
Problem Set for Tutorial 1 — TDDD14/TDDD85

1 Strings and Sets

Exercise 1. Let w be the string abcde.

1. Give all prefixes of w.

2. Give all suffixes of w.

3. Which strings are both prefixes and suffixes of w?

Exercise 2. Suppose L1 = {carl , hugh, paul} and L2 = {smith, jones}. Enumerate the strings
which belong to the language L3 = L1L2 (i.e., L3 = {xy | x ∈ L1, y ∈ L2}).

Exercise 3. If L is a language, then Ln denotes the language obtained by concatenating L n
times, where L0 = {ε} and for n > 0, Ln = L · Ln−1. Furthermore, L∗ denotes

⋃∞
n=0 L

n.
Given L1 = {mor , far} and L2 = {s}, give examples of strings in the language (L2

1L2)
∗L1 ∪ L2

1.

1

Solutions

Solution to Exercise 1.

1. ε, a, ab, abc, abcd, abcde.

2. ε, e, de, cde, bcde, abcde.

3. ε and the string itself, abcde.

Solution to Exercise 2. carlsmith, carljones, hughsmith, hughjones, paulsmith, pauljones.

Solution to Exercise 3. We proceed systematically and begin by describing

L2
1 = {mormor ,morfar , farmor , farfar}.

Next, L2
1L2 is then formed by taking all strings in L2

1 and appending an s, i.e.,

L2
1L2 = {mormors,morfars, farmors, farfars}.

The set (L2
1L2)∗L1 then contains strings built up by zero or more strings from L2

1L2 followed by
a string from L1, e.g., mormorsmor , morfarsfar . Last, we should not forget that (L2

1L2)∗L1∪L2
1

also contains L2
1 which we have already described.

2

2 Mathematical Proofs

Exercise 4. Let A,B,C ⊆ Σ∗ for some alphabet Σ. Prove that the following properties hold.

1. A ∪B = B ∪A and A ∩B = B ∩A (∪ and ∩ are commutative).

2. A(B ∪ C) = AB ∪AC (set concatenation distributes over union).

Exercise 5. Consider the set of all strings over the Boolean alphabet Σ = {0, 1}. Say that a
string w is a palindrome if it reads the same forward and backward. For example, 00100 and 111
are palindromes, while 0101 is not.

1. Is ww for w ∈ {0, 1}∗ always a palindrome?

2. Is ww for w ∈ {0, 1}∗ a palindrome whenever w is a palindrome? Prove your claim.

Hint: do not use induction, it is easier to give direct proofs.
The following exercise can be skipped if you are already comfortable with proofs by mathematical

induction. However, if you feel slightly unsure, we strongly recommend you to try it.

Exercise 6. The depth of a node v in a tree T is defined as follows: If v is the root node of T ,
then the depth of v is 0. Otherwise, v belongs to a subtree T ′ of the root of T (i.e., T ′ is a tree such
that the root of T is the parent of the root of T ′), and the depth of v in T is defined to be one more
than the depth of v in T ′. As an example, the depth of the node c in the tree below is 2.

a

b

c

The height of a tree is the largest depth of a node in the tree. A tree is called a binary tree if
every node has either no children or exactly two children. (So the tree in the diagram is not binary).
Suppose T is a binary tree of height k. Show that T has n nodes where n satisfies the condition
2k + 1 ≤ n ≤ 2k+1 − 1.

Exercise 7. If Σ is an alphabet, then Σ∗ denotes the language which comprises all strings that
can be formed by using the symbols in Σ. For x ∈ Σ∗, let xR denote x reversed and be defined
recursively as follows:

1. If x = ε, then xR = ε.

2. If x = ay for some a ∈ Σ and y ∈ Σ∗, then xR = yRa.

3

Let |x| denote the length of a string x. Give a recursive definition of the length of a string and
then show |x| = |xR| for all strings x ∈ Σ∗. Hint: a formal proof should use induction over the
length of the string x.

Exercise 8. The set of all subsets of a set A is called the power set of A, denoted by 2A.

1. Give 2A for A = ∅.

2. Give 2A for A = {a, b, c}.

3. Show by induction that the number of elements in 2A is 2n if the number of elements in A is
n.

4

Solutions

Solution to Exercise 4. We are given that A,B,C ⊆ Σ∗ for some alphabet Σ. Here, we
prove universal statements so it is not sufficient to make any particular assumptions on the sets
A,B, and C.

