TDDD14 / TDDD85 - Lecture 8 CFG Rewriting and Normal Forms

August Ernstsson, 2024 (based on lecture notes by Jonas Wallgren〕

Reminders: From last lecture

- CFG: context-free grammar
- $\mathrm{G}=<\mathrm{N}, \Sigma, \mathrm{P}, \mathrm{S}>$ (nonterminals, alphabet (terminals), productions, start symbol)
- Example: $\mathrm{G}=<\{\mathrm{E}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{P}, \mathrm{E}>$
- Where P is described by $\mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E}|\mathrm{E}+\mathrm{E}| \mathrm{a}|\mathrm{b}| \mathrm{c}$ (set of productions)
- CFL: context-free language
- $\mathrm{L}(\mathrm{G})=$ language generated by grammar G
- Superset of regular languages
- Derivations
- Example: $\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E}^{*} \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E}^{*} \mathrm{c} \Rightarrow \mathrm{E}+\mathrm{b}^{*} \mathrm{c} \Rightarrow \mathrm{a}+\mathrm{b}^{*} \mathrm{c}$
- Derivation (parse) trees
- Leftmost and rightmost derivations
- Ambiguous grammars

Leftmost or rightmost?

LINKÖPING
UNIVERSITY

Reminders: Notational practice

- Nonterminals: capital latin letters
- A, B, C, P, Q, S, T, ...
- Terminals: small latin letters
- a, b, c, p, q, r, ...
- Strings of terminals and/or nonterminals: small greek letters
- $\alpha, \beta, \gamma, \ldots$

Ambiguous Grammar Example

- On the whiteboard: example of two different leftmost derivations for the same string

Let's start!

Introduction

- Rewriting grammars - Why?
- Simplification
- Minimize the number of productions
- Efficiency
- Analysis: Proving properties
- Implementation, for example a parser
- Parser generators
- Some types of analysis or parser methods implementations may require grammar of a certain form

Simplification - Unnecessary symbols

- Consider a grammar over $\Sigma=\{\mathrm{a}\}$
- Grammar G1
- $\mathrm{S} \rightarrow \mathrm{AB} \mid \mathrm{a}$
- $\mathrm{A} \rightarrow \mathrm{a}$
- First step: find out which nonterminals can produce strings.
- Look "from right to left"
- A: a string in $\Sigma *$ can be derived.
- S: a string in $\Sigma *$ can be derived.
- B: no string in $\Sigma *$ can be derived!

Simplification - Unnecessary symbols, cont.

- Consider a grammar over $\Sigma=\{a\}$
- Grammar G2
- $\mathrm{S} \rightarrow \mathrm{a}$
- $\mathrm{A} \rightarrow \mathrm{a}$
- Second step: which nonterminals can be reached from start symbol S
- Look "from left to right"
- S can be reached from S (trivial)
- A can't be reached from S!

Simplification - Unnecessary symbols, cont.

- Consider a grammar over $\Sigma=\{a\}$
- Grammar G3
- $\mathrm{S} \rightarrow \mathrm{a}$
- All three grammars define the same language.
- $\mathrm{L}(\mathrm{G} 1)=\mathrm{L}(\mathrm{G} 2)=\mathrm{L}(\mathrm{G} 3)$

Simplification - ε productions and unit productions

- ε productions: $\mathrm{A} \rightarrow \varepsilon$
- Unit productions: A \rightarrow B
- These rules can be convenient when defining a grammar.
- But: needlessly complicates analysis or implementation.

