
Marcus Bendtsen, Andrei Gurtov

Institutionen för Datavetenskap (IDA)

Avdelningen för Databas- och Informationsteknik (ADIT)

Network Security
Intrusion Detection

Intrusion Detection

• The goal of intrusion detection is to detect intrusions that have occurred or that
are in the process of occurring.

• Intrusion detection will do nothing to directly prevent intrusions, but may be
helpful in attempting to understand them or mitigate their effects.

• Roughly divided into two parts:

• Network Intrusion Detection Systems (NIDS)

• Detect suspicious behaviour on the network

• E.g., Snort, Bro

• Host-based Intrusion Detection Systems (HIDS)

• Detect suspicious activity on a single host

• E.g., Windows Defender, F-Secure client

2

Intrusion Detection System (IDS)

• All types of intrusion detection are really special cases of the more general
concept of anomaly detection, which strives to detect anomalous behaviour
in a system (which could be symptoms of misconfiguration, imminent equipment failure etc.)

• In general an IDS is a device that collects information or audits from any
number of sources, analyses the information and determines whether there
is a problem or not.

• The sheer volume of data available demands an automated approach, even
if manual audits are of higher quality, it would be unfeasible to manually
audit the systems continually.

3

IDS classification

• Behaviour-based systems use information about normal behaviour of a system in order to detect
intrusions (which hopefully aren’t normal).

• Knowledge-based systems use knowledge about intrusions (e.g. worm signature)

• Behaviour on detection separates systems that just raise an alert (passive) from systems that
attempt to prevent the intrusion (active) or take other countermeasures.

• The audit source location is where the network-host separation comes in, advanced systems may
be able to synthesize information from many sources.

• Detection paradigm separates systems that merely evaluate whether a system is secure or not
(state based) or when a systems goes from secure to insecure (transition based).

• Usage frequency separates systems based on how often they run.

4

5

113

IDS Classification

Intrusion Detection System

Detection

method

Behavior on

detection

Audit source

location

Detection

paradigm

Usage

frequency
B

e
h
a
vi

o
r

b
a
se

d

K
n
o
w

le
d
g
e
 b

a
se

d

P
a
ss

iv
e
 a

le
rt

in
g

A
ct

iv
e
 r

e
sp

o
n
se

H
o
st

 l
o
g
 f
il
e
s

N
e
tw

o
rk

 p
a
ck

e
ts

A
p
p
li
ca

ti
o
n
 l
o
g
 f
il
e
s

ID
S
 s

e
n
so

r
a
le

rt
s

S
ta

te
 b

a
se

d

T
ra

n
si

ti
o
n
 b

a
se

d

C
o
n
ti

n
u
o
u
s

m
o
n
it

o
ri

n
g

P
e
ri

o
d
ic

 a
n
a
ly

si
s

This is a more detailed classification of intrusion detection systems. Without

looking at all the details, we’ll look at some key points.

The detection method is important. Behavior-based systems use information about

the normal behavior of a system in order to detect intrusions (which hopefully

aren’t normal), while knowledge-based systems use knowledge about intrusions.

Behavior on detection separates systems that just raise an alert (passive) from

systems that attempt to prevent the intrusion (active) or take other

countermeasures. The audit source location is where the network-host separation

comes in. Advanced systems may be able to synthesize information from many

sources. The detection paradigm separates systems that can detect when a system

goes from secure to insecure (transition-based) from systems that merely evaluate

whether a system is secure or not (state based). Finally, usage frequency separates

systems based on how often they are run.

For example, Snort, an open source NIDS, can be classified as a knowledge-based,

passive alerting, network-packet-using, transition-based, continuous monitoring

system. It uses signatures of known attacks (knowledge-based) matched against

network packets (network packet source) to detect attacks in real-time (continuous,

transition-based) and by default only alerts the operator (passive alerting). Snort

does include elements of a behavior-based IDS (it can learn typical traffic patterns

and detect anomalies) and active-response (it can be configured to take arbitrary

actions on detection).

Example: Snort

• Snort is an open source NIDS, which can be classified as passive alerting,
network-packet-using, transition-based, continuous monitoring system.

• It uses signatures from known attacks (knowledge-based) matches against
network packets to detect attacks in real-time.

• Snort does include elements of behaviour-based IDS and active response.

6

Snort examples

• Examples of rules in Snort

• A database of rules that are matched against incoming
traffic.

• Below is example that looks at external TCP connections
that are trying to get a command line shell to a SQL
server, this may indicate that a remote user has admin
privileges, which is usually a bad thing.

