
TDDD14 / TDDD85 — Lecture 8
CFG Rewriting and Normal Forms

August Ernstsson, 2024 (based on lecture notes by Jonas Wallgren)

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Reminders: From last lecture
• CFG: context-free grammar
• G = <N,Σ,P,S> (nonterminals, alphabet (terminals), productions, start symbol)
• Example: G = <{E}, {a,b,c}, P, E>
• Where P is described by E → E*E | E+E | a | b | c (set of productions)

• CFL: context-free language
• L(G) = language generated by grammar G
• Superset of regular languages

• Derivations
• Example: E ⇒ E+E ⇒ E+E*E ⇒ E+E*c ⇒ E+b*c ⇒ a+b*c
• Derivation (parse) trees
• Leftmost and rightmost derivations

• Ambiguous grammars

2

Leftmost or rightmost?

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Reminders: Notational practice
• Nonterminals: capital latin letters

• A, B, C, P, Q, S, T, …

• Terminals: small latin letters

• a, b, c, p, q, r, …

• Strings of terminals and/or nonterminals: small greek letters

• α, β, γ, …

3

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Ambiguous Grammar Example
• On the whiteboard: example of two different leftmost derivations for the same

string

4

Let’s start!

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Introduction

• Rewriting grammars – Why?
• Simplification
• Minimize the number of productions
• Efficiency
• Analysis: Proving properties
• Implementation, for example a parser
• Parser generators
• Some types of analysis or parser methods implementations may require

grammar of a certain form

6

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Simplification — Unnecessary symbols

• Consider a grammar over Σ = {a}
• Grammar G1
• S → AB|a
• A → a

• First step: find out which nonterminals can produce strings.
• Look ”from right to left”
• A: a string in Σ∗ can be derived.
• S: a string in Σ∗ can be derived.
• B: no string in Σ∗ can be derived!

7

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Simplification — Unnecessary symbols, cont.

• Consider a grammar over Σ = {a}
• Grammar G2
• S → a
• A → a

• Second step: which nonterminals can be reached from start symbol S
• Look ”from left to right”
• S can be reached from S (trivial)
• A can’t be reached from S!

8

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Simplification — Unnecessary symbols, cont.

• Consider a grammar over Σ = {a}
• Grammar G3
• S → a

• All three grammars define the same language.
• L(G1) = L(G2) = L(G3)

9

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Simplification — ε productions and unit productions

• ε productions: A → ε

• Unit productions: A → B

• These rules can be convenient when defining a grammar.
• But: needlessly complicates analysis or implementation.

10

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Simplification — ε productions and unit productions

• Example grammar over Σ = { a, b, q, p }
• Grammar G4
• S → aSb | T
• T → pTq | ε
• L(G4) = { ampnqnbm | m ⩾ 0 ∧ n ⩾ 0 }.

• If A → αBγ and B → ε are in P’ then put A → αγ in P’
• If A → B and B → β are in P’ then put A → β in P’

11

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Simplification — ε productions and unit productions

• Start: P’ = P = { S → aSb, S → T, T → pTq, T → ε } (4 productions)
• Extension steps:
• If A → αBγ and B → ε are in P’ then put A → αγ in P’
• If A → B and B → β are in P’ then put A → β in P’

• Application: (colored by which extension step is used)
• Since S → T and T → ε in P', put S → ε in P'

• Since T → pTq and T → ε in P' , put T → pq in P'

• Since S → aSb and S → ε in P' , put S → ab in P'

• Since S → T and T → pTq in P' , put S → pTq in P'

• Since S → pTq and T → ε in P' , put S → pq in P'

12

(Note: First row
matches both
types of extension.
This was what
caused some
confusion during
the lecture.)

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Simplification — ε productions and unit productions

• Finally, remove all ε productions and unit productions from P’ (3 of them).

• Grammar G5 = < N, Σ, P’, S>
• S → aSb | ab | pTq | pq
• T → pTq | pq

• But: ε ∈ L(G4)
• L(G5) = L(G4) - {ε}
• We need to add S → ε to G5.
• Now L(G5) = L(G4).

13

• S → ε

• Grammar G4
• S → aSb | T
• T → pTq | ε

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Definition 1: Chomsky normal form

• A grammar is in Chomsky normal form
• if all rules have the form A → a or A → BC.

• Example: Grammar G6
• S → aSb | ab | pTq | pq
• T → pTq | pq

14

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Chomsky normal form: Step 1

• Insert productions for every terminal (Σ = { a, b, q, p })
• A → a, B → b, Q → q, P → p

• Then update existing productions to replace the terminals
• Grammar G7
• S → ASB | AB | PTQ | PQ
• T → PTQ | PQ

15

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Chomsky normal form: Step 2

• Then for all productions of the form A → B1B2B3…
• replace it by A → B1C and C → B2B3...
• Iterate as many steps as necessary.

• Grammar G7 (same as last slide)
• S → ASB | AB | PTQ | PQ
• T → PTQ | PQ

• L(G8) = L(G7) = L(G6) = L(G4) - {ε}

16

• Grammar G8
• S → AE |AB | PF | PQ
• T → PF | PQ
• E → SB
• F → TQ
• A → a
• B → b
• P → p
• Q → q

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Definition 1: Greibach normal form

• A grammar is in Greibach normal form (GNF)
• if all productions have the form A → aB1B2B3…
• (Sequence of B’s may be empty)

• Every CFG can be converted to a CFG in GNF.

• Greibach normal form will be important in lecture 10.

17

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Left recursion

• Left recursive property:
• In at least one production for at least one nonterminal,
• the same nonterminal occurs first in the right-hand side.

• Example: the productions
• A → Ap | q

• Possible derivation
• A ⇒ Ap ⇒ App ⇒ Appp ⇒ qppp

18

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Left recursion

• Consider: a (recursive descent) parser strictly following the grammar rules
• Invokes the parsing procedure for A (Aproc)
• A → Ap: invoke Aproc again
• A → Ap: invoke Aproc again
• A → Ap: invoke Aproc again
• …
• There is infinite recursion!
• as the parser is never given the chance to look for p or q.

19

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Left recursion — Solution

• Solution: rewrite grammar!
• We want derivations on the form B ⇒ qC ⇒ ···
• Always ”consume” a terminal from the input string.
• Input is finite, so this guarantees termination.

• Substitute left-recursive nonterminals A with A’
• For our example:
• A → qA’
• A’ → pA’ | ε

20

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Left recursion — Another example

• Another left-recursive set of productions:
• A → Ap | Aq | Ar | a | b | c
• There are multiple cases of left-recursion.
• We have to handle them all at once.

• Rewritten set of productions:
• A → aA’ | bA’ | cA’
• A’ → pA’ | qA’ | rA’ | ε

21

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Left recursion

• Mutual recursion:
• a rule for A begins with B and a rule for B begins with A
• There could also be yet more complicated cases.
• But all such recursivity is solvable.
• All grammars can be rewritten to non-leftrecursive form.

22

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

To think about

• How do the various rewriting methods affect the number of productions?
• Could there e.g. be exponential blow-up?

• Give a grammar in Chomsky normal form for
• the language { anb2nck | n ⩾ 1 ∧ k ⩾ 1 }

23

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Coming up

• This week
• Today: Context-free grammars (CFG) introduction
• Wednesday: CFG rewriting, GFG normal forms

• Next week
• Monday: Pushdown automata (PDA)
• Friday: Equivalence between CFG and PDA

• Then three weeks with one lecture per week
• Properties of CFGs and parsing methods for CFGs

24

Don
e!

Thanks for today!

