Problem Set for Tutorial 7 — TDDD14/TDDD85

1 Pushdown Automata

Exercise 1. Consider the following PDA M, where

States: $\{q_0, q_1, q_2\}$

Input alphabet: $\{a, b\}$

Stack alphabet: $\{a, \bot\}$

Initial state: q_0

Initial stack symbol: \perp

Final states: $\{q_2\}$

and the transition relation is

$$\delta = \{ ((q_0, a, \bot), (q_0, a \bot)), \\ ((q_0, a, a), (q_0, aa)), \\ ((q_0, b, a), (q_1, \epsilon)), \\ ((q_1, b, a), (q_1, \epsilon)), \\ ((q_1, \epsilon, \bot), (q_2, \epsilon)) \}$$

Find the configurations that describe the actions of the automaton when the following strings are used as input. For each string, also state whether M accepts it by 1) final state and 2) empty stack.

1. aa

 $2. \ aabba$

3. aaabbb

Is M a deterministic pushdown automaton? In other words, is its next configuration relation a (partial) function?

Exercise 2. Construct a deterministic PDA accepting the language $\{a^i b^j \mid 0 \le i < j\}$.

Exercise 3. For each of the following CFG's, construct a PDA which accepts the language generated by the CFG in question. (S is the start symbol, as usual.)

- 1. $S \Rightarrow aAA$ $A \Rightarrow aS \mid bS \mid a$
- 2. $S \Rightarrow aA \mid aBB$ $A \Rightarrow Ba \mid Sb$ $B \Rightarrow bAS \mid \epsilon$

Solutions

Solution to Exercise 1. We need to find configurations and acceptance for the strings aa, aabba, and aaabbb. Also, we will determine if M is deterministic.

- 1. String: aa
 - $(q_0, aa, \bot) \to (q_0, a, \bot) \to (q_0, a\bot) \to (q_0, \epsilon, aa\bot).$
 - The final configuration is thus $(q_0, \epsilon, aa \perp)$, and we do not accept since q_0 is not accept, and since the stack is not empty.
- 2. String: aabba
 - $(q_0, aabba, \bot) \rightarrow (q_0, abba, a\bot) \rightarrow (q_0, bba, aa\bot) \rightarrow (q_1, ba, a\bot) \rightarrow (q_1, a, \bot) \rightarrow (q_2, a, \bot).$
 - The final configuration is (q_2, a, \perp) . But we do not accept the string since the input string is not exhausted. Formally, recall that in order to accept a string we require a final configuration of the form $(-, \varepsilon, -)$.
- 3. String: aaabbb
 - $(q_0, aaabbb, \bot) \rightarrow (q_0, aabbb, \bot) \rightarrow (q_0, abbb, aa\bot) \rightarrow (q_0, bbb, aaa\bot) \rightarrow (q_0, bb, aa\bot) \rightarrow (q_1, b, a\bot) \rightarrow (q_1, \varepsilon, \bot) \rightarrow (q_2, \varepsilon, \varepsilon).$
 - The final configuration is (q_2, ε, \bot) and we accept by final state or empty stack.
- 4. **Determinism Check:** Yes, it is deterministic, if $((p, x, y), (q, s)) \in \delta$ and $((p, x, y), (q', s')) \in \delta$ then (q, s) = (q', s'). Note that if we are in state q_1 and read a b then we loop if the head of the stack is a, and we are only allowed to proceed to q_2 with an ε -transition if the head of the stack is \perp .

Solution to Exercise 2. Our automaton is $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, \bot\}, \delta, q_0, \bot, \{q_2\})$, where δ is defined below. It accepts $\{a^i b^j \mid 0 \le i < j\}$ by final state. The role of the states is described by

state	consumed input	stack		
q_0	a^i	$a^i \bot$	where $i \ge 0$	
q_1	$a^i b^j$	$a^{i-j} \bot$	where $i \ge j > 0$	
q_2	$a^i b^i b^k$	\perp	where $i \ge 0, k > 0$	
5 (
$\delta = \{$	$((q_0, a, \bot), (q_0, a\bot)),$		$((q_1, b, a), (q_1, \epsilon)),$	
	$((q_0, b, \bot), (q_2, \bot)),$		$((q_1, b, \bot), (q_2, \bot)),$	
	$((q_0, a, a), (q_0, aa)),$		$((q_2, b, \bot), (q_2, \bot)),$	
	$((q_0, b, a), (q_1, \epsilon))$]	}

Solution to Exercise 3. The idea is to use the stack to simulate a leftmost derivation of the grammar. If the PDA has read w from the input, the stack contains $\gamma \perp$ and the state is q_1 then $S \Rightarrow^* w\gamma$.