1. To show that ∪ and ∩ are commutative, i.e., A ∪ B = B ∪ A and A ∩ B = B ∩ A: for
∪, let x ∈ A ∪ B. This means that x ∈ A or x ∈ B. If x ∈ A, then it is also true that
x ∈ B ∪A. Similarly, if x ∈ B, then x ∈ B ∪A. Hence, A ∪B ⊆ B ∪A. By a symmetric
argument, B ∪A ⊆ A∪B. Therefore, A∪B = B ∪A. The ∩ case follows through similar
arguments.

2. To show that set concatenation distributes over union, i.e., A(B ∪ C) = AB ∪ AC, we
first prove that A(B ∪ C) ⊆ AB ∪ AC and then that AB ∪ AC ⊆ A(B ∪ C). First, let
w ∈ A(B ∪ C). By definition this means there exists an a ∈ A and a b ∈ B ∪ C such that
w = ab. If b ∈ B, then w = ab where a ∈ A and b ∈ B, so w ∈ AB. Similarly, if b ∈ C,
then w = ab where a ∈ A and b ∈ C, so w ∈ AC. Therefore, A(B ∪ C) ⊆ AB ∪AC.

Conversely, let w ∈ AB ∪AC. This implies that either w ∈ AB or w ∈ AC. If w ∈ AB,
then there exists an a ∈ A and a b ∈ B such that w = ab. Since b ∈ B, it follows that
b ∈ B ∪ C, and thus w ∈ A(B ∪ C). Similarly, if w ∈ AC, then there exists an a ∈ A and
a c ∈ C such that w = ac. Since c ∈ C, it follows that c ∈ B ∪C, and thus w ∈ A(B ∪C).
Hence, AB ∪AC ⊆ A(B ∪ C).

Combining both directions, we conclude that A(B ∪ C) = AB ∪AC.

We remark that more elemental properties of the basic set operations can be established and
that they form a Boolean algebra (if we exclude the star and asterisk operations, whose presence
instead leads to a Kleene algebra).

Solution to Exercise 5.

1. We suspect that it might not be true since it seems like a very strong property. We find
no counter examples of strings of length n = 0 or n = 1, but for n = 2 we (e.g.) see that
if w = 01 then ww = 0101 is not a palindrome.

2. We cannot find a counter example so we suspect that the claim is true. Assume that
w = b1 . . . bn ∈ {0, 1}∗ is a string of length n ≥ 0. We first realize that if n = 0 then the
claim is trivially true (since ε is a palindrome, and since εε = ε) so we assume that n ≥ 1.
Otherwise, we are not allowed to make any particular assumptions on the string. Now,
consider the string ww = b1 . . . bnb1 . . . bn. It follows that b1 = bn, b2 = bn−1 . . . bn = b1,
and we conclude that the string is indeed a palindrome.

Solution to Exercise 6. For k ≥ 0 let IH(k) be the statement: ‘the number of nodes n
in a binary tree of height k satisfies the condition 2k + 1 ≤ n ≤ 2k+1 − 1’. We will prove by

5

induction on k that IH(k) holds for all k ≥ 0.

• Base case: For k = 0, a binary tree of height 0 consists of a single node, thus n = 1,
which satisfies 2 · 0 + 1 = 1 ≤ n ≤ 21 − 1 = 1, so IH(0) holds.

• Inductive Hypothesis: Suppose IH(k) holds for some k ≥ 0.

• Inductive step: Consider a binary tree of height k + 1 as in the figure below, where
the two subtrees T1 and T2 has height 0 ≤ k1 ≤ k, respectively 0 ≤ k2 ≤ k. Then either
k1 = k or k2 = k. Let n1 and n2 be the numbers of nodes in T1 and T2, respectively.
By the inductive hypothesis, n1 ≤ 2k+1 − 1 and n2 ≤ 2k+1 − 1. The total number
of nodes in the tree is n = 1 + n1 + n2 ≤ 1 + 2(2k+1 − 1) = 2k+2 − 1. Similarly,
n = 1 + n1 + n2 ≥ 1 + (2k + 1) + 1 = 2(k + 1) + 1. Thus, 2(k + 1) + 1 ≤ n ≤ 2k+2 − 1,
proving that IH(k + 1) holds.

T1

...
...

T2

...
...

k + 1

k1 k2

Solution to Exercise 7. The length of a string x, denoted |x|, can be defined recursively as
follows:

1. If x = ε, then |x| = 0.

2. If x = ay for some a ∈ Σ and y ∈ Σ∗, then |x| = 1 + |y|.

Let IH(k) be: |x| = k if and only if |xR| = k, i.e., |x| = |xR|. Show that IH(k) holds for all
k ≥ 0.

