization. Such a definition may fit applications
where timelines are crucial and the traitors may not be
able to redistribute even a tiny amount of data fast
enough. Practical examples could be: services with
current stock-exchange information, exchange rates of
the currency, live transmissions from football games or
others live sport presentations.

In our further consideration we rule simply out cases of
piracy, which deal with redistribution of cleartext
because it seems to be not effective. In all such cases
transmitting the cleartext from the traitor to a pirate-user
is rather expensive compared to the mass distribution
channels the legal data supplier uses. It might also be –
as mentioned above - the case, as with on-line databases
or newspapers, that the data is continuously changing
and therefore it is very hard for the pirate to keep an
updated copy of data.

1.4 Related areas

1.4.1Broadcast encryption
The area of broadcast encryption has been studied by
Fiat and Naor and has received much attention since
then. It is intended for applications where an information
provider broadcasts a lot of information in encrypted
form, and only legitimate users are supposed to be able
to decrypt it. The typically example is Pay-TV, if the
information is actually transmitted over a broadcast
channel. The broadcast encryption schemes in [1] have
three phases:

- Provider initialization, where the information
provider generates some information that he
will need with all users. (initial records)

- User initialization, where an individual user
registers with this information provider. The
information that the user stores after this phase
is called this user’s personal key.

- Session sending. The data are transmitted,
divided into smaller parts called sessions. Each
session is encrypted with a different session
key, and some additional information is
broadcast that allows all the legitimate users and
nobody else to decrypt the session key with
their personal keys, and thus to decrypt the real
data.

Very important is that the model of broadcast encryption
does not allow interaction between users, neither in
initialization nor later. This is realistic for applications
like Pay-TV, and it is one of the features that distinguish
broadcast encryption from conference key distribution. It
means that every end user has own set of keys, which he
need to decrypt the data. Thus it should be guaranteed, to
find this user, after his set of keys will be traced in any
pirate decoder.

1.4.2 Fingerprinting
Fingerprinting is a technique extensively used by law
enforcement to identify criminals when traces are left
behind which uniquely match a suspect. Fingerprinting
schemes are cryptologist mechanisms for the copyright
protection of digital data. Buyers who redistribute the
data illegitimately are called traitors. Fingerprinting
schemes discourage traitors by enabling the original
merchant of the data to identify the traitor who is the
original owner of this copy.

Boneh and Shaw [4] have suggested a scheme for
fingerprinting different copies of an electronic document
by inserting a different watermark into each copy. The
scheme has the desirable property that it does not allow
generation of a new copy whose fingerprint does not
reveal at least one of the copies that were used. It is
possible to use the scheme in traitor tracing, but the
number of keys that each user should have is quite large
and there are other more efficient solutions.

2. Traitor Tracing Schemes

The notion of tracing system was first introduced by
Chor, Fiat and Naor in [1], and was later refined to the
Threshold Traitor model. Its goal is to distribute
decryption keys to the users so as to allow the detection
of the key that is used in any pirate decoder or on a new
created key by colluding traitors using keys of at most
“t” users. Black-box tracing assumes that only the
outcome of the decoding box can be examined. Chor and
Naor provide combinatorial and probabilistic
constructions that guarantee tracing with high
probability. The public key tracing scheme of Boneh and
Franklin [2] provides a number-theoretic deterministic
method for tracing.

2.1 Assumptions

2.1.1 Cleartext redistribution is not addressed.
In our further consideration we rule out cases of piracy,
which deal with redistribution of cleartext because it

seems to be not effective. It means simply that the
cleartext redistribution is here not addressed.

2.1.2 No tamper-resistant box.
We do not assume that the personal keys are in tamper-
resistant boxes, which would prevent the traitors from
redistribution their secret information. The reason for
that is that there are several methods that use hardware
faults in order to reveal the keys that are enclosed inside.
Furthermore the secure software solutions with good
tamper-resistant boxes are deemed too expensive. Thus
we disregard the possibility of application of any tamper-
resist box and assume in our assignment that the traitors
have found the access to their own personal keys and can
redistribute them. The goal is to trace them if they do so,
both for punishment after the fact and for deterring them
from redistribution in the first place.