1. $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, S, A, \bot\}, \delta, q_0, \bot, \{q_2\})$, where

$$\delta = \{ \begin{array}{l} ((q_0, \epsilon, \bot), (q_1, S \bot)), \\ ((q_1, \epsilon, S), (q_1, aAA), \\ ((q_1, \epsilon, A), (q_1, aS)), \\ ((q_1, \epsilon, A), (q_1, aS)), \\ ((q_1, \epsilon, A), (q_1, a)), \\ ((q_1, a, a), (q_1, \epsilon)), \\ ((q_1, b, b), (q_1, \epsilon)), \\ ((q_1, \epsilon, \bot), (q_2, \epsilon)) \end{array} \}.$$

2. $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, S, A, B, \bot\}, \delta, q_0, \bot, \{q_2\})$, where

$$\begin{split} \delta &= \{ \begin{array}{ll} ((q_0, \epsilon, \bot), (q_1, S \bot), & ((q_1, a, a), (q_1, \epsilon)), \\ ((q_1, \epsilon, S), (q_1, aA)), & ((q_1, b, b), (q_1, \epsilon)), \\ ((q_1, \epsilon, S), (q_1, aBB)), & ((q_1, \epsilon, \bot), (q_2, \epsilon)), \\ ((q_1, \epsilon, A), (q_1, Ba)), \\ ((q_1, \epsilon, A), (q_1, Sb)), \\ ((q_1, \epsilon, B), (q_1, bAS)), \\ ((q_1, \epsilon, B), (q_1, \epsilon)) \end{array} \end{split}$$

Both automata accept by final state.

2 The Pumping Lemma for Context-Free Languages

Exercise 4. Show that the following languages are not context-free:

1. $L_1 = \{ a^j b^k a^l \mid 0 < j < k < l \},\$

- 2. $L_2 = \{ w \in \{a, b, c\}^* \mid w \text{ has an equal number of } a$'s, b's and c's $\},$
- 3. $L_3 = \{ ww \mid w \in \{a, b\}^* \}.$

Solutions

Solution to Exercise 4.

1. Assume that L_1 is context-free. Then the pumping lemma holds. According to the lemma, there exists a number n such that if a string z, not shorter than n, is in L_1 (i.e. $|z| \ge n$, $z \in L_1$) then z can be split into five strings u, v, w, x, y:

$$z = uvwxy$$

such that

 $|vx| \ge 1,$ $|vwx| \le n,$ $uv^i wx^i y \in L_1$ for all $i \ge 0$

We show that this leads to a contradiction. Take

$$z = a^n b^{n+1} a^{n+2} \in L_1.$$

Then there exist strings u, v, w, x, y satisfying the conditions above. We have two possibilities:

- (a) vwx does not overlap with the initial a^n . In other words, $u = a^n u'$ (for some u'). Take i = 0. Then $uv^0wx^0y = uwy = a^nb^ka^l$, for some k and l. The string $a^nb^ka^l$ is shorter than $a^nb^{n+1}a^{n+2}$ (as $|vx| \ge 1$), hence k < n+1 or l < n+2 (or both). In both cases n < k < l is impossible, so $uwy \notin L_1$ and we have a contradiction.
- (b) Otherwise vwx overlaps with the initial a^n . So it does not overlap with the final a^{n+2} , as $|vwx| \leq n$. In other words $y = y'a^{n+2}$, for some y'. Take i = 2. If uv^2wx^2y is not of the form $a^jb^ka^l$ then $uv^2wx^2y \notin L_1$, contradiction. If $uv^2wx^2y = a^jb^ka^l$ then l = n + 2 but j > n or k > n + 1 (as $|vx| \geq 1$). Thus j < k < l does not hold and $uv^2wx^2y \notin L_1$. Contradiction.

This completes the proof. As usually in proofs with pumping lemmas, choosing an appropriate string z was crucial. For instance, if $z = ab^n a^{2n}$ then we may take $v = w = \epsilon$, x = a, $u = ab^n$ and and we do not obtain contradiction.

2. We know (from the lecture) that the language $M = \{a^i b^i c^i \mid i \ge 0\}$ is not context-free. Notice that $L_2 \cap a^* b^* c^* = M$. Remember that the intersection of a context-free language with a regular language is context-free. So if L_2 were context-free then M would also be context-free. The latter is not true, so L_2 is not context-free.