1. Base case: IH(0) holds:

|x| = 0⇔ x = ε⇔ xR = ε⇔ |xR| = 0.

2. Inductive hypothesis: Suppose IH(k) holds for some k ≥ 0.

3. Inductive step: Show that IH(k + 1) then holds.

|x| = k + 1⇔ x = ay and |y| = k

6

for some a ∈ Σ and y ∈ Σ∗. The induction hypothesis implies |yR| = k and thus we have
|xR| = |yRa| = k + 1.

What is missing? From the definition of | · | above, it does not immediately follow that the
equality |yRa| = k + 1 holds. We can explicitly show this by induction.

Let IH′(k) be: ‘if |x| = k then |xa| = k + 1, for any x ∈ Σ∗ and a ∈ Σ’.

1. Base case: IH′(0) holds.

If |x| = 0, then x = ε. Thus |xa| = |a| = 1.

2. Inductive hypothesis: Suppose IH′(k) holds for some k ≥ 0.

3. Inductive step: Show that IH′(k + 1) then holds. If |y| = k + 1 then y = bx, where
|x| = k. So ya = bxa. By the assumption, |xa| = k + 1. Hence |bya| = |bxa| = k + 2 by
the definition of | · |.

Solution to Exercise 8.

1. For A = ∅, the power set 2A = {∅} because the only subset of the empty set is the empty
set itself.

2. For A = {a, b, c}, the power set 2A includes the following subsets:

2A = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.}

3. We now prove by induction that the number of elements in 2A is 2n if the number of
elements in A is n.

(a) Base Case: For n = 0, A = ∅, and 2A = {∅}. Thus, the number of elements in 2A

is 1 = 20, which holds true.

(b) Inductive Hypothesis: Assume that for a set A with k elements, the power set
2A contains 2k subsets.

(c) Inductive Step: Let x /∈ A and consider the number of subsets of A ∪ {x}. Note
that A ∪ {x} has cardinality k + 1. By the inductive hypothesis we know that
|2A| = 2k, and for each B ⊆ A we can obtain a new subset of A ∪ {x} via B ∪ {x}.
Hence, 2A∪{x} = 2A ∪ {B ∪ {x} | B ⊆ A}, and since |{B ∪ {x} | B ⊆ A}| = |{B |
B ⊆ A}| = |2A| = 2k we conclude that |2A∪{x}| = 2k + 2k = 2k+1.

7

3 Advanced Exercises

Exercise 9. A monoid is a tuple (M, ·) where M is a set referred to as the base set, or universe,
of the monoid, and where · : M ×M → M is a binary operation on M such that the following
properties hold.

• Associativity: For all a, b, c ∈M , it holds that (a · b) · c = a · (b · c).

• Identity Element: There exists an element e ∈M , known as the identity element, such that
for every a ∈M , e · a = a · e = a.

Prove that (Σ∗, ·) is a monoid, where Σ is an arbitrary alphabet and where we write · for string
concatenation.

Exercise 10. Let Σ be an alphabet and L ⊆ Σ∗ a language. Consider the relation RL ⊆ Σ∗ × Σ∗

defined by: xRLy if and only if for all z ∈ Σ∗, xz ∈ L⇔ yz ∈ L.

1. Show that RL is an equivalence relation1.

2. Consider the language L = {(01)n|n ≥ 0} over the alphabet Σ = {0, 1}. Does Rl have a finite
or infinite amount of equivalence classes2.

3. The same question but for the language L = {0n1n|n ≥ 1} over Σ = {0, 1}.

1An equivalence relation on a set is a relation that is reflexive (every element is related to itself), symmetric (if a is
related to b, then b is related to a), and transitive (if a is related to b and b is related to c, then a is related to c).

2An equivalence class [x] of a string x ∈ Σ∗ is defined as the set of all strings related to x, i.e., [x] = {y | xRLy}

8

Solutions

Solution to Exercise 9. This exercise is not as hard as one might believe at a first glance.
We are simply being asked to verify that if we as our universe takes all strings over an alphabet
Σ and consider the operation of concatenating two strings together, then this operator behaves
roughly as multiplication. Since we have two properties to verify we work systematically and
prove each property in turn.

• Associativity: Let x, y, z ∈ Σ∗ be strings. Then it clearly holds that (x ·y) · z = x · (y · z) =
xyz.

• Identity Element: we choose the empty string ε ∈ Σ∗. It follows that ε · x = x · ε = x for
any x ∈ Σ∗.

