
Security and security controls
in operating systems

A quantitative approach
2019-02-25

Robert Malmgren
rom@romab.com

mailto:rom@romab.com

1 minute presentation

• Consultant in IT and infosec since 20+ years

• Working alot on with critical infrastrucutre
protection, process control, SCADA security
etc, but also in financial sector, government, etc

• Work covers everything from writing policies,
requirement specs and steering documents to
development, penetration testing, incident
handling and forensics

Outline of talk

• Intro

• Background and basics

• Security problems & vulnerabilities

• Formal security models

• Example of operating systems and security

• Trends

Some short notes

• The focus is on general operating system used in
general computers - COTS products

• Embedded systems, code for micro controllers, etc often
lack most fundamental security features

• Some experimenal OS’s and domain specific
solutions have better-than-average security concepts
and security controls, e.g. military grade usage

Background and basics

Intro - foundation

• Modern software is normally formed into
components, parts and layers in systems

• Complex systems

• …run multiple programs at once,

• …have multiple users,

• …store huge amounts of data,

• …is interconnected via networks

Intro - foundation

• This there is to built-in security into the foundation of
the systems - the operating system

• To identify and authorize users of the system

• To allow for an environment where necessary
basic controls are in place

• To prevent unauthorised access to OS resources

Intro - just the basic facts

• All software is prone to bugs

• Some bugs will have an impact that can have security
implications - data leaks, destruction of data, privilege
escalations

Intro - just the basic facts
• Some bugs help to circumvent security mechanisms

• Some security designs are flawed, or build on flawed
assumptions

Operating system security

• Security problems in the operating system can affect
the integrity of the system itself

• Someone else can control the system to their own
liking - pwnd!

• Bugs in OS kernel can affect system integrity

• Security problems with the operating system can in
turn affect the security in applications and subsystems
(databases, middle ware, etc)

http://en.wikipedia.org/wiki/Pwn

http://en.wikipedia.org/wiki/Pwn

Some concepts and terms
Vulnerability

Exploit

Foreverday exploit
0day exploit

CVE

Stack
smashing

Heap
overflow

Stack
overflow Race

conditions

Intro - the basics

• Some bugs are undiscovered for some time, they lay latent

• Once discovered, they can be abused, if it is an security
vulnerability, that can be exploited

• A discovered security bug, is sometime called a 0day, until
it is mitigated

Intro - the basics

• Bugs tend to get names (heartbleed, ghost,  
shellshock, etc) and logos

• also some bugs/vulnerabilities gets  
”formal name”, i.e. CVE*,  
and a scoring CVSS**

• e.g. CVE-2011-3172

** https://www.first.org/cvss/specification-document**

* ”Common Vulnerabilities and Exposures;” https://cve.mitre.org/

https://www.first.org/cvss/specification-document**

Some concepts and principles

• Attack vector - Different paths to reach an
vulnerability. One path might be closed by a vendor
patch, but another might still be there, if the root cause
is not identified and fixed.

• Reverse engineering - To re-create the original design
by observing the final result, in computer science - to
re-create some source code by examing a binary.

Capabilities and requirements
Need Description Example

Protect a system
resource

Prohibit malicious or
unintentional access to

system resources

System tables, direct
access to I/O-units,
 memory protection

Authorization checks for
usage of system calls and

system resources

Provide controlled access to system,
so that system mainain system
integrity and provide continuous

security to application and

reference
monitor

Separation of resources Physical, Logical, temporal or
cryptographical separation

separation in
running time

Some important
concept

• Reference monitor

• Trusted Computing Base, TCB

[1] Lampson et al: Authentication in Distributed Systems: Theory and Practice

Principal
Reference

monitor
Do

operation
Object

Source Request Guard Resource

Principles for secure design*
Economy of mechanism Keep the design as simple and small as possible

Fail-safe defaults Base access decisions on permission rather than exclusion

Complete mediation Every access to every object must be checked for authority

Open design The design should not be secret

Separation of privilege technique in which a program is divided into parts which are limited to
the specific privileges they require in order to perform a specific task

Least privilege
Every program and every user of the system should operate

using the least set of privileges necessary to complete the job

Least common
mechanism

Minimize the amount of mechanism common to more
than one user and depended on by all users

