
Security and security controls
in operating systems

A quantitative approach	

2015-02-16

Andreas Jonsson	

andreas@romab.com	

Robert Malmgren	

rom@romab.com

mailto:andreas@romab.com
mailto:rom@romab.com

1 minute presentation

• Consultant in IT and infosec since 20+ years	

• Working alot on with critical infrastrucutre
protection, process control, SCADA security
etc, but also in financial sector, government, etc	

• Work covers everything from writing policies,
requirement specs and steering documents to
development, penetration testing, incident
handling and forensics

Outline of talk

• Intro	

• Background and basics	

• Security problems & vulnerabilities	

• Formal security models	

• Example of operating systems and security 	

• Trends

Some short notes

• The focus is on general operating system used in
general computers - COTS products	

• Embedded systems, code for micro controllers, etc often
lack most fundamental security features	

• Some experimenal OS’s and domain specific
solutions have better-than-average security concepts
and security controls, e.g. military grade usage

Background and basics

Intro - foundation

• Modern software is normally formed into
components, parts and layers in systems	

• Complex systems 	

• …run multiple programs at once, 	

• …have multiple users, 	

• …store huge amounts of data, 	

• …is interconnected via networks

Intro - foundation

• This there is to built-in security into the foundation of
the systems - the operating system	

• To identify and authorise users of the system	

• To allow for an environment where necessary
basic controls are in place	

• To prevent unauthorised access to OS resources

Intro - just the basic facts

• All software is prone to bugs	

• Some bugs will have an impact that can have security
implications - data leaks, destruction of data, privilege
escalations

Intro - just the basic facts
• Some bugs help to circumvent security mechanisms	

• Some security designs are flawed, or build on flawed
assumptions

Intro - just the basic facts

• Some bugs are undiscovered for some time, they lay latent	

• Once discovered, they can be abused, if it is an security
vulnerability, that can be exploited	

• A discovered security bug, is sometime called a 0day, until
it is mitigated

Some concepts and principles
TCB - Trusted Computing Base

RBAC - Role Based Access Control

Principle of least privilege

MAC - Mandatory Access Control

DAC - Discretionary Access Control

Principle of least surprise

Operating system security

• Security problems in the operating system can affect
the integrity of the system itself	

• Someone else can control the system to their own
liking - pwnd!	

• Bugs in OS kernel can affect system integrity	

• Security problems with the operating system can in
turn affect the security in applications and subsystems
(databases, middle ware, etc)

http://en.wikipedia.org/wiki/Pwn

http://en.wikipedia.org/wiki/Pwn

Capabilities and requirements
Need Description Example

Protect a system
resource

Prohibit malicious or
unintentional access to

system resources

System tables, direct
access to I/O-units,	

 memory protection

Authorization checks for
usage of system calls and

system resources

Provide controlled access to system,
so that system mainain system
integrity and provide continuous

security to application and
information

reference
monitor

Some important
concept

• Reference monitor	

!

• Trusted Computing Base, TCB

[1] Lampson et al: Authentication in Distributed Systems: Theory and Practice

Principal
Reference

monitor
Do

operation
Object

Source Request Guard Resource

Principles for secure design*
Economy of mechanism Keep the design as simple and small as possible

Fail-safe defaults Base access decisions on permission rather than exclusion

Complete mediation Every access to every object must be checked for authority

Open design The design should not be secret

Separation of privilege technique in which a program is divided into parts which are limited to
the specific privileges they require in order to perform a specific task

Least privilege
Every program and every user of the system should operate

using the least set of privileges necessary to complete the job

Least common mechanism
Minimize the amount of mechanism common to more

than one user and depended on by all users

Psychological acceptability
It is essential that the human interface be designed for
ease of use, so that users routinely and automatically

apply the protection mechanisms correctly

JEROME H. SALTZER et al The Protection of Information in Computer Systems http://www.cs.virginia.edu/~evans/cs551/saltzer/

http://www.cs.virginia.edu/~evans/cs551/saltzer/

The classical ring model

Källa http://en.wikipedia.org/wiki/File:Priv_rings.svg

Kernel

Userland

UNIX x86
Least	

privileges

Highes	

privileges

http://en.wikipedia.org/wiki/File:Priv_rings.svg

Interaction between
application and OS

Exekverande
process

Exekvera
systemanrop

Anrop till
systemanrop

Process i userland

Fortsatt
exekvering

Trap

Kernel

Overview of operating system (1/2)