2.1.3 Underlying encryption scheme is secure
The common assumption is that it is hard to break the
underlying encryption scheme so the pirates will rather
try to obtain the key information to decrypt the
scrambled message.

2.2 Different approaches to traitor tracing
schemes

Fully resilient versus threshold tracing schemes:
Traitors may conspire and give an unauthorized user (or
users) a subset of their keys, so that the unauthorized
user will also able to compute the real message key from
the values he has been able to decrypt. The goal of the
system designer is to assign keys to the users so that
when a pirate decoder is captured it should be possible to
detect at least one traitor. We distinguish between two
kinds of tracing schemes. Fully resilient schemes,
which can be used against any decoder which decrypts
with non-negligible success probability (tracing of
source of any pirate decoder), however in many
application such security is not needed and it is enough
to fight the pirate decoders which have a considerable
success probability. (For example, in the pay-TV
applications pirate decoders, which decrypt only a part of
the content are probably useless). Thus there are
threshold schemes, which trace decoders, which decrypt
with probability greater than some threshold. (q, which is
a parameter of the scheme. These schemes are
considerably more efficient than fully resilient schemes.)

Within fully resilient and threshold tracing we can
distinguish between one or two level tracing and between
open and secret scheme. Open scheme treats
circumstances where the decryption schemes used by all
users are in the public domain, and the decryption keys
themselves are the only information that is kept secret.

The secret type is where the actual decryption scheme as
well as the keys are kept secret.

We can combine the different approaches to get different
schemes, which can be used, as it is desirable. Thus we
can obtain: fully resilient, open, one-level; fully resilient,
open, two-level; fully resilient, secret, one-level; fully
resilient, secret, two-level; threshold, one-level;
threshold two-level. All the schemes are based on the
usage of hash functions combined with any symetric
cryptosystem and do not require of public key
operations. The basic usage of hash functions is to assign
decryption keys to authorized users. The two level
schemes are more complicated but reduce the size of the
enabling block. The fully resilient scheme has a short
key length but the data redundancy overhead is quite
large. The threshold schemes feature a tradeoff between
the length of the personal key and the data redundancy
overhead. It is possible to make one parameter very
small by increasing the other parameter, and it is possible
to achieve reasonable results for both measures.

Which of the previous schemes will be applied depend
on the aim of the security scope and on the requirements
(generally equipment) for an authorized user or
requirements for the data supplier. The efficiency of the
solution to fighting piracy can be measured in terms of
several performance parameters. The parameters are the
memory and computation requirements for both: an
authorized user and the data supplier. It seems to get
special importance if the user has limited computation
and storage capabilities. Nowadays these parameters are
less important for the data suppliers since they can use
large storage space and perform its computation offline.
A further efficiency parameter is the data redundancy
overhead. It means the increase in data size that is
needed in order to enable the tracing. This refers to the
communication overhead (in broadcast or online
systems) or the additional “wasted” storage on CD-ROM
or DVD type systems.

Table 1 shows an example of complexity of different
tracing traitors schemes.

Public Key Traitor Tracing: Boneh and Franklin [2]
investigated public key traitor tracing schemes, which
enable public key encryption and, being based on a
number-theoretic assumption, are more efficient than
combinatorial tracing (described below). In public-key
traitor tracing, there is one authority that is responsible
for the broadcasting infrastructure (which we call the
system manager) and several, non-trusted, content-

distributors that may take advantage of the public-key
encryption procedure (published by the system manager)
to distribute content to the subscribers of the system.

The combinatorial Tracing Schemes: Their properties
were presented by Stinson and Wei in [10], and Staddon
[11] investigated the relations between combinatorial
tracing schemes and broadcast encryption schemes.

Self-enforcement schemes: In conjunction with
identifying the traitor by copyright protection there has
been suggested a lot of different schemes. Dwork,
Lotspiech, and Naor [3] presented self-enforcement
schemes, where the content is encrypted and each
legitimate user receives a different decryption key which
includes some sensitive information related to the user
(e.g. his credit card number). Users will be not willing to
disclose their keys to other since the keys contain this
sensitive information. However this scheme is less
efficient because of the size of the personal key and of
the data redundancy.

