
Problem Set for Tutorial 3 — TDDD14/TDDD85

1 DFA Minimization

start
a b

c d e

0

1 0
1

0

0 1
1

1

0

Figure 1: M1

start
a b c d

e f g

h

1

0 0

1 1
0

1

0

0

1

1

0

0

1

0

1

Figure 2: M2.

Exercise 1.

1. Minimize the DFA in Figure 1.

2. Minimize the DFA in Figure 2.

1



Solutions

start
A B

C

0

1

1 0 1

0

Figure 3: The DFA from Figure 1 minimized.

start
A B C

D

1

0

0

1

1

1 0

0

Figure 4: A DFA from Figure 2 minimized.

Solution to Exercise 1.

1. A minimal DFA is given in Figure 3.

2. A minimal DFA is given in Figure 4.

2



2 Regular Expressions

Exercise 2. Let r = (1 + 00∗11)(0 + 1(0 + 10)∗11)∗. Which of the following strings belong to
L(r)?

1. 010001,

2. 00111011,

3. 1100110,

4. 101100,

5. 10011001.

Exercise 3. Give regular expressions for the following languages over the alphabet {0, 1}.

1. The set of all strings ending in 00.

2. The set of all strings in which the substring 00 occurs at most once.

Exercise 4. Construct an NFAε which accepts the language defined by the regular expression
10 + (0 + 11)0∗1.

Exercise 5. Show that the equalities below hold for regular expressions. (r, s and t denote
arbitrary regular expressions over some alphabet.)

1. r + t = t+ r,

2. r(s+ t) = rs+ rt,

3. (r + ϵ)∗ = r∗,

4. r∅ = ∅r = ∅,

5. ∅∗ = ϵ.

Exercise 6. Give regular expressions that define

1. the language accepted by the DFA in Figure 5.

2. the language accepted by the DFA in Figure 6.

1

0

0 1

0,1
32

1

Figure 5: M3

3



start
q1

q2 q3

1

1

0

0
1

0

Figure 6: M4

Solutions

Solution to Exercise 2.

1. 010001: no.

2. 00111011: yes.

3. 1100110: yes.

4. 101100: no.

5. 10011001: no.

Hint: no particular method is required here. Work systematically and use the fact that any
string matched by the regular expression needs to consist of two substrings, one matching
(1 + 00∗11), and one matching (0 + 1(0 + 10)∗11) zero or more times.

Solution to Exercise 3.

1. (0 + 1)∗00,

2. (1 + 01)∗(ϵ+ 0 + 00)(1 + 10)∗.

Solution to Exercise 4. By decomposing the regular expression syntactically according
to the recursive definition of regular expressions, an NFAε can be constructed systemati-
cally in a bottom-up fashion by successively joining NFAεs corresponding to subexpressions
according to the regular operator (*, concatenation, +) in question. For details, consult
the corresponding lecture manuscript. The resulting NFAε is shown in Figure 7.

Solution to Exercise 5. For each pair of regular expressions x and y we need to verify
that L(x) = L(y). We provide detailed solutions to the first two exercises since the last
three uses the same method.

1. r+ t = t+ r: L(r+ t) = L(r)∪L(t) = L(t)∪L(s) (the last equality follows from the
fact that union is commutative, i.e., the order of the sets do not matter).

2. r(s+ t) = rs+rt: L(r(s+ t)) = L(r)L(s+ t) = L(r)(L(s)∪L(t)) = L(r)L(s)∪L(r) =

4



start
q0

q1 q2

q3 q4

q5 q6

q7 q8

q9 q10

q11 q12

q13

q14 q15

q16 q17

q18

ϵ

ϵ

1

ϵ

0 ϵ

ϵ

ϵ

0

ϵ

1

ϵ

1
ϵ

ϵ

ϵ

0

ϵ

ϵ 1

ϵ

Figure 7: M5

L(r)L(t) = L(rs)L(rt) (here we use the fact that set concatenation distributes over
union, i.e., for any sets A, B, C we have that A(B ∪ C) = AB ∪AC).

Solution to Exercise 6. When presenting these solutions and simplifying a regular
expression s to an equivalent regular expression t (i.e., L(s) = L(t)) we for simplicity write
s = t rather than L(s) = L(t).

1. (a) Redraw and add a new start and final state to the GNFA.

S1start 1

2

3

Sf
ε

0 0

ε1

0 + 1 1

ε

The state elimination steps are performed as follows.
(b) Eliminate state 1. There are four paths through state 1:

5



• S1 → 1 → 2 : ε∅∗0 + ∅ = 0

• S1 → 1 → 3 : ε∅∗1 + ∅ = 1

• 2 → 1 → 2 : 0∅∗0 + ∅ = 00

• 2 → 1 → 3 : 0∅∗1 + 1 = 01

The GNFA now looks as follows.

S1start

2

3

Sf

0

1 ε

0 + 1 01 + 1

ε

(c) Eliminate state 3. There are four paths through state 3:
• S1 → 3 → 2 : 1∅∗(0 + 1) + 0 = 1(0 + 1) + 0

• S1 → 3 → Sf : 1∅∗ε+ ∅ = 1

• 2 → 3 → 2 : (01 + 1)∅∗(0 + 1) + 00 = (01 + 1)(0 + 1) + 00

• 2 → 3 → Sf : (01 + 1)∅∗ε+ ε = 01 + 1 + εa.
The GNFA now looks as follows.

S1start 2 Sf

1(0 + 1) + 0 01 + 1 + ε

1

(d) Eliminate state 2. There is one path from state S to state Sf :
• S1 → 2 → Sf : (1(0 + 1) + 0)((01 + 1)(0 + 1) + 00)∗(01 + 1 + ε) + 1.