Kernel

Drivers

subsystems
libraries

Applications

Servers
compilers

Tool chain

Overview of operating system (2/2)

Applikationer Applikationer Applikationer Applikationer

Systemanrop in mot operativsystemskärnan

operativsystemskärna med basfunktioner

Gränssnitt mot hårdvara

Nätverk
Minnes-

hantering
Datalagring CPU

Användare

nr 1

Användare

nr 2

Problem with these
pictures and concepts

• Layering violation	

• some software might skip a layer and call an
underlaying layer directly and hence bypass
controls	

• In some scenarios attackers might come an
unexpected way	

• Attacking from host operating system against
guest operating systems in a virtual machine
environment

Memory handling

• RAM memory is a central resourse that in a controlled
way must be shared and handled between
operatingsystem, applications and other components	

• Modern computer systems have hardware support for
memory protection, e.g. MMU	

• OS support is required to use the hardware
supported memory protection

File system

• A file system is often a central component in a computer
system w.r.t. security and protection	

• Besides the actual file content, there is meta data that is of
importance	

• File owner, dates of creation/change/access, access
information, security labels, etc	

• Manipulation of meta data can in some cases be more
serious security breach than the manipulation of the file
content itself. Or a combo of both can be misleading and
hide the fact that a file has been altered

Local filsystem

File system Description Comment

FAT No access control Classic DOS

NTFS Discretional Access Control via ACL Advanced possibilities
to make controls

UFS Discretional Access Control, writing & program
execution for owner, group, “others”

Simple access
controls

Network file systems

File system Description Comment

NFSv3 Hostbaserad accesskontroll, uid Trivial to
circumvent

NFSv4 Secure RPC, KRB5a, KRB5p, KRB5i
Require a Kerberos server, KDC 	

a= authentication	

i=integrity = calculate MAC	

p= privacy = encrypt packet

SMB/CIFS KRB5a

Comparing security in
Operating systems (1/4)

• When in time was the system developed? 	

• What was the state-of-the-art at that time?	

• What trends where currently in fashion?

Comparing security in
Operating systems (2/4)

• Development methodologies	

• Open Source or Closed Source?	

• What support do one use to ensure that security is
built into the product? 	

• How does one ensure that implementation is a
correct representation of the design, that is a
correct interpretation of the analysis?

”Given enough eyeballs, all
bugs are shallow”	

- Linus' Law

http://en.wikipedia.org/wiki/Software_bug

Comparing security in
Operating systems (3/4)

Source Lines Of Code - SLOC

http://en.wikipedia.org/wiki/Source_lines_of_code

Year OS SLOC  
in millions

1993 Windows NT 3.1 4-5

1994 Windows NT 3.5 7-8

1996 Windows NT 4.0 11-12

2000 Windows 2000 more than 29

2001 Windows XP 40

2003 Windows Server 2003 50

OS SLOC  
in millions

Debian 2.2 55-59

Debian 3.0 104

Debian 3.1 215

Debian 4.0 283

Mac OS X 10.4 86

Linux kernel 2.6.0 5.2

 Linux kernel 2.6.29 11.0

Linux kernel 2.6.32 12.6

But really, what good is this comparison?	

!

Write more code = get higher salary?	

Manage a 200K-SLOC project is cooler than a 5K-SLOC?	

!
More code = more bugs?	

!
More code = more security checks and advanced concepts like crypto, resillient

failure checking built into everything?	

!

But certainly, complexity is considered bad and evil in the context of security.
And there is often a relation between complexity and size of program

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29

• What can one gain by having formal certification of
operating systems, subsystems or application	

• Trusted Computer System Evaluation Criteria
(TCSEC), Common Criteria, etc	

!

• More a theoretical excersice than of any real value?

Comparing security in
Operating systems (4/4)

Example of different
protection solutions

General example of
control principles

Security
controls Description Example

Random numbers Make a resource non-
deterministic

File names, proccess ID,’s port numbers,
sesssion keys, transaction numbers,

DNS queary ID’s, timing

Encryption Protection against eavesdropping
or unauthorized access

network traffic, file content, disk
partitions, memory pages, swap files/

area

Hash values Protection against unnotised
changes, passwords, checksums on files

Logs
Traces, error messages and
dumps from systems and

applications
Syslog, eventlog, audit, BSM

General example of
control principles

Security
controls Description Example

Compiler
generated airbag -

canary

Make sure buffer overflows
dont gets undetected ProPolice, VisualStudio /GS

ASLR
Make sure its hard to write code

that knows of addresses to
misuse. Where did that lib go?

