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System Security

• Security in computer systems

– Hardware

– (System) software

• Today’s agenda:

– Hardware basics (recap)

– Operating System (OS) access control concepts and 
fundamentals

– Memory protection

– OS interface (system calls, etc.)

– Shortcomings of traditional OS and hardware security
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Some slides are marked as 
”extra reading”. These are not 
mandatory to read for the 
exam, but will provide more 
in-depth understanding and fill 
in some “blanks”.

Extra 
Reading



Hardware Basics: The Memory Hierarchy

• Memory in computers are 
organized in a hierarchy

– Large but slow at the 
bottom

– Small but extremely 
fast at the top
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Hardware Basics: The Memory Hierarchy 4

Hard disk drive (HDD) or solid state 
drive (SSD)
• Size: ~100 – 1000 GB
• Access time: milliseconds

• Persistent storage after poweroff
• Stores program code and data



Hardware Basics: The Memory Hierarchy 5

Random access memory (RAM)
• Size: ~10 GB
• Access time: ~100 nanoseconds

• Too slow to operate on data or 
code directly from HDD/SSD

• Data and code must be loaded 
into RAM before it can be used

• RAM is a limited resource – Must 
take care to only load data that is 
actually needed at the moment 
(more on this later).

• Not persistent – data is lost on 
power off



Hardware Basics: The Memory Hierarchy 6

Cache memory
• Size: A few megabytes
• Access time: ~10 nanoseconds

• Modern CPUs can do billions of 
operations per second
• RAM speed is still a bottleneck!

• Keep frequently used parts of RAM 
in a cache inside CPU

• CPU transparently handles 
fetching/updating data in cache, 
and write-back to RAM
• Code always reference memory 

through address in RAM



Hardware Basics: The Memory Hierarchy 7

Registers
• Size: A few bytes
• Access time: < 1 nanosecond (same 

as CPU itself)

• Registers are used to hold data 
while computations are performed 
on it in CPU

• Typically:
Read from memory address A into register R
Do operation on data in R
Write contents of R back to address A



Hardware Basics: The Memory Hierarchy 8

Registers
• Value of registers define the 

current state of the CPU
• All CPUs have some registers with 

special purposes
• Most important is the instruction 

pointer (IP) register
• Always points at the address in 

memory where the currently 
executing machine code 
instruction is located



Hardware Basics: Architecture

• The CPU communicates with 
the RAM and other hardware 
using several buses (essentially 
electrical wires)

• Modern computers typically 
have several different buses for 
memory, graphics cards, hard 
drives, input devices, etc.
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Source: 
https://commons.wikimedia.org/wiki/File:Computer_system_bu
s.svg#/media/File:Computer_system_bus.svg



Hardware Basics: Booting

Typical startup sequence of a PC:

1. BIOS code executes.

– BIOS (Basic Input Output System) is a program stored on a read-
only memory chip (ROM) on the motherboard.

– Does some hardware checks, and loads the boot loader code into 
RAM.

– Boot loader is stored at a fixed location (Master Boot Record) on 
hard drive.

2. BIOS transfers execution to boot loader.

– Boot loader in turn loads the operating system kernel into memory, 
and transfers execution to the kernel.
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Hardware Basics: Booting

3. OS kernel loads device drivers – code to handle communication 
with hardware – and initializes the hardware, filesystems, 
networking, etc.

– The kernel is the central piece of system software in a 
computer

– Responsible for managing hardware, enforcing access 
control, mediating programs’ access to resources, etc.

4. Kernel loads programs to handle user interaction, login, 
graphical interfaces, etc.

5. The computer is ready for use
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OS Access Control: Processes

The process is the basic entity to which access control is applied 
in operating systems

• Acts as a “proxy” on behalf of e.g. a “real life” user

• Whenever a process attempts to access a resource, e.g. a file, the OS checks if the 
user ID associated with the process is allowed to access the resource. 

• A process can start other processes, which inherits the user ID of their parent 
process.

• OSes typically have a concept of a “superuser”, which has access to “everything”

– root user (Unix)

– SYSTEM and Administrator users (Windows)

• The superuser account is necessary for maintenance and configuration of the 
system, and for running important system-level services
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OS Access Control: Login
Process creation at login proceeds (conceptually) as follows:

1. When the kernel has finished initialization, it will launch a login process, 
running as superuser, e.g. root (Unix) or SYSTEM (Windows)

– Can be a GUI login screen in a graphical environment, or simply a login 
prompt in a text-based interface

2. The user provides some credentials e.g. username and password

– Since the login process runs as superuser, it has access to the list of users on 
the system, and their credentials.