(A proof using the pumping lemma is also possible; take for instance $z = a^n b^n c^n$).

3. To show that L_3 is not a context-free language, we show that the pumping lemma does not hold for L_3 . To do this, for every number n we have to find a string $z \in L_3$, $|z| \ge n$ such that for every splitting of z into five pieces

z = uvwxy, where $|vx| \ge 1$ and $|vwx| \le n$

some of the strings $uv^i wx^i y$ (i = 0, 1, ...) are not in L_3 .

Let us try with

$$z = a^n b^n a^n b^n \in L.$$

Consider an arbitrary splitting as above. If |vx| is odd then uv^0wx^0y has an odd length and thus is not in L_3 . So it remains to consider the case of |vx| being even. Notice that $3n \leq |uv^0wx^0y| \leq 4n - 1$. We have three possibilities:

- (a) vwx is contained in the first half of z (so $y = y'a^nb^n$, for some y'). Then the last symbol of the first half of uv^0wx^0y is a (we removed some symbols from the first half of z and "the middle moved to the right"). Thus uv^0wx^0y is not in L_3 (as the last symbol of its second half is b).
- (b) vwx is contained in both halves of z. So it begins with a b and ends with an a. Thus v contains (at least one) b or x contains (at least one) a. Thus the first half of uv⁰wx⁰y has fewer b's than the second one^a or the second half of uv⁰wx⁰y has fewer a's than the first one. Hence uv⁰wx⁰y is not in L₃.
- (c) vwx is contained in the second half of z (so $u = a^n b^n u'$, for some u'). This case is symmetric to case 3a. The first symbol of the second half of uv^0wx^0y is b and $uv^0wx^0y \notin L_3$.

^{*a*}As the halves of uv^0wx^0y are not shorter than 1.5*n*, the first half begins with a^n and the second half ends with b^n .

3 Advanced and Exam Like Exercises

Exercise 5. Consider the PDA $\langle Q, \Sigma, \Gamma, \delta, s, \bot, F \rangle$ where

- $Q = \{q_0\},$
- $\Sigma = \{a, b\},\$
- $\Gamma = \{a, \bot\},\$
- $\delta = \{((q_0, a, \bot), (q_0, a \bot)), ((q_0, a, a), (q_0, aa)), ((q_0, b, a), (q_0, \varepsilon))\},\$
- $s = q_0$ is the start state,
- \perp is the initial stack symbol, and
- $F = \{q_0\}$ is the set of final states.

The machine accepts by final state.

- 1. Which of the following strings over $\{a, b\}$ are accepted by the PDA?
 - (a) *aa*.
 - (b) *ba*.
 - (c) aabb.
 - (d) abba.
 - (e) abab.
- 2. What is the language recognized by the PDA?

Exercise 6. Prove that the language $L = \{a^i b^j c^{ij} \mid 0 < i < j\}$ is not context-free by using the pumping lemma for context-free languages.

Solutions

Solution to Exercise 5.

- 1. *aa*, *aabb*, and *abab*.
- 2. All strings over $\{a, b\}$ where each occurrence of a b has a matching a somewhere to the left in the string.

Solution to Exercise 6. We provide a proof sketch which illustrates the most important case distinctions but does not go into every case in detail.

To prove that the language $L = \{a^i b^j c^{ij} \mid 0 < i < j\}$ is not context-free, we use the (inverted) pumping lemma for context-free languages. Let $p \ge 1$ be arbitrary and consider the string $s = a^p b^{p+1} c^{(p)(p+1)} \in L$. Let s = uvwxy be a partitioning where $|vwx| \le p$ and $|vx| \ge 1$. We observe that since $|vwx| \le p$, vwx can contain at most two different types of symbols (either as and bs, or bs and cs).

We then consider three cases based on vwx:

- 1. vwx consists of a single symbol): in this case uv^2wx^2y is not included in the language.
- 2. vwx consists of only a's and b's: then pumping v and x changes the number of a's or b's, but does not change the number of c's accordingly. Thus, uv^2wx^2y would have either more a's or b's without the corresponding number of c's to match the condition c^{ij} , where i and j are the counts of a and b respectively.
- 3. vwx consists of only b's and c's: then pumping v and x changes the number of b's or c's without the corresponding adjustment to a's. If p = 1 then we choose i = 0 since then uv^0wx^0y is not included in the language. For p > 1 one can prove that we can always find $i \ge 2$ such that uv^iwx^iy is not in the language.