
TDDD14 / TDDD85 — Lecture 9
Pushdown Automata

August Ernstsson, 2024 (based on lecture notes by Jonas Wallgren)

From last lecture

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Simplification — ε productions and unit productions

• Start: P’ = P = { S → aSb, S → T, T → pTq, T → ε } (4 productions)
• Extension steps:
• If A → αBγ and B → ε are in P’ then put A → αγ in P’
• If A → B and B → β are in P’ then put A → β in P’

• Application: (colored by which extension step is used)
• Since S → T and T → ε in P', put S → ε in P'

• Since T → pTq and T → ε in P' , put T → pq in P'

• Since S → aSb and S → ε in P' , put S → ab in P'

• Since S → T and T → pTq in P' , put S → pTq in P'

• Since S → pTq and T → ε in P' , put S → pq in P'

3

(Note: First row
matches both
types of extension.
This was what
caused some
confusion during
the lecture.)

Let’s start!

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Pushdown Automata: Introduction

• Just as finite automata can express regular languages, we seek an automaton
that can express context-free languages
• We start with the model for an NFA and add a memory component
• A pushdown memory, ”stack”.
• Only the top element can be read
• We can push a new top element
• Or pop the old top element and discard it

5

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Example 1: A Pushdown Automata

• A push-down automaton for
L = { wcwR|w ∈ {0, 1}∗ }
• Where xR is w reversed, i.e.

palindromes over {0,1} with a c in the
center
• Read 0, 1, or c.
• Put B, G, or R on the stack.
• Start in state q1.
• Start with R on the stack.

6

Top of
stack

State
Symbol read

0 1 C

B
q1

PushB	
q1

PushG	
q1 q2

q2
Pop	
q2

G
q1

PushB	
q1

PushG	
q1 q2

q2
Pop	
q2

R
q1

PushB	
q1

PushG	
q1 q2

q2
Without reading: Pop	

q2

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Example 2: PDA string acceptance

• Read the string 01c10

7

Top of
stack

State
Symbol read

0 1 C

B
q1

PushB	
q1

PushG	
q1 q2

q2
Pop	
q2

G
q1

PushB	
q1

PushG	
q1 q2

q2
Pop	
q2

R
q1

PushB	
q1

PushG	
q1 q2

q2
Without reading: Pop	

q2

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Example 2: PDA string acceptance
8

State
Remaining

string
Stack Comment

q1 01c10 R Start situation

q1 1c10 BR According to column 0, row Rq1 in the table

q1 c10 GBRAccording to column 1, row Rq1 in the table

q2 10 GBR…

q2 0 BR…

q2 R…

q2 String is read, stack is empty: accept!

Top of
stack

State
Symbol read

0 1 C

B
q1

PushB	
q1

PushG	
q1 q2

q2
Pop	
q2

G
q1

PushB	
q1

PushG	
q1 q2

q2
Pop	
q2

R
q1

PushB	
q1

PushG	
q1 q2

q2
Without reading: Pop	

q2

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Example 2: PDA string acceptance

• Meaning of the states:
• All symbols before c are read in q1; all

symbols after c are read in q2.
• If you read a 0 before the c you push a B

on the stack.
• You can read a 0 after the c only if there is

a B on the stack top.
• Correspondingly for 1 and G

9

Top of
stack

State
Symbol read

0 1 C

B
q1

PushB	
q1

PushG	
q1 q2

q2
Pop	
q2

G
q1

PushB	
q1

PushG	
q1 q2

q2
Pop	
q2

R
q1

PushB	
q1

PushG	
q1 q2

q2
Without reading: Pop	

q2

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Definition 1: Pushdown Automata

• A PDA is a septuple ⟨ Q, Σ, Γ, δ, s, ⊥, F ⟩
• Q = set of states
• Σ = (input) alphabet
• Γ = stack alphabet
• s = start state ∈ Q
• F = final states ⊆ Q
• ⊥ = start stack symbol
• δ = transition relation ⊆ (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ∗))

10

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

The transition relation δ

• δ = transition relation ⊆ (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ∗))

• ⟨⟨p, a, A⟩, ⟨q, B1, B2…Bn⟩⟩ ∈ δ means:
• In state p with A on top of the stack:
• Read a,
• go to state q,
• change the stack top A to B1B2…Bn (the left end being the new stack top).