Windows Vista/7/2008, OpenBSD,
Linux, MacOSX, etc

DEP, NX, W^X Make sure memory is not
executable

Windows Vista/7/2008, OpenBSD,
Linux, MacOSX, etc

General example of
control principles

Security
controls

Description Example

Scrubing, zeroing
Make sure that old data
areas are cleaned before

usage or returned to system
file systems, VM system

Examples of vulnerabilities
and attacks

Host security

Network security

Human security

Kernel
Last line

of
defense

Application
security

Where do attacks occur?

User / admin errorsRemote
exploits

Local
exploits

Soc
ial
engi
nee
ring
atta
cks

Examples of threats and attacks

Confidentiality

Availability

System integrity
Data integrity

fork bombs
SYN flood

Wrong file
permissions

unintentional filling 	

of disk partition

plain text in RAM

Bypasswd security
checks

Manipulated system configuration

Manipulated program binaries Zapped system logs

intentional filling 	

of disk partition

malformed	

network packets

Manipulated user files

Some exempels of classic
attacks (1/2)

• Ken Thompson’s trojanized  
c compiler	

• Modify the source code to the compiler
to recognize if it recompile itself or the
login program - insert backdoor in login	

• recompile compiler	

• remove source code changes and
recompile the compiler	

• recompile the login program with the
modified compiler	

• No visible signs for humans or tools to see
the backdoor in source code. Calls for
binary inspection or decompilation.

Ken Thompson - TURING AWARD LECTURE: Reflections on Trusting Trust.	

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

Some exempels of classic
attacks (2/2)

• Create a symbolic link that is used to trick
the system to overwrite an important file at
a controlled point in time	

!

ln -s /tmp/core /etc/passwd

Example of attacks
Attack method Description

Rootkit

Replace parts of applications or kernel with attackers code. 	

!
Often contain built-in protection and deception parts to hide
rootkit itself, as well as malicious code.	

!
Often created / built upon modified original source code. 	

!
Name derives from earliest versions of threat that was created on
UNIX systems

time-of-check-to-
time-of-use

(TOCTTOU)

Type of race-condition bug caused by (maliciously controlled) changes in
a system between the checking of a condition (such as a security
credential) and the use of the results of that check

http://en.wikipedia.org/wiki/Time-of-check-to-time-of-use

Example of attacks

Attack method Description

Buffer overflow

!
Attacks that allow an attacker to deterministically alter the execution flow of
a program by submitting crafted input to an application. Executable code is
written outside the boundaries of a memory buffer originally used for
storing data. The executable parts is somehow made to execute, eg by
manipulate return adress to be used when a function call is finished.	

!
Real world examples: OpenBSD IPv6 mbuf’s* remote kernel buffer
overflow[1], windows kernel pool 	

!
Synonyms and variants: Buffer overrun, Stack smashing, Heap smashing,
format string bugs, memory corruption attack

[1] http://www.coresecurity.com/content/open-bsd-advisorie
* An mbuf is a basic unit of memory management in the kernel IPC subsystem

http://www.coresecurity.com/content/open-bsd-advisorie

Example of attacks
• Attacks by attaching malicious hardware to buses and

ports	

• Firewire and other DMA based methods to access
memory of a computer (evil maid attacks)	

• UEFI attacks via Thunderbolt (thunderstruck attack)	

• Using JTAG interfaces to snoop & manipulate bus	

• Removal of physical memory chips, (cold boot attacks)	

Remember that there is a number of ways that all OS security
controls can be bypassed, especially if the operating system is

not running - a very good side-channel attack ;-)

Attacks and counter
measures

Buffer overflow/memory
corruption attacks

Stack canaries

More advanced buffer 	

overflows, defeating canary

Address Space Layout	

Randomization (ASLR)

Note - several of these counter
measures does not work for
protection within the kernel

No-executable  
(NX, W^X) stacks

Hijacking JIT compilers ROP attacks

Data Execution
Prevention (DEP)

?