3. Login process checks credentials, and if they match, it will launch a shell process
running as the authenticated user

– Uses a special OS mechanism (only available to superuser) to switch the user 
ID of the launched shell from superuser to the given “regular” user

4. The shell process has a user interface for launching programs. Each time a 
program is launched, a new process is started, running with the user ID of the 
logged in user

– Shell can be a desktop environment in a GUI system, or simply a command 
interpreter in a text-based (non-GUI) system
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OS Access Control: Process Tree Example14
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Note: Only one process can execute on one 
CPU (core) at a time!
• OS rapidly switches between processes to 

create the “illusion” of multitasking
• Details later…



OS Access Control: Access Control Models

OS needs some model to assign access permissions to resources, 
e.g. files

• All general-purpose OSes support Discretionary Access Control 
(DAC)

– Users can assign permission at their own discretion

– Example: Alice marks some files as readable and writable by 
herself, and read-only for everyone else

– The Unix read/write/execute permissions for owner/group/others 
is a well-known example of a DAC model
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OS Access Control: Access Control Models

More advanced/powerful models:

• Mandatory Access Control (MAC)

– Apart from DAC rules, access is also restricted according to system-wide 
security policy

– Example policy: Files in users’ home directories should never be writable by 
anyone other than the owner and the root user (overrides DAC rules set by 
users)

• Role-Based Access Control (RBAC)

– Access determined by the role of a subject (one subject can have several roles)
Example: 

1. The manager role has access to personnel files, but not to web server 
configuration. 

2. Webmaster role has access to web configuration, but not to personnel files

But: If manager and webmaster is the same person, he/she has access to both 
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OS Access Control: Enforcement

Central question: How are access controls actually enforced in an OS?

• What if processes have direct (physical) access to the hard drive?

 Processes can request data at arbitrary positions on the hard drive

 Nothing prevents one of Alice’s processes from accessing files 
created by Bob!

 No way for OS to apply e.g. DAC!

17



OS Access Control: Enforcement

• What if all processes share the physical memory (RAM)?

 Processes must “play nice”, e.g. not overwriting other processes data 
or code, or using up all memory for themselves

 Nothing prevents one of Alice’s processes from accessing data 
loaded by one of Bob’s processes

 Even if file-system access can somehow be restricted, Alice can still 
read Bob’s confidential data once it is loaded into memory!

• There are also serious performance issues with this approach

• What if Bob starts a bunch of memory hungry processes, and then goes home 
for the weekend.

• Now there is no memory left for Alice to launch a process, even if Bob’s 
processes aren’t actually doing anything!
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OS Access Control: Enforcement

Conclusions:

• Each process should only have access to its own code/data

• Functionality of system should not depend on processes “playing nice”

 Memory sharing should be handled transparently by kernel

 Processes should not “see” the memory layout of other processes

 Requires strong isolation between processes’ memory space!

• Processes must not be allowed to access hardware (e.g. hard drive) directly

 Process must ask OS kernel to access hardware on its behalf. Kernel 
checks if access is allowed before proceeding.

 Need a robust interface for this!
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Memory Protection: Virtual Memory

Idea: Every process has its own virtual memory (VM)

• From the point of view of one process, all memory is available to it

 Only sees its own memory

• Kernel keeps an internal map of memory regions that are actually used, and 
which parts of the physical RAM they map to
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Memory Protection: Virtual Memory

Details:

• On e.g. a 32-bit CPU, each process “sees” a contiguous virtual memory space of 232

bytes, only containing its own data and code

• An address in VM is simply an integer between 0 and 232-1, specifying an offset in 
this memory space

• Virtual memory is divided into pages (commonly 4 kB in size). 

– The kernel has a mapping (one per process) between pages of the process, and 
so-called frames of corresponding size in physical RAM

– This mapping is called a page table

– Each page table entry also specifies if the memory in the page should be 
readable/writable/executable
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Memory Protection: Virtual Memory
More details:

• Every time the active process accesses memory, the virtual address is translated to 
the corresponding physical address using the active page table

– Permissions are also checked during translation. 