11

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

The transition relation δ

• δ = transition relation ⊆ (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ∗))

• ⟨⟨p, ε, A⟩, ⟨q, B1, B2...Bn⟩⟩ ∈ δ means:
• In state p with A on top of the stack, without reading anything:
• Go to state q,
• change the stack top A to B1B2…Bn (the left end being the new stack top).

12

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Example 3

• The PDA in Example 1 can formally be
specified as
• ⟨ {q1, q2}, {0, 1, c}, {B, G, R}, δ, q1, R, ∅ ⟩,
• where δ is defined according to the

table.

13

Top of
stack

State
Symbol read

0 1 C

B
q1

PushB	
q1

PushG	
q1 q2

q2
Pop	
q2

G
q1

PushB	
q1

PushG	
q1 q2

q2
Pop	
q2

R
q1

PushB	
q1

PushG	
q1 q2

q2
Without reading: Pop	

q2

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Configurations

• What we handled in Example 2 are called configurations.

• Definition 2. A configuration is a triple ⟨q, x, γ⟩, where:
• q = state ∈ Q
• x = string ∈ Σ∗
• γ = stack ∈ Γ∗

• Definition 3. The next-configuration relation →
• If ⟨⟨p, a, A⟩, ⟨q, γ⟩⟩ ∈ δ then ⟨p, ay, Aβ⟩ → ⟨q, y, γβ⟩⟩
• If ⟨⟨p, ε, A⟩, ⟨q, γ⟩⟩ ∈ δ then ⟨p, y, Aβ⟩ → ⟨q, y, γβ⟩⟩

14

From Example 2:	
⟨q1, 01c01, R⟩ → ⟨q1, 1c01, BR⟩

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Acceptance

• Two different modes of acceptance are used in the literature.
• A PDA can accept a string if
• the stack is empty, or
• if it reaches a final state.

• Definition 4
• A PDA accepts the string x if ⟨s, x, ⊥⟩ →* ⟨q, ε, γ⟩ when q ∈ F .
• Definition 5
• A PDA accepts the string x if ⟨s, x, ⊥⟩ →* ⟨q, ε, ε⟩ when q ∈ Q

15

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Acceptance, cont.

• Two different modes of acceptance are used in the literature.
• A PDA can accept a string if
• the stack is empty, or
• if it reaches a final state.

• Definition 6. The language of a PDA.
• M = some PDA
• L(M) = the set of all strings that are accepted by M.

16

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Equivalence between ways of acceptance

• We will prove that if there is a PDA accepting the string x with empty stack
then there is a PDA accepting it in final state and v.v., i.e.
• the two ways of accepting a string are equally powerful,
• they define the same class of languages.
• We will perform the two proofs (the two directions of the implications making

up the equivalence) somewhat in parallel.
• Our starting point is the PDA M = ⟨Q, Σ, Γ, δ, s, ⊥, F ⟩.
• It accepts strings in either way.

17

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Equivalence between ways of acceptance

• Two new sets are defined.

• If M accepts with empty stack:
• G = Q
• ∆ = {⊥⊥}

• If M accepts in final state:
• G = F
• ∆ = Γ ∪ {⊥⊥}

18

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Equivalence between ways of acceptance

• We now perform an operation a litle bit like the one done when constructing the regular
expression from a DFA — we add some extra handling in the start and in the end.
• We define a new PDA M ′ = ⟨Q ∪ {u, t}, Σ, Γ ∪ {⫫}, δ′, u, ⫫, {t}⟩, where
• u = new start state
• t = new final state
• ⫫ = new stack bottom symbol
• δ′=new transition relation, defined as:
• δ′ = δ ∪ { ⟨⟨u, ε, ⫫⟩, ⟨s, ⊥ ⫫⟩⟩,

• ⟨⟨q, ε, A⟩, ⟨t, A⟩⟩ for q ∈ G, A ∈ ∆,
• ⟨⟨t, ε, A⟩, ⟨t, ε⟩⟩ for A ∈ Γ ∪ {⊥⊥} }

19

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Equivalence between ways of acceptance