Attacks and counter
measures

• Chaining of attacks - combining a number of exploits to
achieve goal	

• finding and abusing a number of different
vulnerabilities might allow an attacker to achieve
goals not possible with just one potent exploit	

• Code execution in gadgets (ROP) + sandbox escape
+ elevation of privileges + execution of privileged
code

Security models

Security controls in
operating systems

Discretionary access controls  

Subject A can decide how an
object created by subject A can
be interacted with by subject B 

Mandatory access controls  

The System policy decide
how object from subject A
can be interacted with by
subject B

Discretionary access control
DAC

• Exists in all COTS systems	

• Conceptuallt work by having a subject (= user) have
ownershop of an object (e.g. file, process) and by
beeing owner have right to control access rights to
the object	

• Used in UNIX, Windows NT derived OS’s, etc

Discretionary access control
DAC

• Became a mandatory requirement to sell computers
to DoD 1985	

• First implemented in Windows NT 3.5 and Apple Mac
in Mac OSX	

• Simple concept to understand and administrate.
Especially in (classic) UNIX where conceptually
everything is a file in the filesystem

Role Based Access Control
RBAC

!

• Created to implemented the least-privilege principle	

!

• No users should have high privileges, all those should
get these privileges from roles with clearly defined
rights

Mandatory Access Controls
MAC

• Mandatory access controls where created to naturaly
implement the security policies of military
organizations	

• Lots of resources and research have been spent in
this area	

• But it have been hard to develop models and
implementations that work well in real-life situations,
especially in ordinary organisations

The BIBA Integrity model

• Created by Kenneth Biba in 1977.	

• Primarily goal is to maintain system/data integrity.	

• Is built on a system policy where the following is legio:	

!

“no write up, no read down”	

!

• Can be seen as BLP upside-down

BIBA Integrity model

• A subject can only write to its own level and to lower
levels	

• cannot write to higher labled objects	

• A subject can only read its own level and higher	

!

• The point is that objects on one level cannot be affected by
corrupted data on a lower level

BIBA Integrity model

• Relatively simple policy, which simplifies
implementation and administration	

• Still hard to get a full working BIBA solution to gain
acceptence in the real world	

• Two example of where versions of BIBA is
implemented in COTS is in Windows Vista and
FreeBSD (TrustedBSD)

http://www.freebsd.org/cgi/man.cgi?mac_biba
http://msdn.microsoft.com/en-us/library/bb625957.aspx

http://www.freebsd.org/cgi/man.cgi?mac_biba
http://msdn.microsoft.com/en-us/library/bb625957.aspx

BIBA Integrity model
- in practise

• A dedicated system that runs a nameserver will be
configured to use a biba policy	

• System binaries and system directories, name server
binaries, DNS zone information must be classified to
belong to the high integrity label 	

• The subject, (in this case a users that runs the DNS
server program, bind) is set to have a low integrity
label

BIBA Integrity model
- in practise

• The result is that the running name server process
cannot alter any data at all (config files, zone files) in
case it get hacked, but is allowed to read all necessary
information	

!

• To administer the name server, a separate user with an
integrity label of equal level or higher (but that has
some read issues), than the zone file must log in to
edit it

BIBA integrity model

root@freebsd# setfmac -R biba/high /var/named  
root@freebsd# setpmac biba/low /etc/rc.d/named start"

!

Note: temporary filer, pid-filer etc must also be given
biba/low labels

BIBA in Windows Vista
• Used in few places, most notably in IE that is runned in

low-privilege mode. 	

• Few tools to administer it	

• Will stop working if UAC is disabled - and UAC is
often disabled	

• Have 4 integrity levels: low, medium, high and system	

• Microsoft dumped “no read down” - which sort of
destroys the model....

UAC = User Account Control

Drawbacks with BIBA
• Hard to get a policy that really works in real-life

situations	

!