Psychological
acceptability

It is essential that the human interface be designed for
ease of use, so that users routinely and automatically

apply the protection mechanisms correctly

JEROME H. SALTZER et al The Protection of Information in Computer Systems http://www.cs.virginia.edu/~evans/cs551/saltzer/

http://www.cs.virginia.edu/~evans/cs551/saltzer/

The classical ring model

Källa http://en.wikipedia.org/wiki/File:Priv_rings.svg

Kernel

Userland

UNIX x86
Least

privileges

Highes
privileges

http://en.wikipedia.org/wiki/File:Priv_rings.svg

Interaction between
application and OS

Exekverande
process

Exekvera
systemanrop

Anrop till
systemanrop

Process i userland

Fortsatt
exekvering

Trap

Kernel

Overview of operating system (1/2)

Kernel

Drivers

subsystems
libraries

Applications

Servers
compilers

Tool chain

Overview of operating system (2/2)

Applikationer Applikationer Applikationer Applikationer

Systemanrop in mot operativsystemskärnan

operativsystemskärna med basfunktioner

Gränssnitt mot hårdvara

Nätverk
Minnes-

hantering
Datalagring CPU

Användare

nr 1

Användare

nr 2

Problem with these
pictures and concepts

• Layering violation

• some software might skip a layer and call an
underlaying layer directly and hence bypass
controls

• In some scenarios attackers might come an
unexpected way

• Attacking from host operating system against
guest operating systems in a virtual machine
environment

Memory handling

• RAM memory is a central resourse that in a controlled
way must be shared and handled between
operatingsystem, applications and other components

• Modern computer systems have hardware support for
memory protection, e.g. MMU

• OS support is required to use the hardware
supported memory protection

File system

• A file system is often a central component in a computer
system w.r.t. security and protection

• Besides the actual file content, there is meta data that is of
importance

• File owner, dates of creation/change/access, access
information, security labels, etc

• Manipulation of meta data can in some cases be more
serious security breach than the manipulation of the file
content itself. Or a combo of both can be misleading and
hide the fact that a file has been altered

Local filsystem

File system Description Comment

FAT No access control Classic DOS

NTFS Discretional Access Control via ACL Advanced possibilities
to make controls

UFS Discretional Access Control, writing & program
execution for owner, group, “others”

Simple access
controls

Network file systems

File
system Description Comment

NFSv3 Hostbaserad accesskontroll, uid Trivial to
circumvent

NFSv4 Secure RPC, KRB5a, KRB5p, KRB5i
Require a Kerberos server, KDC

a= authentication
i=integrity = calculate MAC
p= privacy = encrypt packet

SMB/CIFS KRB5a

Comparing security in
Operating systems (1/5)

• When in time was the system developed?

• What was the state-of-the-art at that time?

• What trends where currently in fashion?

Comparing security in
Operating systems (2/5)

• Development methodologies

• Open Source or Closed Source?

• What support do one use to ensure that security is
built into the product?

• How does one ensure that implementation is a
correct representation of the design, that is a
correct interpretation of the analysis?

”Given enough eyeballs, all
bugs are shallow”

- Linus' Law

http://en.wikipedia.org/wiki/Software_bug

Comparing security in
Operating systems (3/5)

Source Lines Of Code - SLOC

http://en.wikipedia.org/wiki/Source_lines_of_code

Year OS SLOC  
in millions

1993 Windows NT 3.1 4-5

1994 Windows NT 3.5 7-8

1996 Windows NT 4.0 11-12

2000 Windows 2000 more than 29

2001 Windows XP 40

2003 Windows Server 2003 50

2007 Windows vista 50

2015 Windows 10 40-60

Year OS SLOC  
in millions

2003 Debian 2.2 55-59

2006 Debian 3.0 104

2008 Debian 3.1 215

2010 Debian 4.0 283

2005 Mac OS X 10.4 86

2003 Linux kernel 2.6.0 5,2

2005 Linux kernel 2.6.11 6.6

2009 Linux kernel 2.6.29 11.0

2009 Linux kernel 2.6.32 12.6

2011 Linux kernel 3.0 14,6

2018 Linux kernel 4.X 25

But really, what good is this comparison?

Write more code = get higher salary?
Manage a 200K-SLOC project is cooler than a 5K-SLOC?

More code = more bugs?

More code = more security checks and advanced concepts like crypto, resillient
failure checking built into everything?

