TDDD14 / TDDD85 – Lecture 9 Pushdown Automata

August Ernstsson, 2024 (based on lecture notes by Jonas Wallgren)

From last lecture

Simplification – ε productions and unit productions

- Start: P' = P = { $S \rightarrow aSb, S \rightarrow T, T \rightarrow pTq, T \rightarrow \varepsilon$ } (4 productions)
- Extension steps:
 - If $A \rightarrow \alpha B\gamma$ and $B \rightarrow \varepsilon$ are in P' then put $A \rightarrow \alpha\gamma$ in P'
 - If $A \rightarrow B$ and $B \rightarrow \beta$ are in P' then put $A \rightarrow \beta$ in P'
- Application: (colored by which extension step is used)
 - Since $S \to T$ and $T \to \varepsilon$ in P', put $S \to \varepsilon$
 - Since $T \rightarrow pTq$ and $T \rightarrow \epsilon$ in P', put $T \rightarrow pq$
 - Since $S \rightarrow aSb$ and $S \rightarrow \epsilon$ in P', put $S \rightarrow ab$ in P'
 - Since $S \rightarrow T$ and $T \rightarrow pTq$ in P', put $S \rightarrow pTq$ in P'
 - Since $S \rightarrow pTq$ and $T \rightarrow \epsilon$ in P', put $S \rightarrow pq$ in P'

in P' in P'

(Note: First row matches both types of extension. This was what caused some confusion during the lecture.)

Let's start!

Pushdown Automata: Introduction

- Just as finite automata can express regular languages, we seek an automaton that can express context-free languages
- We start with the model for an NFA and add a memory component
 - A pushdown memory, "stack".
 - Only the top element can be read
 - We can push a new top element
 - Or pop the old top element and discard it

Example 1: A Pushdown Automata

Top of	State	Symbol read				
stack		0	1	С		
B	q 1	PushB q1	PushG q1	q ₂		
	q ₂	Pop q ₂				
G	q 1	PushB q1	PushG q1	q ₂		
	q ₂		Pop q ₂			
R	q 1	PushB q1	PushG q1	q ₂		
	q ₂	Without reading: Pop q ₂				

- A push-down automaton for $L = \{ wcw^R | w \in \{0, 1\} \} \}$
- Where x^R is w reversed, i.e. *palindromes* over {0,1} with a c in the center
- Read 0, 1, or c.
 - Put B, G, or R on the stack.
 - Start in state q₁.
 - Start with R on the stack.

Example 2: PDA string acceptance

Top of	State	Symbol read				
stack		0	1	С		
B	q 1	PushB q1	PushG q1	q ₂		
	q ₂	Pop q ₂				
G	q 1	PushB q1	PushG q1	q ₂		
	q ₂		Pop q ₂			
R	q 1	PushB q1	PushG q1	q ₂		
	q ₂	Without reading: Pop q ₂				

• Read the string 01c10

Example 2: PDA string acceptance

Top of State		Symbol read						
stack	Jale	0	1	С	State	Remaining	Stack	Comment
B	q ₁	PushB	PushG		Juan	string	JUACK	Comment
		q ₁	q ₁	Q ₂	q ₁	01c10	R	Start situation
	С	Рор						
	92	q ₂			qı	1c10	BR	According to column 0, row Rq ₁ in the
G q1 Q2	Q 1	PushB	PushG		Q 1	c10	GBR	According to column 1, row Rq ₁ in the
	41	q ₁	q ₁	Q ₂				
	Q2		Рор		Q2	10	GBR	•••
	92		q ₂			0	BR	
R q1	CI 1	PushB	PushG		42	U	BN	
	Y 1	q ₁	q ₁	q ₂	Q2		R	•••
	q ₂	Without reading: Pop Q2		Q2			String is read, stack is empty: accept!	

Example 2: PDA string acceptance

Top of	State	Symbol read				
stack		0	1	С		
B	q ₁	PushB	PushG			
		q ₁	q ₁	q ₂		
	q ₂	Рор				
		q ₂				
G	q ₁	PushB	PushG			
		q ₁	q ₁	q ₂		
	q ₂		Рор			
			q ₂			
R	q ₁	PushB	PushG			
		q ₁	q ₁	q ₂		
	q ₂	Without reading: Pop				
		Q ₂				

• Meaning of the states:

- All symbols before c are read in q₁; all symbols after c are read in q_2 .
- If you read a o before the c you push a B on the stack.
- You can read a o after the c only if there is a B on the stack top.
- Correspondingly for 1 and G

Definition 1: Pushdown Automata

- A PDA is a septuple $\langle Q, \Sigma, \Gamma, \delta, s, \bot, F \rangle$
 - Q = set of states
 - $\Sigma = (input)$ alphabet
 - Γ = stack alphabet
 - $s = start state \in Q$
 - $F = final states \subseteq Q$
 - \perp = start stack symbol
 - δ = transition relation $\subseteq (Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma*))$

The transition relation δ

- δ = transition relation $\subseteq (Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma*))$
- $\langle \langle \mathbf{p}, \mathbf{a}, \mathbf{A} \rangle, \langle \mathbf{q}, \mathbf{B}_1, \mathbf{B}_2...\mathbf{B}_n \rangle \rangle \in \delta$ means:
 - In state p with A on top of the stack:
 - Read a,
 - go to state q,

• change the stack top A to $B_1B_2...B_n$ (the left end being the new stack top).

