
Problem Set for Tutorial 9 — TDDD14/TDDD85

1 Turing Machines

Exercise 1. Construct a Turing machine which, for input alphabet Σ = {0, 1}, computes the
complement of a Boolean input string, i.e., each bit b ∈ {0, 1} is replaced by its complement b̄ = 1− b.
After having computed the complement the Turing machine should return to the leftmost position
of the tape and accept. For this exercise you should give a formal definition of your machine which
uses the definition of a Turing machine as a 7-tuple (see the course book or the lecture notes for
details).

Exercise 2. Construct Turing machines for solving each of the following problems:

1. Accept the language {0m1n | 0 ≤ m ≤ n}.

2. Accept the language {x ∈ {a, b}∗ | x contains the same number of a’s and b’s}.

3. If the string 1n is placed on the tape, the TM generates the string (01)n.

4. If the string 1m]1n is placed on the tape, the TM generates the string 1mn (i.e. multiplication).

High-level descriptions are sufficient but you should clearly specify how your machines operates on
the tape, and when they accept.

Exercise 3. For the following statements, indicate whether they are true or false and give a
justification:

1. The intersection of two decidable languages is decidable.

2. The union of two Turing-recognizable languages is Turing-recognizable.

3. If the complement L̄ of a Turing-recognizable language L is decidable, then L is decidable.

4. Let L1 and L2 be Turing-recognizable languages. Then L1L2 (recall the notation for set
concatenation) is Turing-recognizable.
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Solutions

Solution to Exercise 1. The high-level idea is simple: we go to the right of the tape and
replace each bit by its complement. When we reach the first blank symbol B we have reached
the end of the tape and should then go to the left without altering anything. Our machine is
then a 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject) where:

• Q = {qs, ql, qr, qaccept, qreject} is the finite set of states, where qs is the start state, ql is the
state which instructs the machine to go from right to left, qr the state which goes to the
right and flips each input bit, and qreject a reject state (which we do not really need but is
still part of the formal definition), and qaccept the accept state.

• Σ = {0, 1} is the input alphabet,

• Γ = {0, 1, B} is the tape alphabet,

• δ : Q× Γ→ Q× Γ× {L,R} is the transition function.

We continue by specifying the transition function. Here, we realize that we somehow have
to recognize when we have reached the initial position of the input tape, since the machine
otherwise would get stuck in the leftmost position, repeatedly trying to move to the left, without
accepting. There are several ways to handle this and we consider a simple approach where
the tape alphabet is augmented with two special symbols 0 and 1. In the start state we then
replace 0 with 1, or 1 with 0, and when we later on return to this cell of the tape we replace it 0
and 1 and accept. The most important entries of δ are then as follows (we leave the remainding
specification of δ as an exercise).

• δ(qs, 0) = (qr, 1, R),

• δ(qs, 1) = (qr, 0, R),

• δ(qr, 0) = (qr, 1, R),

• δ(qr, 1) = (qr, 0, R),

• δ(qr, B) = (ql, B, L),

• δ(ql, 0) = (ql, 0, L),

• δ(ql, 1) = (ql, 1, L),

• δ(ql, 0) = (qaccept, 0, L),

• δ(ql, 1) = (qaccept, 1, L).

Hence, to simplify the task we expanded the tape alphabet so that one could mark symbols
in a convenient way and return to the leftmost position of the tape. Can you think of a solution
to this problem where the tape alphabet is not altered, i.e., is {0, 1, B}?
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Solution to Exercise 2. We construct Turing machines for each specified task as follows.

1. We consider two descriptions, one which requires few additional assumptions, and one
which is more complicated, but is closer to how one would solve the problem in a
programming language. The first TM begins by scanning the tape from left to right and
makes sure that the input is of the form 0∗1∗, and the returns to the beginning of the tape.
It then proceeds to the right of the tape until it encounters the first 1. It replaces 1 by a
blank symbol and enters a new state in which it goes back to the left of the tape until
it reaches the first 0, which it replaces by a blank symbol. It continues in this fashion
and goes back and forth, continously erasing a 0, followed by a 1, and aborts if it sees an
unexpected symbol, or if the tape has run out of 0’s. After exhausting all 0’s it accepts.

The second TM uses a counting strategy instead. The basic idea is simply to count the
number of 0’s and make sure that this number does not exceed the number of 1’s. How
can this be accomplished? We begin by checking that the input is well-formed (as before),
and then partitions the tape into two parts, Left and Right, where Left contains the
input, and where Right will be used to keep track of the number of symbols. We could,
for example, represent this as a binary number, and introduce states for incrementing
and decrementing this number by 1 (reaching a trash state if one tries to decrement 0).
Whenever the machine reads a 0 it then increments the count, and then continues with
1’s in which case it instead decrements the count.

2. We introduce a special symbol ? which we will use to remove symbols from the tape (we
avoid writing a blank since we could then struggle to find the rightmost position, which is
always blank, initially). Starting from the left, it replaces the first a with ?, and then
scans the tape to the left/right until it finds a b which it replaces by ?. It goes back to
the beginning of the tape and repeats this process until no more a can be found. The TM
accepts if the tape is empty, i.e., every symbol is blank or the special symbol, otherwise it
rejects.

3. We interpret this exercise as follows: if the input is well-formed (1n for some n ≥ 1) then
the TM should produce (01)n, and otherwise its behaviour does not matter (so we could
simply accept without altering the tape). This initial check can easily be accomplished, so
we henceforth assume that the input is 1n for some n ≥ 1. We then start at the leftmost
1, change it to 0, and move right. Then we shuffle the remaining tape one symbol to the
right, and write 1 in the newly freed cell. We repeat this process until no more 1’s are
found, and accept.