But certainly, complexity is considered bad and evil in the context of security.
And there is often a relation between complexity and size of program

https://informationisbeautiful.net/visualizations/million-lines-of-code/

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29
http://en.wikipedia.org/wiki/Linux_%28kernel%29

Comparing security in
Operating systems (4/4)

• What can one gain by having formal certification of
operating systems, subsystems or application

• Trusted Computer System Evaluation Criteria
(TCSEC), Common Criteria, etc

• More a theoretical excersice than of any real value?

Comparing security in
Operating systems (5/5)

Example of different
protection solutions

General example of
control principles

Security
controls Description Example

Secure boot chain
/

Verified boot

Make system startup
sequence is secure

Make sure that each step of boot is
cryptographically signed to ensure code

integrity, e.g. UEFI vs BIOS

Encryption Protection against eavesdropping
or unauthorized access

network traffic, file content, disk
partitions, memory pages, swap files/

page area

Hash values Protection against unnotised
changes, passwords, checksums on files

Logs
Traces, error messages and
dumps from systems and

applications
Syslog, eventlog, audit, BSM

General example of
control principles

Security
controls Description Example

Random numbers Make a resource non-
deterministic

File names, proccess ID,’s  
port numbers,  

sesssion keys, session id’s,  
 transaction numbers,  

DNS query ID’s,  
execution time & timing

Constant
numbers

Make a resource non-
deterministic execution time & timing

General example of
control principles

Security
controls Description Example

Compiler
generated airbag -

canary

Make sure buffer overflows
dont gets undetected ProPolice, VisualStudio /GS

ASLR

Randomize addresses used by
applications. Make sure its hard

to write code that knows of
addresses. Where did that lib go?

Android >4.0, iOS > 4.3, Windows >Vista,  
OpenBSD/NetNSD, Linux >2.6.12,

MacOSX >10.5,
Solaris >11.1, etc

KASLR
Randomize addresses used

by kernel
Windows Vista, NetBSD,  

Linux >3.14, MacOSX 10.8, etc

General example of
control principles

Security
controls Description Example

DEP, NX, W^X
Make sure memory is not

executable

IE on Windows Vista,  
Android >2.3, FreeBSD > 5.3,

OpenBSD, Linux >2.6.8, MacOSX
>10.5, etc

Scrubing, zeroing
Make sure that old data
areas are cleaned before

usage or returned to system
memory, file systems, VM system

Examples of vulnerabilities
and attacks

Host security

Network security

Human security

Kernel
Last line

of
defense

Application
security

Where do attacks occur?

User / admin errorsRemote
exploits

Local
exploits

Soc
ial
engi
nee
ring
atta
cks

Apple iOS device security

Examples of threats and attacks

Confidentiality

Availability

System integrity
Data integrity

fork bombs
SYN flood

Wrong file
permissions

unintentional filling
of disk partition

plain text in RAM

Bypasswd security
checks

Manipulated system configuration

Manipulated program binaries Zapped system logs

intentional filling
of disk partition

malformed
network packets

Manipulated user files

Some exempels of classic
attacks (1/2)

• Ken Thompson’s trojanized  
c compiler

• Modify the source code to the compiler
to recognize if it recompile itself or the
login program - insert backdoor in login

• recompile compiler

• remove source code changes and
recompile the compiler

• recompile the login program with the
modified compiler

• No visible signs for humans or tools to see
the backdoor in source code. Calls for
binary inspection or decompilation.

Ken Thompson - TURING AWARD LECTURE: Reflections on Trusting Trust.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.5728&rep=rep1&type=pdf

Some exempels of classic
attacks (2/2)

• Create a symbolic link that is used to trick
the system to overwrite an important file at
a controlled point in time

ln -s /tmp/core /etc/passwd

Example of attacks
Attack
method Description

Rootkit

Replace parts of applications or kernel with attackers code.

Often contain built-in protection and deception parts to hide
rootkit itself, as well as malicious code.

Often created / built upon modified original source code.

Name derives from earliest versions of threat that was created on
UNIX systems

time-of-check-to-
time-of-use

(TOCTTOU)

Type of race-condition bug caused by (maliciously controlled) changes in
a system between the checking of a condition (such as a security
credential) and the use of the results of that check

http://en.wikipedia.org/wiki/Time-of-check-to-time-of-use

Example of attacks
Attack
method Description

Buffer overflow

Attacks that allow an attacker to deterministically alter the execution flow of
a program by submitting crafted input to an application. Executable code is
written outside the boundaries of a memory buffer originally used for
storing data. The executable parts is somehow made to execute, eg by
manipulate return adress to be used when a function call is finished.