7

114

NIDS Example (Snort)

alert tcp $EXTERNAL_NET any -> $SQL_SERVERS 445
(msg:"MS-SQL xp_cmdshell program execution 445";
flow:to_server,established;
content:"x|00|p|00|_|00|c|00|m|00|d|00|s|00|h|00|e|00|l|00|l|00|";
nocase;
classtype:attempted-user; sid:1759; rev:5;)

alert tcp $EXTERNAL_NET any <> $HOME_NET 179
(msg:"DOS BGP spoofed connection reset attempt";
flow:established; flags:RSF*;
threshold:type both,track by_dst,count 10,seconds 10;
reference:bugtraq,10183;
reference:cve,2004-0230;
reference:url,www.uniras.gov.uk/vuls/2004/236929/index.htm;
classtype:attempted-dos; sid:2523; rev:7;)

These are examples of rules in the popular NIDS named Snort. Snort, like many

other NIDSs has a database of rules that are matched against incoming traffic.

Each rule represents a signature of a particular attack or anomaly, and includes

instructions on what to do when the signature is encountered.

The first rule looks in established TCP connections from the outside to an SQL

server, on TCP port 445 (administrative interface for Microsoft SQL server). If the

UTF-8 encoded string “xp_cmdshell” is seen, then an alert is raised. This particular

signature indicates that a remote user is attempting to get a command shell from

SQL server, which may indicate that the remote user has administrative database

access (which, in case you wonder, is a bad thing).

The second rule looks for TCP segments with the RST flag set in established

connections to port 179 (BGP). The rule triggers if there are at least 10 such

segments within ten seconds to the same destination. This is indicative of

somebody attempting to block a BGP session, or a seriously messed up network,

both of which warrant attention.

Components

• Event generators (E-Boxes)

• Provide information about events to the rest of the system.

• Analysis engines (A-boxes)

• Analyses the information from event generators.

• A lot of research goes into finding new ways of analysing data.

• Storage mechanisms (D-boxes)

• Defines the means used to store security information.

• Information gathered by E-boxes and analyses from A-boxes.

• Countermeasures (C-boxes)

• Defines what to do if attack is identified.

• Alarm, shut down, filter, etc.

8

9

Output: Reactions to Events

Event (E) Box

Storage (D) Box

Countermeasure

(C) Box

Analysis (A) Box

Raw Event Source

Output: Raw or Low-Level Events

Output:

Storage of Events

(locally or otherwise)

Output:

High Level,

Interpreted

Events

Components of NIDS – T. Ptacek, T. Newsham –
Insertion, Evasion and Denial of Service: Eluding
Network Intrusion Detection.

Points of vulnerability

• The purpose of an attack is almost always to hide another attack (I hit the NIDS first, then I can do whatever I

want undetected).

• The components of NIDS can all be attacked.

• Hitting the E-boxes effectively disables NIDS, as it has no input to use for detection.

• Hitting the A-boxes disables all analysis, so even if the NIDS has lots of data to work on, nothing can be
done.

• Hitting the D-boxes can result in data not being stored for analysis, or maybe manipulated so that evil
data is made to look safe.

• Also, the NIDS saves a lot of information about hosts on the network. This needs to be stored somewhere. Getting
this information can be very useful for the attacker.

• Hitting the C-boxes results in no action being taken if an attack is found. This may be enough for the
attacker, as it may result in no logs being written and all services working as normal.

10

NIDS challenges

• NIDS are not fool-proof, there are significant challenges to overcome in
implementation.

• False positives – A NIDS facing heavy traffic may raise alarms for
legitimate traffic.

• A NIDS looking for strings that are commonly used to get to backdoors may detect the
same strings in legitimate traffic.

• A NIDS may detect a SYN flood where the reality was a sudden surge in traffic, due to
increase popularity of a website.

• NIDS needs to be carefully tuned, as introducing false negatives when attempting to
reduce false positives is also undesirable.

11

DoS or not?

12

121

Am I DoSor Not?

Here’s an illustration of the challenge facing a NIDS. These are traffic graphs for

two web servers. The first web server’s link was limited to 40Mbit/ s. The second

was limited to 100Mbit/ s. Both were hit with lots of traffic over a short period of

time. If the latter web server’s link would have been limited to 40Mbit/ s, the traffic

would have completely saturated the link, like in the first graph.

The question is, which one is a DoSattack, and which is all legitimate traffic? How

can a NIDS determine which is which?

Slashdot Effect?
Night backup?
Intruder stealing data?