– If process e.g. tries to write to read-only page, or page that is not mapped →
Segmentation fault (i.e. OS is notified and kills program – program “crashes”)

– CPU has built-in hardware for translation/checking. Incurs almost no overhead.
Hardware for translation is called Memory Management Unit (MMU)

• Note that one physical frame can map to several pages in potentially several different 
processes

– Allows sharing of e.g. read-only code (programs) between several processes

 More efficient use of memory

– The kernel code and data is e.g. mapped into the same location in VM of every 
process. (More on why this is so later.)
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Memory Protection: VM Example 23
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Memory Protection: VM Example 24
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Memory Protection: VM Example 25
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Memory Protection: VM Example 26
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Memory Protection: Swapping

• The virtual memory space may be (much) larger than the actual size of 
RAM 

 Only keep pages that are actively used at the moment in memory

 If low on RAM – move unused pages to hard drive until needed again.
This is called swapping

• Page table entries also have a field for indicating if a page is in RAM or on 
hard drive

– Checked during translation

– If requested memory is in swapped-out page, load page into RAM 
before proceeding – may cause other page in same or different process 
to be swapped out

• OS uses some algorithm to decide which pages to swap out

– Details not so relevant for this course
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Kernel Interface

We covered how the memory of processes are separated using 
virtual memory

• But how does a process request (allocate) virtual memory?

• How does a process open a file for reading into memory?
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Kernel Interface: CPU Modes

Basic design idea:

• CPU can run in two modes: kernel mode and user mode

– In kernel mode, CPU can execute all possible instructions, e.g. those 
directly interfacing with hardware, physical memory, etc.

– In user mode, only a restricted set of instructions are available. 

 Trying to execute a privileged instruction while CPU is in user 
mode results in an access violation – process crashes

• As one might guess, kernel code runs in kernel mode and regular processes 
runs in user mode

 How to switch modes in a secure fashion?
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Side note: Many CPUs have more than two modes
• x86 (Intel) CPUs e.g. have four (Ring 0-3)
• Uncommon for general-purpose OSes to use 

more than two due to portability issues



Kernel Interface: System Calls

 How to switch modes in a secure fashion?

Idea:

• CPU has special mechanism (instruction) which automatically:

– Saves registers (i.e. CPU state)

– Switches CPU to kernel mode

– Moves execution to predetermined kernel code

• This mechanism is used to implement system calls

– The main interface between user-mode processes and kernel code

30

This is set up
when OS 

boots



Kernel Interface: System Calls

When process needs access to hardware, e.g. file system on hard drive, it 
performs a system call in the following way:

1. Process puts parameters in registers (these are like arguments to a function call)

2. One parameter (a number) specifies the particular system call to execute –
determines how rest of parameters are interpreted

3. Process executes a kernel-switch instruction

4. CPU mode is switched and predetermined system-call handling code in kernel 
is executed

5. Kernel inspects parameters, checks if process is allowed to perform the specific 
action, and performs the action if so

6. Kernel code executes a special return instruction which:

• Restores state (registers) of calling process

• Switches CPU back to user mode

• Resumes process execution where it left off
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Kernel Interface: System Calls

• Remember that kernel code/data is mapped in at fixed 
location in every process?

– This is to make system call handling (among other 
things) easier

 Kernel code always at same location when 
invoking system call handler 

• But what if a process attempts to move execution to 
kernel code, or read kernel data?

– Page table entries also have a flag specifying if page 
should be accessible only in kernel mode

– If a user-mode process tries to use kernel memory it 
will crash

 Assures proper isolation between kernel and 
processes 
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Kernel Interface: System Calls

• System calls is the main mechanism used by processes to interface 
with the kernel

• Modern OSes have several hundred different system calls

– Opening/reading/writing files

– Setting file permissions

– Opening/reading from/writing to network sockets

– Allocating/requesting more virtual memory

– Starting/stopping (child) processes

– Switching process ownership/permissions (subject to restrictions)

– etc. …
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Side Note: Interrupts

Up until this point we’ve been a bit handwavy with a few things, specifically:

• How can processes and the kernel share the CPU?

• What actually happens when a program crashes due to some access 
violation (e.g. accessing unmapped virtual memory)?

To answer these questions, we need some additional background knowledge 
about interrupts:

• Interrupts is an asynchronous communication mechanism used by CPU

– Used to communicate with hardware, among other things

• Several interrupt numbers (for example 256 in Intel CPUs) assigned to 
e.g. different hardware for asynchronous communication with CPU

34Extra 
Reading



Side Note: Interrupts

For example, instead of having to wait for keyboard input in a loop, OS 
registers an interrupt handler to take care of keyboard events

• OS goes about its business, running processes etc.