Real world examples: OpenBSD IPv6 mbuf’s* remote kernel buffer
overflow[1], windows kernel pool

Synonyms and variants: Buffer overrun, Stack smashing, Heap smashing,
format string bugs, memory corruption attack

[1] http://www.coresecurity.com/content/open-bsd-advisorie
* An mbuf is a basic unit of memory management in the kernel IPC subsystem

http://www.coresecurity.com/content/open-bsd-advisorie

Attacks and counter
measures

Buffer overflow/memory
corruption attacks

Stack canaries

More advanced buffer
overflows, defeating canary

Address Space Layout
Randomization (ASLR)

Note - several of these counter
measures does not work for

protection within the kernel

No-executable  
(NX, W^X) stacks

Hijacking JIT compilers ROP attacks

Data Execution
Prevention (DEP)

?

Attacks and counter
measures

• Chaining of attacks - combining a number of exploits to
achieve goal

• finding and abusing a number of different
vulnerabilities might allow an attacker to achieve
goals not possible with just one potent exploit

• Code execution in gadgets (ROP) + sandbox escape
+ elevation of privileges + execution of privileged
code

Example of attacks

Remember that there is a number of
ways that all OS security controls can be

bypassed,  
especially if the operating system

is not running  
- a very good side-channel attack ;-)

Example of attacks

• Attacks by attaching malicious hardware to buses and
ports

• Firewire and other DMA based methods to access
memory of a computer (evil maid attacks, evil devices)

• UEFI attacks via Thunderbolt (thunderstruck attack)

• Using JTAG interfaces to snoop & manipulate bus

Example of attacks
• Removal of, or direct attachment to, physical memory

chips (cold boot attacks)

Example of attacks: cold boot attacks

F-secure ”The Chilling Reality of Cold Boot Attacks” https://www.youtube.com/watch?v=E6gzVVjW4yY

Example of attacks: PCILeech

Ulf Frisk - ”Attacking UEFI Runtime Services and Linux” https://www.youtube.com/watch?v=PiUVRHYTDUg

Example of attacks: HW implants

https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/

Advanced attacks
• Rowhammer*

• Based on an unintended side effect
in dynamic random-access memory (DRAM)
that causes memory cells to leak their
charges and interact electrically between
themselves, possibly altering the contents of
nearby memory rows that were
not addressed in the original memory access.

• Flipping bits without accessing them
“Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors”  
— Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, Onur Mutlu, at CMU

Advanced attacks
• Rowhammer*

• Method of reading writing memory cells  
so that memory cells in adjacent rows  
become changed

• This circumvention of the isolation  
between DRAM memory cells

• Memory leak == information leak

• Have been used to Gain Kernel Privileges

• Can be used to attack Virtual Machines
* Kim et al ” Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors” https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

Advanced attacks

• Rowhammer

• Have been implemented in JavaScript and runned in a
browser

• Modern variants* have been used to defeat ECC
memory

* ”Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks” https://cs.vu.nl/~lcr220/ecc/ecc-rh-paper-eccploit-press-preprint.pdf

Advanced attacks

• Meltdown* & Spectre**

• Low-level cache attacks, allow malicious READs

• Meltdown breaks isolation between user land and
kernel

• Spectre breaks isolation between applications in user land

https://meltdownattack.com/
* Lipp et al ”Meltdown: Reading Kernel Memory from User Space” https://meltdownattack.com/meltdown.pdf

** Kocker et al ”Spectre Attacks: Exploiting Speculative Execution” https://spectreattack.com/spectre.pdf

https://meltdownattack.com/meltdown.pdf

Advanced attacks

• Meltdown & Spectre

• All modern CPUs are vulnerable  
(x86, AMD, ARM) in various degrees

* Canello et al ”A Systematic Evaluation of Transient Execution Attacks and Defenses” 
 https://arxiv.org/pdf/1811.05441.pdf

Advanced attacks

• Meltdown & Spectre

• work on personal computers, mobile devices, and in the
cloud

• Works on Windows, Linux, Android, etc

• Works on containers: docker, LXC, OpenVZ etc

Advanced attacks

* Canello et al ”A Systematic Evaluation of Transient Execution Attacks and Defenses” https://arxiv.org/pdf/1811.05441.pdf