• δ′ = δ ∪ { ⟨⟨u, ε, ⫫⟩, ⟨s, ⊥ ⫫⟩⟩,
• ⟨⟨q, ε, A⟩, ⟨t, A⟩⟩ for q ∈ G, A ∈ ∆,
• ⟨⟨t, ε, A⟩, ⟨t, ε⟩⟩ for A ∈ Γ ∪ {⊥⊥} }

• The first new element of δ′ says that in M’, you first just go from its start state to
the start state of M and you put the stack bottom of M on the stack.
• To prepare for the simulation of M.

• The next new part of δ′ says that when you are in an accepting situation in M you
go to the accepting state of M’.
• The third part says that if there is anything left on the stack you could remove it.
• So, M’ accepts with empty stack and in final state.

20

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Equivalence between ways of acceptance

• Lemma 1. If M accepts x with empty stack then M’ accepts it.
• Proof. M accepts with empty stack: ⟨s, x, ⊥⟩ n→M ⟨q, ε, ε⟩.
• Then ⟨u, x, ⫫⟩ 1→M′ ⟨s, x, ⊥⫫⟩ n→M′ ⟨q, ε, ⫫⟩ 1→M′ ⟨t, ε, ⫫⟩ 1→M′ ⟨t, ε, ε⟩.

1. The first step as the new elements of δ′ states,
2. the second step since δ′ contains δ,
3. the last two steps as the new elements of δ′ states.

• So, ⟨u, x, ⫫⟩ ∗→M′ ⟨t, ε, ε⟩, i.e. M’ accepts x if M accepts it with empty stack.

21

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Equivalence between ways of acceptance

• Lemma 2. If M accepts x in final state then M’ accepts it.
• Proof. M accepts in final state: ⟨s, x, ⊥⟩ n→M ⟨q, ε, γ⟩, where q ∈ F .
• Then ⟨u, x, ⫫⟩ 1→M′ ⟨s, x, ⊥⫫⟩ n→M′ ⟨q, ε, γ⫫⟩ 1→M′ ⟨t, ε, γ⫫⟩ ∗→M′ ⟨t, ε, ε⟩.

1. The first step as the new elements of δ′ states,
2. the second step since δ′ contains δ,
3. the last two steps as the new elements of δ′ states.

22

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Equivalence between ways of acceptance

• Lemma 3. If M accepts x then M’ accepts it.
• Proof. Follows from Lemma 1 and Lemma 2

23

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Equivalence between ways of acceptance

• Lemma 4. If M’ accepts x then M accepts it

• Proof. Consider this sequence of steps:
• ⟨u, x, ⫫⟩ 1→M′ ⟨s, x, ⊥⫫⟩ n→M ′ ⟨q, y, γ⫫⟩ 1→M′ ⟨t, y, γ⫫⟩ ∗→M′ ⟨t, ε, ε⟩

1. The first step is the same initial one again.
2. For M’ to accept x it must in the process have reached a state q ∈ G since that is the only

way δ′ can get the automaton into the state t. That is shown in step 2, with a y that maybe
not is ε.

3. The third step is just a move from q to t.
4. Since we know that M’ accepts x there must be some way to perform the last step. But in

state t M cannot read anything, so y must be ε. So if the second step is read from the M
perspective we get ⟨s, x, ⊥⟩ n→M ⟨q, ε, γ⟩, i.e. M accepts x.

24

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Equivalence between ways of acceptance

• Theorem 1.
• Accepting with empty stack and accepting in final state are equivalent.
• Proof. It follows from Lemma 3 and Lemma 4

25

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

To think about

• Can you think of a context-free language where we (at least intuitively) need
the power of non-determinism in a PDA to recognize the languge?

• How could you simulate a PDA on an input string in your favourite
programming language?
• How would such a simulation differ from simulating an NFA? How much

memory does your implementation need?

26

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Coming up

• This week
• Monday: Pushdown automata (PDA)
• Friday: Equivalence between CFG and PDA

• Then three weeks with one lecture per week
• Properties of CFGs and parsing methods for CFGs

27

Thanks for today!