• When you press a key on the keyboard, an interrupt signal is sent to CPU

• This will automatically (i.e. as part of the CPU hardware): 

– Store CPU registers in temporary scratch space

– Switch CPU to kernel mode

– Look up the address to correct interrupt handling code in the Interrupt 
Descriptor Table (IDT), corresponding to the keyboard’s interrupt number

• IDT is a list of kernel code addresses, one per interrupt number

• IDT is set up by OS or boot loader while booting

– Jump to code to read input from keyboard on an input bus

• When done handling interrupt, OS executes a CPU instruction that restores 
registers from scratch space, switches CPU to user mode, and continues 
execution where it was before interrupt

35Extra 
Reading



Side Note: Interrupts

• Note that interrupt handling sounds very similar to the way system calls 
are implemented?

 Many OSes use interrupts to implement the 
user-mode/kernel-mode switch

 Process can generate interrupt directly from CPU using special 
instruction

 Some modern CPUs have specialized instructions for issuing 
system calls

• Interrupts are also used to handle access violations

– When code attempts to access illegal memory or similar, a special 
interrupt is signaled

– Causes CPU to jump to exception-handling code in kernel

– Kernel knows which process is currently executing, and can e.g. 
decide to kill it after inspecting the cause of the problem

36Extra 
Reading



Side Note: Process Switching

Typically there are many more running processes than there are CPU cores

 Remember: Only one process can execute at a time on one CPU core

 CPU is a shared resource!

• OS rapidly switches execution between running processes, to create the 
illusion of all process running “simultaneously”

• Switch from process A to process B proceeds as follows:

1. Execution of A is paused, kernel code starts executing

2. Kernel saves values of all registers

3. Old saved register values for B are copied into CPU registers

4. Kernel sets B’s page table to be the “active” one. 

5. Kernel transfers execution to B’s code (using saved IP value of where B’s 
execution “left off”)

6. Execution of B is now resumed

37

Note: Kernel also need to share the CPU 
with all processes!

 Need a way for the kernel to regularly 
”step in”, switch processes, and 
relinquish CPU to the new process
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Side Note: Process Switching

How can the kernel “step in” and switch processes?

 Interrupts!

• OS sets a built in hardware timer to send an interrupt at fixed intervals

– Allows running process to be suspended and kernel to briefly run 
scheduling code

– Kernel decides if a process switch should happen before resuming 
process execution

38Extra 
Reading



Summary So Far

• Booting/Login: 
BIOS → Boot Loader → Kernel → Login Process → Shell Process→
Application Processes

• The process is the main entity on which access control is performed

• DAC/MAC/RBAC

• No direct access to RAM/hardware for processes

– Kernel must mediate access to resources
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Summary So Far

• Virtual Memory

– Each process isolated in its own memory space

– Hardware-implemented translation between VM and physical 
memory

• System Calls

– Main interface between kernel and processes

– Two CPU modes: kernel and user mode

– Uses hardware mechanism to switch between untrusted code in 
user mode and trusted code in kernel mode

• Ensures that control is transferred to trusted code upon switch 
to kernel mode
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Shortcomings of Traditional System Design

• Most hardware and OS protection mechanisms mostly aimed at 
stability and robustness

– Prevent processes from mistakenly corrupting data belonging to 
other processes or kernel

• Security has also been an early concern is OS/hardware design

– but perhaps not the main concern…

• Next, we’ll look at some common attacks against computer systems, 
bypassing traditional OS/hardware security measures 

– In the coming lectures, you will see some newer techniques to 
combat these threats

41



When Attacker has Physical Access

Reading filesystem “offline”

• OS can only apply access controls when it is running

– Attacker can physically remove hard drive and plug it in to another 
computer

– Attacker can boot own OS from a USB stick/CD/DVD

• If not encrypted, all files are physically available on hard drive

• Swap space may also contain old RAM contents after power off

– Passwords, etc.
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When Attacker has Physical Access

Cold Boot attacks

• Even if files are encrypted, attackers may be able to 
extract encryption keys from RAM, if machine is powered on

• In practice:

– While computer is running:

– Spray RAM chips with compressed air or “cooling spray”,
cools chips to -50°

– Power off machine, pull out RAM modules

– Cooling retains RAM contents for several minutes after power loss

– If chips are put in a can of liquid nitrogen, contents are retained for hours

– Attacker now have plenty of time to plug in the RAM modules in his/her 
own machine and read out contents, e.g. encryption keys

– Keys can be used to later read contents of hard drive
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When Attacker has Physical Access

DMA attacks:

• For devices that require very high throughput, interacting with the system solely 
through the OS kernel (system calls, interrupts) becomes a bottleneck

• Modern computers therefore often implement standards that allow peripherals 
to bypass the kernel and send data directly to physical memory, bypassing 
the virtual memory translation. This is called Direct Memory Access (DMA).

– Firewire, Thunderbolt, PCI Express, etc.