• Hard to strictly follow the model. Almost all
implementations of BIBA have extra verbs that isn’t
part of original BIBA model, eg Freebsd’s BIBA/equal,
which is a way to make an object or subject that is
excluded from the policy

http://fuse4bsd.creo.hu/localcgi/man-cgi.cgi?mac_biba+4

http://fuse4bsd.creo.hu/localcgi/man-cgi.cgi?mac_biba+4

Multilevel security - MLS
• Focus is on confidentiality of information and information

flow, not system integrity	

• Also known as the Bell-La Padula, BLP, model	

• Simple general rule: 	

”no write down, no read up”	

• No write down is also known as the confinement property or
*-property (star)	

• Normally used in military style information management
situations

http://www.albany.edu/acc/courses/ia/classics/belllapadula1.pdf
http://csrc.nist.gov/publications/history/bell76.pdf

http://www.albany.edu/acc/courses/ia/classics/belllapadula1.pdf
http://www.albany.edu/acc/courses/ia/classics/belllapadula1.pdf

• MLS is built upon that
all subjects get a
clearance level, which is
then used check the
classification of an
object 
 
 

Level user

TopSecret Andreas
Secret

classified Robert
unclassified

Multilevel security - MLS

Note: The security labels used in
the example is used from the
classical military style example.
They can be arbitrarly things, like
”outside”, ”DMZ”, ”inside” etc

• A simple example of usage of MLS	

!

• During some field work Robert writes an report
rapport, classified as “secret”. 	

• Andreas and all users with clearance secret or
higher can read, but not modify the report. 	

!

Multilevel security - MLS

• If andreas edit the report, his clearance is tainting
the report, and the new classification is now “top
secret”.	

• Information have a tendency to raise up in MLS
system, since there are nothing that can happen
that make is go downward. 	

• In the end, someone need to perform a manual
reclassification work

Multilevel security - MLS

• Since DoD require MLS, a lot of COTS system have
gotten MLS support	

• TrustedAIX, TrustedSolaris, TrustedHP-UX	

!

• A standard problem is that they are several releases
behind the stock version of the operating system,
since they need to be re-evaluated all the time

Multilevel security - MLS

• MLS is problematic, but does solve some hard-to-solve
standard problems	

• In a MLS sytem, a compromized web reader does
not automatically get access to all files that a
subject owns, just because it is runned by the
subject (user) that created/owns the files	

• Encryption key files, secret reports, sensitive files

Multilevel security - MLS

MLS in “modern” systems

• MLS exists in a number of different modern OS’s OS,
e.g. FreeBSD, Solaris (trusted extensions), AIX 6.1 and
Linux (SELinux enabled)	

!

• Differences to the theoretical model is small, but
important to make a practicaly useful system

http://www.freebsd.org/doc/en/books/handbook/mac-mls.html
http://www.ibm.com/developerworks/aix/library/au-AIX_MLS/index.html

http://www.freebsd.org/doc/en/books/handbook/mac-mls.html
http://www.ibm.com/developerworks/aix/library/au-AIX_MLS/index.html

MLS in “modern” systems

• MLS in Solaris 10 with trusted extensions is built on
setting labels on container level, rather than subject and
object level	

• In SELinux it is often not used since TE, Type
Enforcement both is more flexible and simpler to use
to protect the information

POSIX 1.e

• IEEE standard defines capablities, acl, mac och labels	

• The IEEE work was ended 1999 after 13 years and
was never completely finished	

• Lots of implementations of security models in
UNIX have its root in POSIX 1.e

LSM - Linux Security
Module

• Was created by Crispin Cowan/imunix 2001  
- To avoid locking certain security models into the Linux Kernel 	

• Framework to implement security models in Linux with as few kernel
changes as possible	

• Also used to implement other security features, such as intrusion
detection, etc	

• Standard since 2.6 kernel	

• Not completely different the MAC-modules in fbsd (trustedBSD) and
kauth in netbsd

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current

http://en.wikipedia.org/wiki/Linux_Security_Modules

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Apparmor

• Implemented using LSM for the Linux kernel	

• Is built to create a white list for what application is
allowed to do	

• Implementents part of posix 1.e (capabilities)	

• Mandatory

http://en.wikipedia.org/wiki/AppArmor

http://en.wikipedia.org/wiki/AppArmor

Apparmor

• Poison of choice in Ubuntu och SLES, instead of
SELinux that competitors have chosen	

• Much simplier policy language / configuration than
other mandatory access controls	

• Have a wizard functionality to create policies

Apparmor - rules
Symbol Meaning

? Any symbol
besides /

* any number of
symbols besides /

** * + /

[abc] a, b, or c

[a-c] a, b, or c

{ab,cd} ab or cd

Apparmor - rules
Abbrev Meaning

r read
w write
ux unconstrained execute
Ux ux + scrubed env
px disc profile execute, change profil
Px px + scrubed env
ix inherit exec, keep same profil
m Allow PROT_EXEC with mmap(2)
l link