S1start Sf

(1(0 + 1) + 0)((01 + 1)(0 + 1) + 00)∗(01 + 1 + ε) + 1

This regular expression describes the language of the original DFA.

2. Redraw and add a new start and final state to the GNFA.

S1start q1

q3

q2 Sf
ε

0
0

1

1

1
0

ε

6



The state elimination steps are performed as follows.

3. Eliminate state q3. There are four paths through state q3:

• q1 → q3 → q1 : 0∅∗0 + ∅ = 00

• q1 → q3 → q2 : 0∅∗1 + 1 = 01 + 1

• q2 → q3 → q1 : 0∅∗0 + 0 + 1 = 00 + 1

• q2 → q3 → q2 : 0∅∗1 + ∅ = 01

The GNFA now looks as follows.

S1start q1 q2 Sf
ε

00 01

01 + 1

00 + 1
ε

4. Eliminate state q2. There are two paths through state q2:

• q1 → q2 → q1 : (01 + 1)(01)∗(00 + 1) + 00

• q1 → q2 → Sf : (01 + 1)(01)∗ε+ ∅ = (01 + 1)(01)∗

The GNFA now looks as follows.

S1start q1 Sf
ε

(01 + 1)(01)∗(00 + 1) + 00

(01 + 1)(01)∗

5. Eliminate state q1. There is only one path.

• S1 → q1 → Sf : ε((01+1)(01)∗(00+1)+00)∗(01+1)(01)∗+∅ = ((01+1)(01)∗(00+
1) + 00)∗(01 + 1)(01)∗

S1start Sf

((01 + 1)(01)∗(00 + 1) + 00)∗(01 + 1)(01)∗

This regular expression describes the language of the original DFA.
aNote in particular that we in this case cannot simplify this to 01 + 1.

7



3 Advanced and Exam Like Exercises

Exercise 7. Let the languages L1 and L2 be defined as follows:

• L1 is defined by the regular expression (a+ b)∗bba(a+ b)∗.

• L2 is the language of strings over {a, b}∗ containing the string ab.

Give a regular expression R such that L(R) = L1 − L2, i.e, L(R) = {w | w ∈ L1 ∧ w ̸∈ L2}.
Explain your reasoning and why your solution is correct.

Exercise 8. Using a standard method, construct a regular expression defining the same
language as the DFA whose transition function δ is given by

a b

→A A C
B F A B
C F B A

Exercise 9. For each pair of regular expressions R1 and R2 below, answer whether they
generate the same language (L(R1) = L(R2)). If no, give a string which belongs to one of the
languages and does not belong to the other. If yes, show that they are equivalent, e.g., by (1)
computing L(R1) and L(R2) as far as you can and (2) verifying that the two resulting sets are
equal. For the last step, an informal explanation is sufficient.

1. ε+ ε and ε.

2. ∅+ ∅ and ∅.

3. a(b+ c+ ε) and ab+ bc.

4. (ab+ a)∗a and a(ba+ a)∗.

8



Solutions

Solution to Exercise 7. Hint: while it is possible to solve the problem by a systematic
approach by constructing a DFA for L1∩L̄2 and converting this DFA to a regular expression,
it is much easier to construct the regular expression directly. Hence, how can you adapt
the regular expression (a+ b)∗bba(a+ b)∗ so that it does not match ab?

Solution to Exercise 8.

1. Redraw and add a new start and final state to the GNFA.

S1start A

B

C

Sf
ε

a

b

a

b

a

b
ε

ε

The state elimination steps are performed as follows.

2. Eliminate state B. There are 2 paths through state B:

• C → B → A : ab∗a+ b

• C → B → Sf : ab∗ε+ ε = ab∗ + ε

The GNFA now looks as follows.

S1start A C Sf
ε

a
b

ab∗a+ b

ab∗ + ε

3. Eliminate state A. There are two paths through state A:

• S1 → A → C : εa∗b+ ∅ = a∗b

• C → A → C : (ab∗a+ b)a∗b+ ∅ = (ab∗a+ b)a∗b

The GNFA now looks as follows.

9



S1start C Sf
a∗b

(ab∗a+ b)a∗b

ab∗ + ε

4. Eliminate state C.

• S1 → C → Sf : a∗b((ab∗a+ b)a∗b)∗(ab∗ + ε) + ∅ = a∗b((ab∗a+ b)a∗b)∗(ab∗ + ε).

We obtain the following GNFA.

S1start Sf

a∗b((ab∗a+ b)a∗b)∗(ab∗ + ε)

This regular expression describes the language of the original DFA.

Solution to Exercise 9.

1. L(ε+ ε) = L(ε) ∪ L(ε) = {ε} ∪ {ε} = {ε}. Hence, they are the same.

2. ∅+ ∅ and ∅: a similar argument to the above shows that they are the same.

3. L(a(b+ c+ ε)) = L(a)L(b+ c+ ε) = {a}{a, b, ε} = {aa, ab, a} which is not the same
as L(ab+ bc) = {ab, bc}.

4. L((ab + a)∗a) = {ab, a}∗{a}, i.e., the set of strings starting with an arbitrary com-
bination of ab and a and ending with a. For the other expression we see that
L(a(ba + a)∗) = {a}{ba, a}∗, i.e., the set of strings starting with an a and ending
with an arbitrary combination of ba or a. Since a concatenated with ba gives us the
same as ab concatenated with a it is not hard to see that the two expressions describe
the same language.

10