The transition relation δ

- δ = transition relation $\subseteq (Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma*))$
- $\langle \langle \mathbf{p}, \varepsilon, \mathbf{A} \rangle, \langle \mathbf{q}, \mathbf{B}_1, \mathbf{B}_2...\mathbf{B}_n \rangle \rangle \in \delta$ means:
 - In state p with A on top of the stack, without reading anything:
 - Go to state q,

• change the stack top A to $B_1B_2...B_n$ (the left end being the new stack top).

Example 3

- The PDA in Example 1 can formally b specified as
 - $\langle \{q_1, q_2\}, \{0, 1, c\}, \{B, G, R\}, \delta, q_1, \rangle$
 - where δ is defined according to the table.

) e	Top of stack	State	Symbol read			
		State	0	1		
	B	q 1	PushB	PushG		
$\mathbf{R}, \varnothing \rangle$			q 1	q ₁		
 , ~ / ,		q ₂	Рор			
e			q ₂			
	G	q1	PushB	PushG		
			q ₁	q ₁		
		q ₂		Рор		
				q ₂		
	R	q 1	PushB	PushG		
			q ₁	q ₁		
		q ₂	Without reading: Pop			
				Q ₂		

Configurations

- What we handled in Example 2 are called *configurations*.
- **Definition 2.** A <u>configuration</u> is a triple $\langle q, x, y \rangle$, where:
 - $q = state \in Q$
 - $x = string \in \Sigma *$
 - $\gamma = \text{stack} \in \Gamma *$
- **Definition 3**. The <u>next-configuration relation</u> →
 - If $\langle \langle \mathbf{p}, \mathbf{a}, \mathbf{A} \rangle, \langle \mathbf{q}, \mathbf{\gamma} \rangle \rangle \in \delta$ then $\langle \mathbf{p}, \mathbf{ay}, \mathbf{A\beta} \rangle \rightarrow \langle \mathbf{q}, \mathbf{y}, \mathbf{\gamma\beta} \rangle \rangle$
 - If $\langle \langle \mathbf{p}, \boldsymbol{\epsilon}, \mathbf{A} \rangle, \langle \mathbf{q}, \mathbf{\gamma} \rangle \rangle \in \delta$ then $\langle \mathbf{p}, \mathbf{y}, \mathbf{A}\beta \rangle \rightarrow \langle \mathbf{q}, \mathbf{y}, \mathbf{\gamma}\beta \rangle \rangle$

From Example 2: $\langle q1, 01c01, R \rangle \rightarrow \langle q1, 1c01, BR \rangle$

Acceptance

- Two different modes of acceptance are used in the literature.
- A PDA can accept a string if
 - the stack is empty, or
 - if it reaches a *final state*.
- **Definition 4**
 - A PDA accepts the string x if $\langle s, x, \bot \rangle \rightarrow^* \langle q, \varepsilon, \gamma \rangle$ when $q \in F$.
- Definition 5
 - A PDA accepts the string x if $\langle s, x, \bot \rangle \rightarrow^* \langle q, \varepsilon, \varepsilon \rangle$ when $q \in Q$

Acceptance, cont.

- Two different modes of acceptance are used in the literature.
- A PDA can accept a string if
 - the stack is empty, or
 - if it reaches a *final state*.
- **Definition 6.** The language of a PDA.
 - M = some PDA
 - L(M) =the set of all strings that are accepted by M.

- We will prove that if there is a PDA accepting the string x with empty stack then there is a PDA accepting it in final state and v.v., i.e.
 - the two ways of accepting a string are equally powerful,
 - they define the same class of languages.
- We will perform the two proofs (the two directions of the implications making up the equivalence) somewhat in parallel.
- Our starting point is the PDA M = $\langle Q, \Sigma, \Gamma, \delta, s, \bot, F \rangle$.
 - It accepts strings in either way.