Simplification $-\varepsilon$ productions and unit productions

- Example grammar over $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{q}, \mathrm{p}\}$
- Grammar G4
- $\mathrm{S} \rightarrow \mathrm{aSb} \mid \mathrm{T}$
- $\mathrm{T} \rightarrow \mathrm{pTq} \mid \varepsilon$
- L(G4) $=\left\{a^{m} p^{n} q^{n} b^{m} \mid m \geqslant 0 \wedge n \geqslant 0\right\}$.
- If $A \rightarrow \alpha B \gamma$ and $B \rightarrow \varepsilon$ are in $P^{\prime} \quad$ then put $A \rightarrow \alpha \gamma$ in P^{\prime}
- If $A \rightarrow B \quad$ and $B \rightarrow \beta$ are in P^{\prime} then put $A \rightarrow \beta$ in P^{\prime}

Simplification $-\varepsilon$ productions and unit productions

- Start: $\mathrm{P}^{\prime}=\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{aSb}, \mathrm{S} \rightarrow \mathrm{T}, \mathrm{T} \rightarrow \mathrm{pTq}, \mathrm{T} \rightarrow \varepsilon\}$ (4 productions)
- Extension steps:
- If $A \rightarrow \alpha B \gamma$ and $B \rightarrow \varepsilon$ are in $P^{\prime} \quad$ then put $A \rightarrow \alpha \gamma$ in P^{\prime}
- If $A \rightarrow B \quad$ and $B \rightarrow \beta$ are in P^{\prime} then put $A \rightarrow \beta$ in P^{\prime}
- Application: (colored by which extension step is used)
- Since $S \rightarrow T \quad$ and $T \rightarrow \varepsilon \quad$ in P^{\prime}, put $S \rightarrow \varepsilon \quad$ in P^{\prime}
- Since $T \rightarrow p T q$ and $T \rightarrow \varepsilon \quad$ in P^{\prime}, put $T \rightarrow p q \quad$ in P^{\prime}
- Since $S \rightarrow a S b$ and $S \rightarrow \varepsilon \quad$ in P^{\prime}, put $S \rightarrow a b \quad$ in P^{\prime}
- Since $S \rightarrow T \quad$ and $T \rightarrow p T q$ in P^{\prime}, put $S \rightarrow p T q$ in P^{\prime}
- Since $S \rightarrow p T q$ and $T \rightarrow \varepsilon \quad$ in P^{\prime}, put $S \rightarrow p q \quad$ in P^{\prime}
(Note: First row matches both types of extension. This was what caused some confusion during the lecture.)

Simplification - ε productions and unit productions

- Finally, remove all ε productions and unit productions from P^{\prime} (3 of them).
- Grammar G5 = < N, $\Sigma, \mathrm{P}^{\prime}, \mathrm{S}>$
- $\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{ab}| \mathrm{pTq} \mid \mathrm{pq}$
- $\mathrm{T} \rightarrow \mathrm{pTq} \mid \mathrm{pq}$
- $S \rightarrow \varepsilon$
- But: $\varepsilon \in \mathrm{L}(\mathrm{G} 4)$
- L(G5) $=\mathrm{L}(\mathrm{G} 4)-\{\varepsilon\}$
- We need to add $\mathrm{S} \rightarrow \varepsilon$ to G5.
- Now L(G5) = L(G4).
- Grammar G4
- $\mathrm{S} \rightarrow \mathrm{aSb} \mid \mathrm{T}$
- $\mathrm{T} \rightarrow \mathrm{pTq} \mid \varepsilon$

Definition 1: Chomsky normal form

- A grammar is in Chomsky normal form
- if all rules have the form $\mathrm{A} \rightarrow \mathrm{a}$ or $\mathrm{A} \rightarrow \mathrm{BC}$.
- Example: Grammar G6
- $\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{ab}| \mathrm{pTq} \mid \mathrm{pq}$
- $\mathrm{T} \rightarrow \mathrm{pTq} \mid \mathrm{pq}$

Chomsky normal form: Step 1

- Insert productions for every terminal $(\Sigma=\{a, b, q, p\})$
- $\mathrm{A} \rightarrow \mathrm{a}, \quad \mathrm{B} \rightarrow \mathrm{b}, \quad \mathrm{Q} \rightarrow \mathrm{q}, \quad \mathrm{P} \rightarrow \mathrm{p}$
- Then update existing productions to replace the terminals
- Grammar G7
- $\mathrm{S} \rightarrow \mathrm{ASB}|\mathrm{AB}| \mathrm{PTQ} \mid \mathrm{PQ}$
- $\mathrm{T} \rightarrow \mathrm{PTQ} \mid \mathrm{PQ}$