Dynamic traitor tracing schemes: Finally, Fiat and
Tassa [5] introduced dynamic tracing schemes in which,
in order to locate the traitor, the tracing algorithm
dynamically changes the content that is being broadcast
to different subsets of the users. These schemes enable
tracing even if the traitor is revealing the content itself
and not only the keys that encrypt it.

2.3 Construction of traitor tracing schemes

The message in a traitor tracing scheme consists of an
enabling block and cipher block. The cipher block is a
part of the encrypted content of data (a few seconds of
music or video clip) under some secret random key ‘s’.
The enabling block allows authorized users to obtain key
‘s’. It consists of several encrypted elements and every
user will be able to compute ‘s’ by decrypting the values
from the enabling block for which he has keys and then
computing the actual key from these elements.

An adversary who wants to decrypt the message can
either break the encryption scheme that was used in the
cipher block (without using any information from the
enabling block), or try to learn some information from
the enabling block, that might help in the decryption
process. The common assumption is that it is hard to
break the underlying encryption scheme so one is
interested in preventing attacks of the latter kind.

Table1. Examples of the complexity of different Tracing Traitors Schemes, using n=106, k=500, p=10-3, q=3/4,

p – Error probability, (probability that pirates cannot be traced.
q – Threshold parameter
n – Number of users
k – Number of traitors

 PROPERTY PERSONAL

KEY
DATA

REDUNDANCY
DECRYPTION
OPERATIONS

Trivial 1 1.000.000 1
Secret two-
level

Best fully-res 493 11.300.000 493

Threshold One-level, min. data redun. 26.500 2000 1
Threshold Two-level, min.key 1.570 82.000 8
Threshold Two-level min.key 370 574.000 12
Threshold tradeoff 6.300 27.500 3

We restrict ourselves to the so-called one-level schemes
from the Chor-Fiat-Naor Schemes. They consist of the
following common elements:

- Provider initialization, where the information
provider generates l sets of b keys each. These
keys also belong to the given symmetric
encryption scheme. We call each such set a
bucket. The keys in the i-th bucket are
denoted: keyi,1, keyi,2, …keyl,b.

- User initialization, where each user gets one key
from each bucket. We call the indices of these
keys the user’s codeword.

- Session key s is the xor (the bitwise exclusive
or), of l random values s1, s2, …sl, which we
call shares of the session key.

- The enabling block contains for all i, the
encryptions of si under each key of the i-th
bucket. Each user that has one key from the i-th
bucket, can decrypt one of these b encryptions
of the i-th share and finally reconstruct the
session key s.

Fig.1. A high-level view of the traitor tracing scheme

l \ b 1 2 … b

1 key 1,1 key 1,2 … key 1,b set / bucket

2 key 2,1 key 2,2 … key 2,b

… … … … …

l key l,1 key 1,2 … key l,b

Fig.2. Keys for the simple one-level scheme.

3. Asymmetric traitor tracing

The traitor tracing schemes as we described in the first
part of our assignment are intended for tracing people
who betray the content provider by giving away their
decryption keys to the unauthorized users (pirates).
These schemes should provide an evidence of the
traitor’s treachery, thus allowing the content provider to
take some actions against the dishonest user. However,
the symmetric traitor tracing schemes cannot provide the
undeniable proof of the traitor’s fault that could
unambiguously convince a third party. The reason for
this is the symmetry assumption underlying the scheme.
The legitimate users share all their secrets with the
information provider so it is not possible to distinguish
the source of the leak. The seemingly redistributed
information could just as well be produced by the
dishonest user, as by the content provider himself (or
some of his employees). Actually this property seems
very undesirable in the context of the efficiency of the
tracing scenario against piracy. It prevents the system
manager from pressing criminal charges against
subscribers that leak their key-information, thus
significantly lowering the commercial viability of piracy.
In our opinion this is a very important aspect of the
piracy problem in conjunction with digital content
distribution. In the times, when key information can be
easily redistributed on the Internet with only low
probability of being traced, the seriousness of possible
consequences should be the factor that deters users from
treachery. For this reason we want to focus in our
assignment on asymmetric traitor tracing algorithms and
how they can be used against the illegal users of the
digital content distribution systems.