Apparmor - example for firefox
 /usr/lib/firefox/firefox.sh flags=(complain) {	

 /bin/basename rmix,	

 /bin/bash rmix,	

 /bin/gawk rmix,	

 /bin/netstat rmix,	

 /dev/log w,	

 /dev/null rw,	

 /dev/tty rw,	

 /dev/urandom r,	

 /etc/fonts/** r,	

 /etc/ld.so.cache rm	

 /etc/localtime r,	

 /etc/magic r,	

 /etc/opt/gnome/** r,	

 /etc/passwd r,	

 /etc/resolv.conf r,	

 /home/*/.fontconfig/** r,	

 /home/*/.gconfd/* rw,	

 /home/*/.gconf/ r,	

 /home/*/.gconf/* rw,	

 /home/*/.gnome2_private/ w,	

 /home/*/.mozilla/** rw,	

 /home/*/.Xauthority r,	

 /lib/ld-2.5.so rmix,	

 /lib/lib*.so* rm,	

 /opt/gnome/lib/GConf/2/gconfd-2 rmix,	

 /opt/gnome/lib/**.so* rm,	

 /proc/meminfo r,	

 /proc/net/ r,	

 /proc/net/* r,	

 /tmp/gconfd-*/ r,	

 /tmp/gconfd-*/** rwl,	

 /tmp/orbit-*/ w,	

 /tmp/orbit-*/* w,	

 /tmp/ r,	

 /usr/bin/file rmix,	

 /usr/lib/browser-plugins/ r,	

 /usr/lib/browser-plugins/** rm,	

 /usr/lib/firefox/firefox-bin rmix,	

 /usr/lib/firefox/firefox.sh r,	

 /usr/lib/firefox/** r,	

 /usr/lib/firefox/**.so rm,	

 /usr/lib/gconv/** r,	

 /usr/lib/gconv/*so m,	

 /usr/lib/lib*.so* rm,	

 /usr/lib/locale/** r,	

 /usr/share/** r, 	

 /var/cache/fontconfig/* r,	

 /var/cache/libx11/compose/* r,	

 /var/run/dbus/system_bus_socket w,	

 /var/run/nscd/passwd r,	

 /var/run/nscd/socket w,	

 /var/tmp/ r,	

 }

Note that this configure
is very firefox and linux

version specific

Apparmor - critics

• path-based instead of inod baserad	

• The simplification wrt the wizarden, makes the
simplification too much	

• Only includes definied program, not the systemet as
such or other programs	

• Often is markedet to be more than it really is, e.g.
RBAC

SElinux / Type
Enforcement (te)

• Type enforcement is built on the concept that a
subject is attachted to a domain and that object is
attached to types	

!

• In a matrix one define how domain-to-domain and
domain-to-type interaction is allowed.

SELinux

• In the SELinux there is a security matrix called policy
which can be targeted, strict, permissive or enforcing.	

• targeted - what is allowed besides that which is
explicit prohibited	

• strict - nothing is allowed beside that is explicitly
allowed

SELinux

• SELinux is used to lock things down - primarily
services, but can in theory lock down anything	

• The focus on locking down services (e.g. network
services) will result in that authorized users will not
be locked down and gain advantages of any security
controls from SELinux

SELinux

• Reference policy is maintained by tresys*  
- earlier by NSA	

• Contain a few “trusted programs”, 	

• e.g. su, sshd, login.	

• These trusted programs must be able to perform so
called domain transitions.

* https://github.com/TresysTechnology/refpolicy/wiki

https://github.com/TresysTechnology/refpolicy/wiki

Important note to
remember is that security
code can add new security

bugs

SELinux

• Is distributed in COTS Linux distributions such as
RedHat and Fedora	

• Is actively maintained by RedHat, Tresys, NSA and
others	

• The company Tresys is the maintainer of the
reference policy and several selinux userland
program 
- also sell separate policys for more program, tex
razor

SELinux

• The model used to grant rights is extremely
granular and powerful	

• exec_heap, exec_mem are permissions in SELinux	

!