4. The answer is left as an exercise.

Solution to Exercise 3.

1. Assume that we have two decidable languages L1, L2. We show that L1 ∩ L2 is decidable.

L1, L2 are defined by some total TM’s (Turing machines that halt on every input)
L1 = L(M1) and L2 = L(M2). We can construct a TM M that, on an input string x,
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behaves in the following way:

• M simulates step-by-step the computation of M1 on input x until M1 halts,

• if M1 rejects x then M halts and rejects,

• otherwise M simulates the computation of M2 on input x,

• if M2 accepts x then M halts and accepts,

• otherwise M halts and rejects.

We need x available when starting simulation of M2; for this purpose a copy of x can be
kept at the beginning of the tape. Obviously, x is accepted by M iff it is accepted by M1

and by M2. Thus L(M) = L(M1) ∩ L(M2). Notice that if M1 and M2 are total TM’s
then M is total, thus L(M) is decidable.

2. Assume that we have two Turing-recognizable languages L1, L2 defined by two TM’s;
L1 = L(M1) and L2 = L(M2). We show that L1 ∪ L2 is Turing-recognizable.

We can construct a TM M that simulates the computations of M1 and M2 on the same
input string “in parallel”, performing one step of M1, one step of M2, and so on. M can
be a two tape TM, one tape would be the tape of M1, the other of M2. If one of the
simulated machines accepts, then M accepts. Clearly, L(M) = L(M1) ∪ L(M2).

Notice that we cannot first perform the computation of M1 and then of M2; the first
computation may not halt and thus the computation of M2 may never begin.

3. Construct a total TM for L out of TM’s for L and L̄. The construction is similar to the
previous one.

4. A TM M for L1L2 would first split the input string x into two (x = yizi) in all |x|+ 1
possible ways (i = 1, . . . , |x|+ 1). Then for each of them M checks whether yi ∈ L1 and
zi ∈ L2. The checks have to be done in parallel.a M accepts when some pair of checks
succeeds. (This implies that x ∈ L1L2. Conversely, if x ∈ L1L2 then at least one pair of
checks succeeds.)

We cannot use 2(|x|+ 1) tapes, as the number of tapes has to be fixed (independent of x).
So we split a tape into 2(|x|+ 1) sections, each section would play the role of the tape of
a TM performing one of the checks. If the TM needs more tape cells than assigned, the
tape section is enlarged by shifting all the tape sections that are to the right of the given
one. The second tape of M would be used for bookkeeping (which section is dealt with
now, etc.).

aMore precisely, for a given splitting x = x1x2 the two checks for x1 ∈ L1 and x2 ∈ L2 can be performed
sequentially.
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2 Advanced and Exam Like Exercises

Exercise 4. Which of the following statements are always true, respectively, false?

1. All decidable languages are mapping reducible to each other (if A and B are decidable languages
then A ≤m B and B ≤m A). If the statement is false, can you identify any conditions under
which it holds?

2. If A is a decidable language and B an undecidable language then A ≤m B.

Exercise 5. Let A, B and C be languages (over the same alphabet Σ) where we know that
A ≤m B and A ≤m C (recall that L ≤m L′ denotes that there exists a mapping reduction from L
to L′).

1. Prove or disprove that A ≤m B ∪ C always holds.

2. Prove or disprove that A ≤m B ∩ C always holds.
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Solutions

Solution to Exercise 4.

1. Hint: try to find a counter example consisting of the two “extremes”: the smallest language
∅ and the largest language Σ∗ over an alphabet Σ. If A and B are decidable, but distinct
from ∅ and Σ∗, try to construct a mapping reduction which for any input string x ∈ Σ∗

decides whether x ∈ A or x /∈ A (which can be done since A is decidable) and uses this to
decide which string to output.

2. Hint: this can be answered similarly to the previous question. First, if B is undecidable,
can it be the case that B = ∅ or B = Σ∗? Use this insight to construct a mapping
reduction.

Solution to Exercise 5. First recall that for any two languages L and L’, L ≤m L′ means
that L is “easier than” L′ (modulo Turing computability). Hence, for a question like this, if we
know that A is easier than B, and A is easier than C, can we then conclude that A is easier
than B ∪ C, respectively, B ∩ C?

1. Constructing a mapping reduction from A to B ∪ C seems difficult under the given
assumptions (the underlying problem is that we do not even know that the languages B
and C are Turing-recognizable, so any attempt of “simulating” machines for B and C is
going to fail). Can we come up with an example where A is not necessarily easier than
B ∪ C? This could, for example, be the case if B ∪ C is a very simple language. Note
that a single counter example to the claim is sufficient to disprove it since the statement
is that A ≤m B ∪ C always holds. Here, the answer to Exercise 4 is useful since we have
already established that A ≤m Σ∗ is in general not true.

With this in mind, let A = {a} be a language consisting of a single string a ∈ Σ∗, and
let B be any language such that ∅ ⊂ B ⊂ Σ∗, i.e., B is not empty but is not equal to
the full language Σ∗ either. Note that this implies that ∅ ⊂ B̄ ⊂ Σ∗ (recall that B̄ is
the set of all strings not included in B). We claim that A ≤m B and A ≤m B̄. First,
define f(a) = b for some arbitrary b ∈ B. Second, choose a string c /∈ B and then for
any string a′ /∈ A define f(a′) = c. Then, for any string x ∈ Σ∗, f(x) ∈ A if and only
if f(x) ∈ B. A mapping reduction from A to B̄ can be constructed in the same way.
But then B ∪ B̄ = Σ∗, and we conclude that A does not admit a mapping reduction to
B ∪ B̄ = Σ∗ and that the proposed statement is false.

2. This question is similar to the previous one and the answer is left as an exercise.
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