NIDS challenges

• NIDS are not fool-proof, there are significant challenges to overcome in
implementation.

• Performance – NIDS that scans high traffic volumes require high
performance hardware, networking and software to work.
• NIDS that misses traffic regularly may be unable to detect anomalies.

• A NIDS needs to defragment all datagrams that it sees, and needs to track all TCP
connections to all hosts in the network, at least long enough to establish that the
connection is safe.

• Security features – IPSec, VPN tunnels, TSL/SSL and application-layer
encryption are all designed to protect sensitive information from prying eyes;
but they also prevent NIDS from doing its job.
• Difficult to circumvent, major issue for NIDS.

13

NIDS challenges

• NIDS are not fool-proof, there are significant challenges to overcome in
implementation.

• Desynchronization – NIDS needs to mimic the processing of the
end system.

• In order for NIDS to understand the consequence of some particular network traffic, NIDS
needs to know what state the end system is in.

• The effect of the network traffic should be understood by NIDS.

• If the end system behaves differently to some traffic than NIDS simulates, then the
systems are desynchronized, and no further accurate detection can be done.

14

Example of attack on E-box
• I know that host C has a vulnerability. It implies that if I

send the word HACK, it will shutdown.

• I also know that NIDS is aware that this vulnerability
may exist, and I do not want to get caught.

• I have good knowledge about the network layout, and I
know that NIDS is sitting on one network segment prior
to C. (May have scanned to get this information).

• I will send the work HQACK to C, but I will make sure
that the datagram containing Q will have a TTL set such
that NIDS will receive it, but Router 2 will decrement
it to 0 and respond with ICMP.

• H, A, C, K however does make it through Router 2 as
they have longer TTLs.

• NIDS sees HQACK, C sees HACK

15

C

NID
S

Router 2

Router 1

Internet

Other exploits

IP fragmentation

• IP packets can be broken up into smaller packets for transit. End-systems need to reassemble fragments in order
to get the original IP packet.

• In order for NIDS to see the entire IP packet it needs to collect all the fragments.

• What if I send a never-ending stream of fragments without any fragment marked as final? Eventually I will use all the
NIDS resources and it will be unable to operate properly. (Dos)

• NIDS also needs to reassemble the fragments, and has to do so exactly the same way as the client it is
monitoring traffic for.

• If two fragments for some reason overlap (they can be of different size and come in different order), NIDS needs to handle
this exactly the same way as the client will.

• In some situations old data is replaced, in some situations new data is discarded. Turns out that operating systems differ in
their behaviour.

16

Other exploits

Abusing reactive ID systems

• Some NIDS do not only create logs and warnings, but actually take action (a more reactive C-box).

• This can be exploited to effectively make the NIDS perform a DoS attack on the network it actually
wants to protect.

• Imagine that I attack the system with a SYN flood, and to not be detected I fake the source IP.

• The NIDS sees the SYN flood attack and takes action to terminate all connections from this IP.

• I do this for IP address blocks allocated to in Sweden, and suddenly connections from Sweden are
disallowed.

17

NIDS lessons

• NIDS will never be 100% reliable, so a NIDS should never be the only solution. Host-based IDS and other
monitoring systems should be used.

• Trade offs – Common in security

• Trade offs – Common in security – The more diligent the NIDS is to keep synchronisation, the more
resources are needed.

• If you add security such as IPsec, SSL/TSL, then NIDS will suffer.

• Active NIDS can be really useful to stop attacks, but can be exploited by attacker.

• NIDS also teaches us that it is important to know how protocols work, and to also verify that they work as
expected.

18

Honeypots with Known Vulnerabilities

19

Tor Onion Routing/DarkNet

20

Virtual Private Network Anonymizer

21

Summary

• IDS is crucial to detect and
react to attacks.

• It gives us valuable
information for future
security improvements.

• Many trade-offs needs to be
made, and NIDS is not
enough on its own.

• All four “boxes” can be
attacked:

• Can lead to attacks not
being noticed.

• Can lead to the NIDS itself
creating DoS attacks etc.

• Can lead to network
system configuration
leaks.

22

Output: Reactions to Events

Event (E) Box

Storage (D) Box

Countermeasure

(C) Box

Analysis (A) Box

Raw Event Source

Output: Raw or Low-Level Events

Output:

Storage of Events

(locally or otherwise)

Output:

High Level,

Interpreted

Events

Components of NIDS – T. Ptacek, T.
Newsham – Insertion, Evasion and
Denial of Service: Eluding Network
Intrusion Detection.

www.liu.se