3.1 Assumptions

In the asymmetric variant of traitor tracing the merchant
is not considered as trusted and may attempt to frame a
buyer by embedding the buyer's codeword in a second
copy of the object. Thus the tracing procedure must
produce undeniable proof of the implication of the traitor
subscribers. In this scheme the content provider that
finds the pirate decoder is confronted with information
that he could not have produced on his own.

3.1.1 The goal: non-repudiation
The underlying assumption of asymmetry should provide
for achieving non-repudiation. The tracing algorithm
should produce a solid proof for the implication of the
traitor that could convince a third party of the user’s
guilt. Such a proof lets the content provider not only take
some unilateral measures against the traitor (e.g.
disconnect him from the service) but is also a base for
pressing criminal charges.

3.1.2 First asymmetric traitor tracing schemes

The existence of asymmetric traitor tracing scheme was
first shown by Pfitzmann in [6], who also introduced the
setting of asymmetric traitor tracing. She presented
several example constructions of asymmetric traitor
tracing based on combining the symmetric scheme with a
protocol for secure two party computation. However
these schemes were of little practical importance because
of their inefficiency for practical use.

Later another scheme was presented by Kurosawa and
Desmedt in [7]. They make use of threshold mechanism
to ensure the non-repudiation property. In this scheme
the capability to implicate the innocent user is shared
between a number of authorities.

In [12] the involvement of trusted third parties has been
eliminated. This scheme uses the oblivious polynomial
evaluation and it was meant to be the first concrete
construction of a practical asymmetric public-key traitor
tracing scheme that does not rely on trusted agents.
However, a flaw has been shown in this scheme by
Kiayias and Yung in [8], who have provided a proof that
“Any collusion of traitors of more than a single user can
generate keys that are not traceable in the scheme of
[12]”.

In the same paper the authors also break another
asymmetric scheme, presented in [9]. They claim in
some circumstances tracing in the scheme of [9] would
require exponential time, “as the tracer will have to use
in the decoding algorithm all possible values of the
underlying finite field Zq which is exponentially large

(the size of an element in the underlying finite field
coincides with the security parameter of the system).”

Finally most our attention has been focused on the
already mentioned [8]. Authors of the scheme not only
critically analyze the already existing schemes, break
their efficiency claims (by providing convincing proofs),
but also present their own suggestion for efficient
asymmetric public-key traitor tracing scheme, that
should be comparable in efficiency to previous non-
asymmetric schemes. The efficiency has been proved in
the “non-black box” traitor tracing model. We want to
present the idea of this proposition as an example of an
asymmetric traitor tracing scheme, because we believe
that this is the most efficient and practical solution
suggested so far in this area.

3.2 Preliminaries

3.2.1 Decisional Diffie Hellman
The scheme we present assumes working in a
multiplicative cyclic group G1 of large prime order2 over
which solving the Decisional Diffie Hellman (DDH)
problem is hard.

The hardness of computing discrete logarithms in some
large finite groups has been the basis for many
cryptographic schemes and protocols, starting form the
Diffie-Hellman key exchange protocol, and continuing
with encryption and signatures schemes, as well as
protocols for numerous other applications. However,
since the unconditional statements regarding the
computational hardness of computing discrete logarithms
could not been proved, mathematical assumptions
regarding the computational hardness of this set of
problems are formulated. Based on these assumptions
properties of the protocols are proved. One of those
assumptions is Decisional Diffie Hellman, formulated as
follows:

The Decisional Diffie-Hellman (DDH) Problem:
Given a group G, a generator3 g of G, and three elements

1 Def. The multiplicative group Zm is the set of elements
in Zm that are relatively prime to m. It is denoted by Zm*.
If p is prime then Zp* = {1, … , p – 1}. For every prime
p, Zp* is cyclic.
2 Def. For a ∈ Zm*, the order of a is the smallest positive
integer t such that at = 1 (mod m).
3 If there exists an element α ∈ Zn* whose order is σ(n)
then this element is called a primitive element, or a
generator of Zn*, and Zn* is said to be cyclic.

a, b, c ∈ G, decide whether there exist integers x, y such
that a = gx, b = gy, and c = gxy.