LSM - Linux Security
Module

• Was created by Crispin Cowan/imunix 2001  
- To avoid locking certain security models into the Linux Kernel

• Framework to implement security models in Linux with as few kernel
changes as possible

• Also used to implement other security features, such as intrusion
detection, etc

• Standard since 2.6 kernel

• Not completely different the MAC-modules in fbsd (trustedBSD) and
kauth in netbsd

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current

http://en.wikipedia.org/wiki/Linux_Security_Modules

http://netbsd.gw.com/cgi-bin/man-cgi?kauth+9+NetBSD-current
http://en.wikipedia.org/wiki/Linux_Security_Modules

Apparmor

• Implemented using LSM for the Linux kernel

• Is built to create a white list for what application is
allowed to do

• Implementents part of posix 1.e (capabilities)

• Mandatory

http://en.wikipedia.org/wiki/AppArmor

http://en.wikipedia.org/wiki/AppArmor

Apparmor

• Poison of choice in Ubuntu och SLES, instead of
SELinux that competitors have chosen

• Much simplier policy language / configuration than
other mandatory access controls

• Have a wizard functionality to create policies

Apparmor - rules
Symbol Meaning

? Any symbol
besides /

* any number of
symbols besides /

** * + /

[abc] a, b, or c

[a-c] a, b, or c

{ab,cd} ab or cd

Apparmor - rules
Abbrev Meaning

r read
w write
ux unconstrained execute
Ux ux + scrubed env
px disc profile execute, change profil
Px px + scrubed env
ix inherit exec, keep same profil
m Allow PROT_EXEC with mmap(2)
l link

Apparmor - example for firefox
 /usr/lib/firefox/firefox.sh flags=(complain) {
 /bin/basename rmix,
 /bin/bash rmix,
 /bin/gawk rmix,
 /bin/netstat rmix,
 /dev/log w,
 /dev/null rw,
 /dev/tty rw,
 /dev/urandom r,
 /etc/fonts/** r,
 /etc/ld.so.cache rm
 /etc/localtime r,
 /etc/magic r,
 /etc/opt/gnome/** r,
 /etc/passwd r,
 /etc/resolv.conf r,
 /home/*/.fontconfig/** r,
 /home/*/.gconfd/* rw,
 /home/*/.gconf/ r,
 /home/*/.gconf/* rw,
 /home/*/.gnome2_private/ w,
 /home/*/.mozilla/** rw,
 /home/*/.Xauthority r,
 /lib/ld-2.5.so rmix,
 /lib/lib*.so* rm,
 /opt/gnome/lib/GConf/2/gconfd-2 rmix,

 /opt/gnome/lib/**.so* rm,
 /proc/meminfo r,
 /proc/net/ r,
 /proc/net/* r,
 /tmp/gconfd-*/ r,
 /tmp/gconfd-*/** rwl,
 /tmp/orbit-*/ w,
 /tmp/orbit-*/* w,
 /tmp/ r,
 /usr/bin/file rmix,
 /usr/lib/browser-plugins/ r,
 /usr/lib/browser-plugins/** rm,
 /usr/lib/firefox/firefox-bin rmix,
 /usr/lib/firefox/firefox.sh r,
 /usr/lib/firefox/** r,
 /usr/lib/firefox/**.so rm,
 /usr/lib/gconv/** r,
 /usr/lib/gconv/*so m,
 /usr/lib/lib*.so* rm,
 /usr/lib/locale/** r,
 /usr/share/** r,
 /var/cache/fontconfig/* r,
 /var/cache/libx11/compose/* r,
 /var/run/dbus/system_bus_socket w,
 /var/run/nscd/passwd r,
 /var/run/nscd/socket w,
 /var/tmp/ r,

 }

Note that this configure
is very firefox and linux

version specific

Apparmor - critics

• path-based instead of inod baserad

• The simplification wrt the wizarden, makes the
simplification too much

• Only includes definied program, not the systemet as
such or other programs

• Often is markedet to be more than it really is, e.g.
RBAC

SElinux / Type
Enforcement (te)

• Type enforcement is built on the concept that a
subject is attachted to a domain and that object is
attached to types

• In a matrix one define how domain-to-domain and
domain-to-type interaction is allowed.

SELinux

• In the SELinux there is a security matrix called policy
which can be targeted, strict, permissive or enforcing.