• The SELinux advocate Russel Cooker have test
boxes for anyone to use where root-login is
allowed for anonymous users 	

• http://www.coker.com.au/selinux/

http://www.coker.com.au/selinux/

SELinux
• Drawbacks with SELinux	

• To create a flawless SELinux policy from scracth is
very hard - often it is a copy-and-paste work from
some existing policy, and thus might not really
implement your intended design	

• To maintain a SELinux policy is non-trivial, compare
for example with apparmor	

• Dependencies on trusted programs as well as classic
data validation errors can result in security errors, as
usual

GRsecurity
• Brainchild of Brad Spengler

• NOT based on the LSM concept	

• Brad is a vocal critic of the LSM concept and have
developed PoC attacks agains LSM based security
solutions	

• It is released as a separate, non official, patch cluster
to the Linux Kernel	

• Some see the non-official status and ”hack” type of
solution as unacceptable, e.g. Xorg

GRsecurity

• Badly supported by Linux distributions	

• Almost always require that one compile a custom
kernel, which can have problems on it own	

• Have support for RBAC through automatic rule
generation

Virtualization and isolation

Isolation, separation
and virtualization

• chroot (no virtualization, just isolation)	

• jails	

• user mode linux, uml	

• Virtual machines: Vmware, MS Virtual Server,
Containers	

• Hardware partitioning: Sun LDOMs, IBM LPAR

Overview of virtualization

Applikationer Applikationer Applikationer Applikationer

Systemanrop in mot operativsystemskärnan

operativsystemskärna med basfunktioner

Gränssnitt mot hårdvara

Nätverk
Minnes-

hantering
Datalagring I/O

Applikationer Applikationer Applikationer Applikationer

Systemanrop in mot operativsystemskärnan

operativsystemskärna med basfunktioner

Gränssnitt mot hårdvara

Nätverk
Minnes-

hantering
Datalagring I/O

operativsystemskärna med basfunktioner

Virtualiseringsfunktionalitet

Gränssnitt mot hårdvara

Applikationer Applikationer

Systemanrop in mot
operativsystemskärnan

operativsystemskärna med
basfunktioner

Gränssnitt mot hårdvara

Applikationer Applikationer

Systemanrop in mot
operativsystemskärnan

operativsystemskärna med
basfunktioner

Gränssnitt mot hårdvara

Pro’s and con’s with
virtualization

• Isolation, and to have hardened and dedicated servers running
specific services, are standard ways to minimize attack
surface. Virtualization tools can help this	

• Various types of OS supported or application supported
sandboxing is good as a way to get defense-in-depth	

• Its easy to believe that virtualization will automatically make
things secure, and that there is no way to jump between guest
os’, but exploits have shown this not hold true, e.g. cloudburst

http://www.immunityinc.com/documentation/cloudburst-vista.html

http://www.immunityinc.com/documentation/cloudburst-vista.html

Some trends of interest

”real” OSs in new places

• Linux: phones & pads, embedded systems	

• Windows: phones & pads, embedded systems	

• MacOSX (iOS): phones, pads, embedded systems	

!

• …and embedded systems are used in really critical
places, like industry or utility companies.

”real” OSs in new places

• Gaming consoles: WII,
Xbox, PS3 uses ”real
OSs”	

• Alot focus on
security - they know
they will be attacked	

• Built in low-level
hardware security

• Continous study of #fail	

• Hacked, hacked again,
completely broken

”real” OSs in new places

220-<<<<<<>==< Haxed by A¦0n3 >==<>>>>>>
220- ¸,ø¤º°^°º¤ø,¸¸,ø¤º°^°º¤ø,¸¸,ø¤º°^°º¤ø,¸¸,ø¤º°^°º¤ø,¸

220-/
220-| Welcome to this fine str0

220-| Today is: Thursday 12 January, 2006
220-|

220-| Current througput: 0.000 Kb/sec
220-| Space For Rent: 5858.57 Mb

220-|
220-| Running: 0 days, 10 hours, 31 min. and 31 sec.