The Decisional Diffie-Hellman (DDH) Assumption:
Any probabilistic polynomial time algorithm solves the
DDH problem only with negligible probability.

For example G can be the subgroup of order q of Zp*,
where q | p – 1 and p, q are large primes. In the following
g will denote a generator of G. Arithmetic in the
exponents is performed in the finite field Zq.
Let h0, h1, … , hv be random elements of G so that hj :=
grj for j = 0, … , v. For a certain element y := gb of G a
representation of y with respect to the base h0, … , hv is a
(v + 1) - vector δ := < δ0, … , δv> such that y = h0 δ0 … hv
δv, or equivalently δ . r = b where . denotes the inner
product between two vectors. Obtaining representations
of a given y w.r.t. some given base h0, … , hv is as hard
as the discrete-log problem over G.

3.2.2 Oblivious Polynomial Evaluation
The basic building block to achieve asymmetry and non-
repudiation property in [8] is oblivious polynomial
evaluation (OPE).

An OPE protocol involves two parties:

- The sender S, who possesses a secret
polynomial P ∈ Zq[x],

- The receiver R, who possesses a secret value α
∈ Zq.

The protocol allows the receiver to compute the
evaluation of the sender’s polynomial P over its secret
value α in such a way that:

- The sender S cannot extract any non-trivial
information about the value α.

- The receiver R cannot extract any information
about the polynomial P, other than what can be
trivially extracted from the value P(α).

In [8] a two communication flow protocol is assumed,
where {OPE}(α) denotes the data transmitted by the
receiver R to the sender S in the first flow, and
{OPE}(P(α)) denotes the data transmitted by the sender
to the receiver in the second communication flow.
According to the properties of oblivious polynomial
evaluation {OPE}(α) does not yield any non-trivial
information about the value α, and {OPE}(P(α)) contains
enough information for the receiver to compute P(α) but
not any further non-trivial information about the secret
polynomial P.

Additionally the OPE used in [8] has two properties:

1. It is malleable: given {OPE}(α) the sender can
easily compute {OPE}(α + α’), for a random α’.

2. It is performed over a publicly committed value
(α can be thought of as a private key whose
public key is publicly known).

3.3 General scheme of asymmetric public-key
traitor tracing

Asymmetric Traitor Tracing scheme usually involves
following parties:

- the system-manager – the system-manager is
responsible for administrating the system,
issuing subscriber information and tracing pirate
devices.

- the subscribers (users)
- the content providers – merchants that use the

system to distribute encrypted data to some set
of subscribers

- the judge – a third party (not necessarily
trusted) that will perform the verification of the
proof provided by the system-manager. On the
basis of the verification results the judge should
decide of the user’s guilt or innocence.

Asymmetric traitor tracing scheme consists of following
elements:

- Join.
Initialization of the new user. As the result of
the protocol each new user will be assigned a
personal key. The personal key should be
assigned in such a way that it guarantees non-
repudiation on the one hand, but is not entirely
known to the system-manager on the other
(otherwise the asymmetry would be broken).

- Encryption.
The procedure for sending encrypted data to the
set of users that can be used by any third party
(any content provider).

- Decryption.
An algorithm that can be used in conjunction
with secret key material by the user to decrypt
the scrambled data and obtain plaintext.

- Traitor Tracing and Trial.
An algorithm that can be applied by the system-
manager to the information found in pirate
decoder to find out the identities of the users
that have revealed their keys. This algorithm
should provide non-repudiable information,
which can be verified in a trial by a judge.

We say that a scheme is asymmetric if it satisfies the
following properties:

- frameproof: the system manager cannot frame
any of the innocent users

- direct non-repudiation: tracing algorithm should
produce undeniable proof of the implication of
the traitors in the construction of pirate decoder.
Such a proof should be verifiable for any third
party (a judge) without the participation of the
subscribers of the system.

3.4 The sample implementation.

The following section presents one of the possible
implementations of asymmetric traitor tracing schemes
introduced in [8], which as we believe is the most
practical and efficient one developed as far.

3.4.1 Assumptions.
We assume that every user that wants to join the protocol
possesses a digital signature mechanism, signu, which
he/she can use to uniquely sign messages. There is also a
corresponding verification algorithm, verifu, that can be
used by any third party to verify the authenticity of the
signed message.

