
Problem Set for Tutorial 6 — TDDD14/TDDD85

1 Context-Free Grammars

Exercise 1. Consider the CFG G = ({E, T, F}, {a, b, c,+,−, ·, /, (,)}, P, E), where P comprises
the productions

E → T | E + T | E − T
T → F | T · F | T/F
F → a | b | c | (E)

Find the derivation trees for the following strings.

1. a · b+ c

2. a+ a− b · (a/b+ b/c)

Exercise 2. Find CFGs which generate the following languages.

1. All strings in {0, 1}∗ for which every 0 is followed by 1 immediately to the right.

2. All strings in {0, 1}∗ which are palindromes.

3. {0n1n | n ≥ 0}

4. All string in {a, b}∗ containing at least one a and one b, such that the number of a’s preceding
the first b is the same as the number of b’s following the last a.

Exercise 3. Consider the CFG G = ({S,A,B}, {a, b}, P, S), where P comprises the productions

S → aB | bA
A→ a | aS | bAA
B → b | bS | aBB

Show that G is ambiguous.

Exercise 4. Let G be a CFG consisting of the following productions (S is the start symbol):

S → AB
A→ SA | BB | bB
B → b | aA | ε

1

Find an equivalent CFG with a single ε-production S → ε, and without unit productions.

Exercise 5. Find equivalent Chomsky normal-form CFGs for the two CFGs below (S is the start
symbol in both cases).

1. S → ¬S | (S ⊃ S) | p | q

2. S → A | ABA
A→ aA | B | a
B → bB | b

2

Solutions

Solution to Exercise 1. Our task is to find the derivation trees for the strings a · b+ c and
a+ a− b · (a/b+ b/c). We present a detailed solution for the first case and leave the second as
an exercise.

A derivation for the string a · b+ c is:

E ⇒ E + T ⇒ T + T ⇒ T · F + F ⇒ F · F + F ⇒ a · F + F ⇒ a · b+ F ⇒ a · b+ c.

The corresponding derivation tree is:

E

E

T

T

F

a

· F

b

+ T

F

c

Solution to Exercise 2. S is the start symbol in all grammars below.

1. S ⇒ 1S | 01S | ε

2. S ⇒ ε | 0 | 1 | 0S0 | 1S1

3. S ⇒ 0S1 | ε

4. S → aSb | ab | bAa
A→ ε | aA | bA

Justification: Any string over {a, b} can be generated from A. Productions S → ab | bAa
generate the first b and the last a (and the number of a’s preceding the first b is the same
as the number of b’s following the last a, it is 1 for the first production and 0 for the
second). Production S → aSb adds one a preceding the first b and one b following the
last a.

Solution to Exercise 3. The string aabbab has two distinct left derivations:
S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒ aabbAB ⇒ aabbaB ⇒ aabbab
S ⇒ aB ⇒ aaBB ⇒ aabB ⇒ aabbS ⇒ aabbaB ⇒ aabbab

Solution to Exercise 4. We follow the method from the lecture. First we add productions

3

to P in order to obtain the smallest P1 ⊇ P such that

(a) if A→ αBβ and B → ε are in P1 then A→ αβ is in P1.

Any nonempty terminal string derived from S in G can be derived in (N,Σ, P1, S) without
using any ε-production. So we can remove the ε-productions from P1, obtaining P ′1.

Now we add productions to P ′1 in order to obtain the smallest P2 ⊇ P ′1 such that

(b) if A→ B and B → γ are in P2 then A→ γ is in P2.

Any terminal string derived from S in (N,Σ, P ′1, S) can be derived in (N,Σ, P2, S) without
using any unit production. Thus we can remove the unit productions from P2, obtaining P ′2.

G′ = (N,Σ, P ′2, S) is the result, L(G′) = L(G)− {ε}. (Notice that in [Kozen] the rules (a)
and (b) are applied together. Doing this separately, as above, is also correct.)

For the given grammar new productions are added as follows. In order to remove ε-
productions:

production with production gives production

B → ε S → AB S → A
A→ BB A→ B
A→ bB A→ b
A→ B A→ ε

A→ ε S → AB S → B
A→ SA A→ S
B → aA B → a
S → A S → ε

S → ε A→ SA A→ A
A→ S A→ ε

B → ε S → B S → ε

The obtained set P ′1 of productions is:

S → AB | A | B
A→ BB | B | bB | b | SA | S
B → aA | a | b

4

To get rid of unit productions:

production with production gives production

S → A A→ BB S → BB
A→ B S → B
A→ bB S → bB
A→ b S → b
A→ SA S → SA
A→ S S → S

S → B B → aA S → aA
B → a S → a
B → b S → b

A→ B B → aA A→ aA
B → a A→ a
B → b A→ b

A→ S S → AB A→ AB
S → A A→ A
S → B A→ B

The obtained set P ′2 of productions is:

S → AB | BB | bB | b | SA | aA | a
A→ AB | BB | bB | b | SA | aA | a
B → aA | a | b

As we want to obtain a grammar equivalent to the initial one, the removed production S → ε
has to be added.

Solution to Exercise 5.

1. Introduce productions for each terminal symbol which does not occur on its own on the
right hand side of some production, i.e.:

A→ ¬
B → (
C →⊃
D →)

Then replace all such terminal symbols in the original grammar with the corresponding
nonterminal from the productions above.

S → AS | BSCSD | p | q
A→ ¬
B → (
C →⊃

5

D →)

The only production above which is not in Chomsky normal-form is S → BSCSD. We can
systematically rewrite this production into a set of productions in Chomsky normal-form
as follows:

S → BSCSD is replaced by S → BE and E → SCSD
E → SCSD is replaced by E → SF and F → CSD
F → CSD is replaced by R→ CG and G→ SD

Thus an equivalent Chomsky normal-form grammar is obtained:

S → AS | BE | p | q
E → SF
F → CG
G→ SD
A→ ¬
B → (
C →⊃
D →)

2. First eliminate all unit productions. This yields

S → ABA | aA | a | bB | b
A→ aA | a | bB | b
B → bB | b

We then proceed as in the previous exercise: productions for terminal symbols are
introduced where necessary and productions with right hand sides comprising three or
more nonterminals are systematically rewritten into a set of productions in Chomsky
normal-form. This results in the following grammar:

S → AE | CA | DB | a | b
A→ CA | DB | a | b
B → DB | b
E → BA
C → a
D → b

6

2 Advanced and Exam Like Exercises

Exercise 6. Consider the language P consisting of all properly balanced parentheses. That is,
strings over (and) where each left parenthesis (has a matching right parenthesis). For example,
the strings ((()())()) and ()() are in P but the string)(() is not. Prove that P is context-free by
providing a context-free grammar for P . Your grammar should be unambiguous (motivate why).

7

Solutions

Solution to Exercise 6. We prove that the language is context-free by constructing a
context-free grammar which generates the language. A context-free grammar G for the language
P is then given by:

S → SS | (S) | ε

Here, we have made the assumption that ε ∈ P since it, technically, fullfils the balanced
parenthesis property. However, the grammar is not unambiguous since ε can be derived via, for
example, S ⇒ SS ⇒ εS ⇒ εε or S ⇒ ε. Since the exercise specified that the grammar should
be unambiguous we need to fix this, for example via the following grammar.

S → (S)S | ε

This grammar is unambiguous. The rule S → (S)S ensures that every left parenthesis has
a corresponding right parenthesis, and the derivation of the empty string is unique since the
empty string can only be derived directly from S without further production.

8