Why is it useful to know that (Σ∗, ·) is a monoid? This formalizes the intuition that · behaves
roughly as multiplication and, in this context, then that the empty string ε behaves as 1. With
this intuition it is easy to e.g. see why ε · ε = ε since 1 multiplied by itself still yields 1.

Solution to Exercise 10.

1. To demonstrate that RL is an equivalence relation, we must prove that RL is reflexive,
symmetric, and transitive.

(a) Reflexive: For all x ∈ Σ∗, we must show xRLx. Choosing an arbitrary string
x ∈ Σ∗, it is evident that for all z ∈ Σ∗, xz ∈ L⇔ xz ∈ L. Thus, xRLx.

(b) Symmetric: For all x, y ∈ Σ∗, we must show xRLy ⇒ yRLx. Given x, y ∈ Σ∗ such
that xRLy, xRLy iff for all z ∈ Σ∗, xz ∈ L ⇔ yz ∈ L. We conclude that for all
z ∈ Σ∗, yz ∈ L⇔ xz ∈ L, i.e., yRLx.

(c) Transitive: For all x, y, w ∈ Σ∗, we must show xRLy ∧ yRLw ⇒ xRLw. Choosing
x, y, w ∈ Σ∗ such that xRLy and yRLw, and an arbitrary z ∈ Σ∗, if xz ∈ L, then
xRLy implies yz ∈ L, which in turn implies wz ∈ L. Conversely, if xz /∈ L, xRLy
implies yz /∈ L, which in turn implies wz /∈ L. Thus, xz ∈ L⇔ wz ∈ L, i.e., xRLw.

2. The equivalence classes constitute a partitioning of Σ∗ and we want to know whether we
have a finite or infinite amount of such classes. To determine the equivalence class for a
string x, we analyze whether xRLy based on whether xz ∈ L⇔ yz ∈ L. Note that this
condition can be restated as xz ∈ L⇒ yz ∈ L and xz /∈ L⇒ yz /∈ L. We then approach
the question systematically and start by investigating small strings and hope that we see
a pattern. Hence, we should first investigate the equivalence class [ε], and if it turns out
that 0 /∈ [ε] then we continue with [0], [1], and so on.

(a) [ε]: For x = ε, xz = z ∈ L implies z = (01)n, n ≥ 0. Thus, if z = (01)n and
yz ∈ L, it must be the case that y = (01)m,m ≥ 0 since yz = (01)m(01)n = (01)m+n.

9

Conversely, if xz = z /∈ L, then z 6= (01)n, n ≥ 0, and yz /∈ L. Therefore, [ε] =
{(01)m|m ≥ 0}.

(b) [0]: x = 0 and xz = 0z ∈ L implies z = 1(01)n, n ≥ 0. If z = 1(01)n and yz ∈ L, then
y = (01)m0 since yz = (01)m01(01)n = (01)m+n+1. Therefore, [0] = {(01)m0|m ≥ 0}.

(c) [1]: x = 1 implies that for any z ∈ Σ∗, 1z /∈ L, meaning all strings y in [1] must
satisfy yz /∈ L for any chosen z. Therefore, [1] = Σ∗ − ([ε] ∪ [0]).

We conclude that Σ∗ = [ε] ∪ [0] ∪ [1] and thus that RL has a finite amount of equivalence
classes.

3. Here we get an infinite number of equivalence classes since each string of the form 0n,
n ≥ 0, is only related to itself. This yields the following classes.

• [0n] = {0n}, n ≥ 0, meaning each string consisting of n zeros is only related to itself.

• [01] = {0n1n|n ≥ 1}, indicating the class of strings with n zeros followed by n ones.

• [0k+11] = {0k+n1n|n ≥ 1}, k ≥ 1, representing strings with a sequence of zeros
followed by an equal number of ones, starting with at least one zero.

• [1] = Σ∗ − ([01] ∪ (
⋃∞

n=0[0
n]) ∪ (

⋃∞
n=2[0

n1])), capturing all strings not included in
the previous classes.

This exercise suggests an interesting property of a language L: whether RL has a finite
or infinite amount of equivalence classes. At this stage in the course it is perhaps hard to
appreciate exactly why this is useful, but, as we will see in the context of the Myhill-Nerode
theorem, this turns out to give a complete and powerful description of languages in the sense
that simple languages always have a finite amout of equivalence classes while (comparably)
complicated languages always have an infinite number of equivalence classes. This, in turn, can
be related to the automata perspective where a finite number of states means that the language
can be encoded by a machine with a finite number of states.

10