3.4.2 Initialization.
During the system initialization the system-manager
selects one random polynomial in the form of: Q1(x) = a0

+ a1x + … + a2vx2v over Zq, and a random b ∈ Zq and sets
y = a0 and h0 = g, h1 = g-a1,…, h2v = g-a2v, h’ = g-b. Let
Q(x,y) := Q1(x) + by.
The public key of the system, that can be used by any
content provider to encrypt the transmitted data is
published as the tuple <y, h0, … , h2v, h’>.

3.4.3 Join protocol.
To let a new user obtain a subscription service the
system-manager and the user must carry out the join
procedure. The goal of this procedure is to allow the new
user u to compute a point <zu, αu, Q(zu, αu)> of the
polynomial Q so that: zu is randomly selected by the
system-manager and αu = αu

C + αu
R where αu

C is a values
selected and committed by the user (and remains secret
to the system-manager), and the value αu

R is randomly
selected by the system manager. The commitment of
the user u to the value αu

C will be of the form
<Cu = g αuC, signu (Cu)>, where signu (Cu) means the
value Cu signed with the private key of the user. The
value αu equals αu

C + αu
R.

The join protocol can be implemented by employing an
instantiation of a OPE over a committed value.
After the completion of the Join procedure, the user’s u
secret personal key is the vector Ku := <Q(zu, αu), zu, zu

2
,

… , zu
2v

, αu>.

At this place the following two goals are achieved, that
serve the purpose of the system’s asymmetry and non-
repudiation: after the Join protocol the user is in
possession of a valid secret-key of the system and is not
known to the system-manager and the system-manager
holds a non-repudiable commitment of the user to the
secret portion of the user’s secret key.

3.4.4 Encryption.
Any content provider can use the encryption function to
distribute data to the selected set of subscribers. To do so
he must obtain the public-key of the system (calculated
by the system-manager during the system initialization),
pk := <y, h0, … , h2v, h’>. He can then encrypt a
plaintext M as follows: <yr . M, h0

r, … , h2v
r, (h’)r >

where r is a random integer less than q. So the encryption
function is defined as follows:

Ε(pk, M) = <yr . M, h0
r, … , h2v

r, (h’)r >

3.4.5 Decryption.
Any ciphertext can be decrypted using a representation
of y w.r.t. the base h0, … , h2v, h’. Given a ciphertext G̃
:= <G, G0, G1, …, G2v, G’> and a representation of the
key K := <δ0, … , δ2v, δ’> the decryption function is
defined as follows:

 2v
D(G̃, K) := G/((G’) δ’ Π (Gj) δj)

 j=0

3.4.6 Traitor Tracing.
The set of all possible decryption keys is identified with
the set of all representations of y, because every
representation of y w.r.t. the base h0, … , h2v, h’ can be
used as a decryption key. If some of the dishonest users
collude to produce a new decryption key they can make
up an arbitrary representation of it, but only as a linear
combinations of the secret-keys the traitors possess.

We can define following the problem to be resolved in
order to achieve asymmetric traitor tracing.
Input. A vector K = Σt

l=1 µlKul, where {u1, … , ut} ⊆ {1,
…, n} is the set of traitor users and n is the number of all
users in the system and integers z1, … , zn, that defined a
portion of the secret-key Ku of every user.
Output. The indices {u1, … , ut} and the values {µ1, … ,
µt}.

The efficient algorithmic construction for the Traitor
Tracing problem as presented above based on Decoding
of Algebraic Codes has been introduced in [8]. The
efficiency of this algorithm is O(n2) (if the Berlekamp-
Welch algorithm is implemented), but more efficient

implementations are possible to reduce the complexity to
O(n(log n)2). For the detailed construction of this
algorithm the reader is referred to [8].