• Attack scenario:

– You leave your laptop, locked but powered on, in your hotel room

– Attacker gains access to room, briefly (less than a second), plugs in a device 
in the Thunderbolt or Firewire port of the computer

– Attacker has now written malicious code directly into the kernel code 
segment, which when executed installs spyware onto the machine

– Alternatively, attacker may read out sensitive data directly from RAM
(e.g. encryption keys)
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When Attacker has Physical Access

Reading data off buses:

• An attacker that have physical access to the computer can also connect probes 
onto the buses and read out the data flowing in them

– Encryption keys, other sensitive data

• Could be a big problem for devices in “enemy territory”

– “Kiosk” computers, mobile base stations, etc.

• Also a serious challenge for DRM schemes
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When Attacker has Physical Access

Conclusions:

• Encryption helps, but is not undefeatable

• Physical security very important!

• Very hard to protect a device from its owner!
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Attacks From Below

• The security of higher-level components 
depends critically on the security of lower-
level components

– If attackers can gain access to low-level 
components, they completely own 
everything on higher levels
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Attacks From Below

Rootkits

• Special kind of malware that embeds itself “deep” in system software to 
hide its presence

• For example, loads as a device driver very early during boot

• Runs in kernel mode ⇨Has complete control over system (same as OS 

itself)

• A rootkit can, for example:

– hide its presence on the file system by manipulating results of 
system calls that list directory contents, etc.

– disable antivirus software

• Hard to detect and remove!
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Attacks From Below

BIOS attacks:

• Computers typically have mechanisms to update BIOS code

– If an attacker gets access to this once, he/she can establish a 
permanent backdoor

• Even if hard drive is wiped (or even changed) BIOS malware can 
reinstall e.g. rootkit on hard drive
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Attacks From Below

Firmware attacks:

• Apart from the BIOS, computer add-on hardware also has firmware

– Hard drives, network cards, etc.

• These can also be infected!

• Hard drive firmware controls what is returned when system asks for data from drive

– Can silently manipulate code while it is being fetched from hard drive, to insert 
malicious behavior

• When scanning for malicious files, nothing is found, because there are no 
malicious files! (Infected device can also manipulate results of scanning.)

– Firmware is inaccessible to e.g. antivirus software – almost impossible to detect 
infection

• Recently discovered spyware has been shown to utilize HDD firmware infection

– In all likelihood authored by well-funded intelligence agency
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Attacks From Below

Conclusions:

• Impossible (in the general case) to defend from attacks from lower levels!

• Must make sure that the whole chain of hardware/software used for 
initializing a system can be trusted

• 1st level must verify integrity of 2nd level, 
2nd level must verify integrity of 3rd level…

• First level must be trusted a priori!

– Ideally, it should be impossible to alter

– …but what to do if it has bugs?
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Attacks Against System Software

User-mode process exploits:

• If a program has certain types of bugs, an attacker can supply it with specially 
crafted inputs that will corrupt internal data structures

– Allows attackers to inject machine code into the running process and 
execute it

– Attacker’s code now runs with the privilege of the process – has access to all 
your files!

• For example, attacker sends malicious PDF file as email attachment

– When opened in vulnerable PDF viewer, attacker code will run and install 
malware

• Not the main focus of this course, in-depth treatment in 
TDDC90 – Software Security
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Attacks Against System Software

Kernel-mode exploits:

Consider the Unix read system call for reading data from a file into memory:

read(int file_descriptor, char* mem_buffer, size_t size)

Extremely important that kernel verifies that the address in 
mem_buffer is valid!

Why? 

Remember: Process cannot directly write to kernel data, but what if it can 
trick a system call to do it? Can manipulate own permissions, etc.! 
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Attacks Against System Software

Kernel-mode exploits:

The read system call is (hopefully) safe in most modern OSes, but conceptually 

similar problems have been discovered in common OSses in the past

Also, OS kernel code is not the only thing running in kernel mode

• Device drivers need to communicate directly with hardware, and so must 
typically execute in kernel mode. (Loaded into the kernel code segment in VM.)

• These can (and frequently do) have bugs!

Buggy code running in kernel mode can also lead to arbitrary code execution, 
similar to user-mode process exploits described earlier
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Attacks Against System Software

Conclusions:

• Kernel-mode/User-mode privilege model is perhaps too coarse-grained?

– Primarily designed to ensure system stability, not (data) security

• Is all code running in kernel mode (e.g. drivers) really more trusted than 
all code running in user mode? Trusted with what?

– User mode processes handling sensitive data can always be tampered 
with by kernel-mode code

• Perhaps more fine-grained permission models are needed?
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That’s All! 56