- Two new sets are defined.
- If M accepts with **empty stack**:
 - G = Q
 - $\Delta = \{\perp \perp\}$
- If M accepts in **final state**:
 - G = F
 - $\Delta = \Gamma \cup \{\perp \perp\}$

- We define a new PDA M ' = $\langle Q \cup \{u, t\}, \Sigma, \Gamma \cup \{\bot\}, \delta', u, \bot, \{t\} \rangle$, where
 - u = new start state
 - t = new final state
 - \bot = new stack bottom symbol
 - δ' =new transition relation, defined as:
 - $\delta' = \delta \cup \{ \langle \langle u, \varepsilon, \bot \rangle, \langle s, \bot \bot \rangle \rangle,$
 - $\langle \langle q, \varepsilon, A \rangle, \langle t, A \rangle \rangle$ for $q \in G, A \in \Delta$,
 - $\langle \langle t, \varepsilon, A \rangle, \langle t, \varepsilon \rangle \rangle$ for $A \in \Gamma \cup \{ \bot \bot \}$ }

• We now perform an operation a litle bit like the one done when constructing the regular expression from a DFA — we add some extra handling in the start and in the end.

- $\delta' = \delta \cup \{ \langle \langle u, \varepsilon, \bot \rangle, \langle s, \bot \bot \rangle \rangle,$
 - $\langle \langle q, \varepsilon, A \rangle, \langle t, A \rangle \rangle$ for $q \in G, A \in \Delta$,
 - $\langle \langle t, \varepsilon, A \rangle, \langle t, \varepsilon \rangle \rangle$ for $A \in \Gamma \cup \{ \bot \bot \}$ }
- The first new element of δ' says that in M', you first just go from its start state to the start state of M and you put the stack bottom of M on the stack.
- To prepare for the simulation of M.
- The next new part of δ' says that when you are in an accepting situation in M you go to the accepting state of M'.
- The third part says that if there is anything left on the stack you could remove it. So, M' accepts with empty stack and in final state.

- Lemma 1. If M accepts x with empty stack then M' accepts it.
- Proof. M accepts with empty stack: $\langle s, x, \bot \rangle$ n \rightarrow M $\langle q, \varepsilon, \varepsilon \rangle$.
 - Then $\langle u, x, \bot \rangle$ 1 \rightarrow M' $\langle s, x, \bot \bot \rangle$ n \rightarrow M' $\langle q, \varepsilon, \bot \rangle$ 1 \rightarrow M' $\langle t, \varepsilon, \bot \rangle$ 1 \rightarrow M' $\langle t, \varepsilon, \varepsilon \rangle$. 1. The first step as the new elements of δ' states, 2. the second step since δ' contains δ , 3. the last two steps as the new elements of δ' states.
 - So, $\langle u, x, \mu \rangle * \rightarrow M' \langle t, \varepsilon, \varepsilon \rangle$, i.e. M' accepts x if M accepts it with empty stack.

- Lemma 2. If M accepts x in final state then M' accepts it.
- Proof. M accepts in final state: $\langle s, x, \bot \rangle$ n \rightarrow M $\langle q, \varepsilon, \gamma \rangle$, where $q \in F$.
 - Then $\langle u, x, \bot \rangle 1 \rightarrow M' \langle s, x, \bot \bot \rangle n \rightarrow M' \langle q, \varepsilon, \gamma \bot \rangle 1 \rightarrow M' \langle t, \varepsilon, \gamma \bot \rangle * \rightarrow M' \langle t, \varepsilon, \varepsilon \rangle.$
 - 1. The first step as the new elements of δ' states, 2. the second step since δ' contains δ , 3. the last two steps as the new elements of δ' states.

- Lemma 3. If M accepts x then M' accepts it.
 - Proof. Follows from Lemma 1 and Lemma 2

- Lemma 4. If M' accepts x then M accepts it
- Proof. Consider this sequence of steps:
- - 1. The first step is the same initial one again.
 - not is ε.
 - 3. The third step is just a move from q to t.
 - perspective we get $\langle s, x, \bot \rangle$ n \rightarrow M $\langle q, \varepsilon, \gamma \rangle$, i.e. M accepts x.

2. For M' to accept x it must in the process have reached a state $q \in G$ since that is the only way δ' can get the automaton into the state t. That is shown in step 2, with a y that maybe

4. Since we know that M' accepts x there must be some way to perform the last step. But in state t M cannot read anything, so y must be ϵ . So if the second step is read from the M

• Theorem 1.

- *Proof.* It follows from Lemma 3 and Lemma 4

• Accepting with empty stack and accepting in final state are equivalent.

To think about

- the power of non-determinism in a PDA to recognize the language?
- How could you simulate a PDA on an input string in your favourite programming language?
 - memory does your implementation need?

• Can you think of a context-free language where we (at least intuitively) need

• How would such a simulation differ from simulating an NFA? How much

Coming up

- This week
 - Monday: Pushdown automata (PDA)
 - Friday: Equivalence between CFG and PDA
- Then three weeks with one lecture per week
 - Properties of CFGs and parsing methods for CFGs

Thanks for today!