• targeted - what is allowed besides that which is
explicit prohibited

• strict - nothing is allowed beside that is explicitly
allowed

SELinux

• SELinux is used to lock things down - primarily
services, but can in theory lock down anything

• The focus on locking down services (e.g. network
services) will result in that authorized users will not
be locked down and gain advantages of any security
controls from SELinux

SELinux

• Reference policy is maintained by tresys*  
- earlier by NSA

• Contain a few “trusted programs”,

• e.g. su, sshd, login.

• These trusted programs must be able to perform so
called domain transitions.

* https://github.com/TresysTechnology/refpolicy/wiki

https://github.com/TresysTechnology/refpolicy/wiki

Important note to
remember is that security
code can add new security

bugs

SELinux

• Is distributed in COTS Linux distributions such as
RedHat and Fedora

• Is actively maintained by RedHat, Tresys, NSA and
others

• The company Tresys is the maintainer of the
reference policy and several selinux userland
program 
- also sell separate policys for more program, tex
razor

SELinux

• The model used to grant rights is extremely
granular and powerful

• exec_heap, exec_mem are permissions in SELinux

• The SELinux advocate Russel Cooker have test
boxes for anyone to use where root-login is
allowed for anonymous users

• http://www.coker.com.au/selinux/

http://www.coker.com.au/selinux/

SELinux
• Drawbacks with SELinux

• To create a flawless SELinux policy from scracth is
very hard - often it is a copy-and-paste work from
some existing policy, and thus might not really
implement your intended design

• To maintain a SELinux policy is non-trivial, compare
for example with apparmor

• Dependencies on trusted programs as well as classic
data validation errors can result in security errors, as
usual

GRsecurity
• Brainchild of Brad Spengler

• NOT based on the LSM concept

• Brad is a vocal critic of the LSM concept and have
developed PoC attacks agains LSM based security
solutions

• It is released as a separate, non official, patch cluster
to the Linux Kernel

• Some see the non-official status and ”hack” type of
solution as unacceptable, e.g. Xorg

GRsecurity

• Badly supported by Linux distributions

• Almost always require that one compile a custom
kernel, which can have problems on it own

• Have support for RBAC through automatic rule
generation

Virtualization and isolation

Isolation, separation
and virtualization

• chroot (no virtualization, just isolation)

• jails

• user mode linux, uml

• Docker

• Virtual machines: Vmware, MS Virtual Server,
Containers

• Hardware partitioning: Sun LDOMs, IBM LPAR

Overview of virtualization

Applikationer Applikationer Applikationer Applikationer

Systemanrop in mot operativsystemskärnan

operativsystemskärna med basfunktioner

Gränssnitt mot hårdvara

Nätverk
Minnes-

hantering
Datalagring I/O

Applikationer Applikationer Applikationer Applikationer

Systemanrop in mot operativsystemskärnan

operativsystemskärna med basfunktioner

Gränssnitt mot hårdvara

Nätverk
Minnes-

hantering
Datalagring I/O

operativsystemskärna med basfunktioner

Virtualiseringsfunktionalitet

Gränssnitt mot hårdvara

Applikationer Applikationer

Systemanrop in mot
operativsystemskärnan

operativsystemskärna med
basfunktioner

Gränssnitt mot hårdvara

Applikationer Applikationer

Systemanrop in mot
operativsystemskärnan

operativsystemskärna med
basfunktioner

Gränssnitt mot hårdvara

Pro’s and con’s with
virtualization

• Isolation, and to have hardened and dedicated servers running
specific services, are standard ways to minimize attack
surface. Virtualization tools can help this

• Its easy to believe that virtualization will automatically make
things secure, and that there is no way to jump between guest
os’, but exploits have shown this not hold true, e.g. cloudburst

http://www.immunityinc.com/documentation/cloudburst-vista.html

http://www.immunityinc.com/documentation/cloudburst-vista.html

Sandboxing

• Various types of OS supported or application supported
sandboxing is good as a way to get defense-in-depth

• Create temporary execution environments for certain tasks

• test of exe files to lure out malicious code execution

• perform certain tasks that is more prone to attacks

• perform certain tasks that is more sensitive

Pro’s and con’s with
virtualization

• Some sandbox and isolation technologies are not complete
virutalization or separation

• E.g. share name space (processes, file system, etc)

• Share operating system kernel

• Share drivers