3.4.7 The Trial.
The system-manager carry out traitor tracing procedure
on the pirate key
K = <K0, K1, … , K2v, K’> with K = Σt

l=1 µlKul where
{u1, … , ut} ⊆ {1, …, n} is the set of traitor users and
obtains as output the vector v = <v1, … , vn> where vul =
ul for l = 1, … , t and v1 = 0 for all i ∈ {1, … , n} – {u1,
… ,ut}. He must afterwards convince the judge of the
implication of the users {u1, … , ut} into construction of
the pirate key K. This is performed in the following way:
the system-manager presents to the judge the vector v,
the pirate key K, the values αu1

R, … , αut
R and the

commitments of the suspected users Cu1;signu1(Cu1), … ,
Cut;signut(Cut) (generated during the join procedure). The
judge first verifies all signatures by applying the
verification algorithms
verifu1, … , verifut on them. Afterwards he verifies if the
following equation is true:

t

Π (Culg αu1R) vul = g K’
 l=1

If the equation holds the judge concludes that indeed the
users {u1, … ,ut} were implicated in the construction of
the pirate device with the key K. As we can notice the
direct non-repudiation is obtained: any third party can
obtain a proof of the traitors’ implication in the treachery
using the information provided by the tracer without the
direct participation of the suspected users.

4. Summary and Outlook

In our assignment we have presented traitor tracing as
one of the mechanisms that can be applied to prevent
illegal digital content distribution. The idea behind traitor
tracing algorithms is to deter the legal subscribers form
leaking their key information to the pirates, as it will
prevent the creation of pirate decoders. For that reason
traitor tracing can be a powerful tool (especially in
conjunction with fingerprinting methods) for tracing the
dishonest users and punishing them for the treachery.
However, the most popular and best developed
symmetric traitor tracing algorithms have, in our
opinion, a major drawback: they cannot be used for
obtaining legal evidence that can convince any third
party (a judge) of the implication of the suspected user in
the construction of pirate device. The existence of such
evidence would allow the system-manager to undertake
some legal actions against the traitors, thus making the
treachery less attractive and more dangerous. The

asymmetric traitor tracing schemes belong,
unfortunately, to the least developed and researched area,
although some interesting publications presenting more
practical and convincing implementations of the
asymmetric algorithms have appeared recently. We have
presented in our assignment one of them as an example
of how such a problem can be solved theoretically. For
the time being we do not know about any real life
implementation of such solutions, but the economical
need for digital rights protection will most probably
force the deployment of similar schemes in the future.

References

[1] Benny Chor, Amos Fiat and Moni Naor. Tracing
traitors. Advances in Cryptology – Crypto ’94, Lecture
notes in Computer Science 839, (1994), pp. 257-270.
[2] D.Boneh and M. Franklin. An efficient public key
traitor tracing scheme. Advances in Cryptology – Crypto
’99.
[3] Dwork, Lotspiech, and Naor “Digital Signets: Self-
enforcing protection of digital information” in 28 th
Symp Theory of Computation, 1996, pp 489-498.
[4] D.Boneh and J. Shaw “Collusion-secure
fingerprinting for digital date” IEEE Trans. Inform.
Theory, vol. 44, pp 1897-1905, Sept 1998
[5] A.Fiat and T. Tassa, “Dynamic Traitor Tracing” in
Proc Advances in Cryptology-Crypto ’99, 1999, pp. 388-
397.
[6] Birgit Pfitzmann, “Trials of Traced Traitors”,
Information Hiding Workshop, Spring LNCS 1174, pp.
49-63, 1996
[7] K.Kurosawa and Y.Desmedt, Optimum Traitor
Tracing and Asymmetric Schemes, Eurocrypt 1998
[8] A. Kiayias and M. Yung, Breaking and Repairing
Asymmetric Public-Key Traitor Tracing, DRM 2002
[9] H. Komaki,Y. Watanabe, G. Hanaoka and H. Imai,
Efficient Asymmetric Self-Enforcement Scheme with
Public Traceability, Public Key Cryptography 2001
[10] D.R. Stinson and R. Wei, “Combinatorial properties
and constructions of traceability schemes and frameproof
codes.” SIAM vol11, pp 41-53, 1998
[11] J.N. Staddon, “A combinational study of
communication, storage and traceability in broadcast
encryption systems” Ph.D University California, Berkley
1997
[12] Y. Watanabe, G. Hanaoka and H. Imai, Efficient
Asymmetric Public-Key Traitor Tracing without Trusted
Agents, CT-RSA 2001