220-| Users Connected : 1 Total : 15
220-|

220. ^°º¤ø,¸¸,ø¤º°^°º¤ø,¸¸,ø¤º°^°º¤ø,¸¸,ø¤º°^°º¤ø,¸¸,ø¤º°^

2006: Hacked “LeCroy” oscilloscope at CERN (running Win XP SP2)

”real” OSs in new places

• ”Same” attacks works in lots of places	

• Not full OS’s on the new hosts, e.g. less protection
makes it easier	

• Always on, always reachable	

• Device moves around, connects to unknown/rogue
places, and easy to get physical access to them

On the high-level side

• When operating systems vendors and FOSS projects
built-in better security and have more quality on their
code, other low-hanging fruits are picked	

• Attacks are moving toward applications, e.g. Media
players, flash framework, rich-text-document-format-
viewers	

•and subsystems, e.g. database or integration
software

On the low-level side

• More security critical functions are moved
to hardware components	

• But the cat-and-mouse game continues,
e.g. succesful hacking of TPM chips	

• bus snooping with JTAGs, goodfet,
facedance, salea logic, etc

http://www.theregister.co.uk/2010/02/17/infineon_tpm_crack/

http://www.theregister.co.uk/2010/02/17/infineon_tpm_crack/

Summary

Important experience (1/3)
!

• OS-security is composed by several distinct parts.
Failure in any of these parts with result in a security
compromise	

• There are many ways to circumvent security controls	

• “Right tools for the right job”	

• E.g. to use MLS on a packet filtering firewall can be
something that one should consider if that is the
right thing to do...

Important experience
(2/3)

• Old and new security functions often co-exists in a system	

• Can be complexed to understand the full consequense of a setup 	

• Often hard to use 	

• Is the counterpart to KISS	

!

• RBAC is easy to understand, but hard to implement	

• 10 or 250 roles - wide or narrow privileges?	

• Often templates and profiler that is copied or referenced - changes
to original definitions are not properly propagated, or in some cases
errounesly propagated when they should not

• New trends challenge existing security concept or
controls	

• E.g. attacks goes from server -> client	

• Unfortunately, many good models are not properly
used in practise since they are very had to
understand, work with and to administer

Important experience (3/3)

Questions?

Additional information (1/3)

• Heap spraying as an attack method to do buffer
overruns. Common attacks include Javascript based
implementations to be used in web browsers, or to
attack Adobe flash	

• http://en.wikipedia.org/wiki/Heap_spraying

http://en.wikipedia.org/wiki/Heap_spraying

• Security in Cloud Computing	

• US NIST government agency on cloud security	

• http://csrc.nist.gov/groups/SNS/cloud-computing/	

• Enisa report on Cloud security with recommendations	

• http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-
computing-risk-assessment/at_download/fullReport	

• http://www.infoworld.com/d/security-central/gartner-seven-
cloud-computing-security-risks-853

Additional information (2/3)

http://csrc.nist.gov/groups/SNS/cloud-computing/

• Contact me if you’re interested in any of the work we
have done with 	

• Asterisk running contained with SELinux	

• FreeBSD w BIBA for different network services, e.g.
bind	

• Free sandboxing, e.g. ironfox - our sandboxed firefox
for MacOSX, ironadium - sandbox Adium, etc. See  
https://www.romab.com/ironsuite

Additional information (3/3)

https://www.romab.com/ironsuite

• Kerkhoff’s principle - a ”rule of thumb” in crypto
design - security must not rely on keeping the design/
machine/source code secret	

• SDL - software development life cycle, MS model for
developing ”more secure code”	

• PRNG - Pseudo Random Number Generator. The
rand() function is not entirely ”random”, and an
external observer can recreate the series of number
created by rand if the ”seed value” used by rand is
somehow extracted/observed/etc

Concepts mentioned during the class

Concepts mentioned during the class

• Vulnerability - some property of a piece of software
that can be manipulated or used in uninteded ways by
an attacker, a.k.a. security bugs	

• Exploits - usage of a vulnerability. Exploit code is
software snippets to use the vulnerability	

• Zero day exploits (0day). A previously ”unknown” (or
at least publicly not published and wellknown) exploit
for a security vulnerability

Concepts mentioned during the class

• Attack vector - Different paths to reach an
vulnerability. One path might be closed by a vendor
patch, but another might still be there, if the root cause
is not identified and fixed.	

• Reverse engineering. To re-create the original design by
observing the final result, in computer science - to re-
create some source code by examing a binary.

Tools mentioned during the class

• IDA pro - Disassembler	

• Hexray - Decompiler	

• Ollydbg, windbg - Other disassemblers	

• Bindiff - Advanced tool from zynamics to compare
binaries, with call graphs etc. Not same as built-in
windows tool with same name.