Chomsky normal form: Step 2

- Then for all productions of the form $A \rightarrow B_{1} B_{2} B_{3} \ldots$
- replace it by $\mathrm{A} \rightarrow \mathrm{B}_{1} \mathrm{C}$ and $\mathrm{C} \rightarrow \mathrm{B}_{2} \mathrm{~B}_{3} \ldots$
- Iterate as many steps as necessary.
- Grammar G7 (same as last slide)
- $\mathrm{S} \rightarrow \mathrm{ASB}|\mathrm{AB}| \mathrm{PTQ} \mid \mathrm{PQ}$
- $\mathrm{T} \rightarrow \mathrm{PTQ} \mid \mathrm{PQ}$
- $\mathrm{L}(\mathrm{G} 8)=\mathrm{L}(\mathrm{G} 7)=\mathrm{L}(\mathrm{G} 6)=\mathrm{L}(\mathrm{G} 4)-\{\varepsilon\}$
- Grammar G8
- $\mathrm{S} \rightarrow \mathrm{AE}|\mathrm{AB}| \mathrm{PF} \mid \mathrm{PQ}$
- T \rightarrow PF \mid PQ
- $\mathrm{E} \rightarrow \mathrm{SB}$
- $\mathrm{F} \rightarrow \mathrm{TQ}$
- $\mathrm{A} \rightarrow \mathrm{a}$
- B \rightarrow b
- $\mathrm{P} \rightarrow \mathrm{p}$
- $\mathrm{Q} \rightarrow \mathrm{q}$

Definition 1: Greibach normal form

- A grammar is in Greibach normal form (GNF)
- if all productions have the form $\mathrm{A} \rightarrow \mathrm{aB}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \ldots$
- (Sequence of B's may be empty)
- Every CFG can be converted to a CFG in GNF.
- Greibach normal form will be important in lecture 10.

Left recursion

- Left recursive property:
- In at least one production for at least one nonterminal,
- the same nonterminal occurs first in the right-hand side.
- Example: the productions
- $\mathrm{A} \rightarrow \mathrm{Ap} \mid \mathrm{q}$
- Possible derivation
- $\mathrm{A} \Rightarrow \mathrm{Ap} \Rightarrow \mathrm{App} \Rightarrow \mathrm{Appp} \Rightarrow \mathrm{qppp}$

Left recursion

- Consider: a (recursive descent) parser strictly following the grammar rules
- Invokes the parsing procedure for A (Aproc)
- A \rightarrow Ap: invoke Aproc again
- A \rightarrow Ap: invoke Aproc again
- A \rightarrow Ap: invoke Aproc again
- ...
- There is infinite recursion!
- as the parser is never given the chance to look for p or q .

Left recursion - Solution

- Solution: rewrite grammar!
- We want derivations on the form $\mathrm{B} \Rightarrow \mathrm{qC} \Rightarrow \cdots$
- Always "consume" a terminal from the input string.
- Input is finite, so this guarantees termination.
- Substitute left-recursive nonterminals A with A'
- For our example:
- $\mathrm{A} \rightarrow \mathrm{qA}{ }^{\prime}$
$\cdot \mathrm{A}^{\prime} \rightarrow \mathrm{pA}^{\prime} \mid \varepsilon$

Left recursion - Another example

- Another left-recursive set of productions:
- $\mathrm{A} \rightarrow \mathrm{Ap}|\mathrm{Aq}| \mathrm{Ar}|\mathrm{a}| \mathrm{b} \mid \mathrm{c}$
- There are multiple cases of left-recursion.
- We have to handle them all at once.
- Rewritten set of productions:
- $\mathrm{A} \rightarrow \mathrm{aA}^{\prime}\left|\mathrm{bA}^{\prime}\right| \mathrm{cA}^{\prime}$
- $\mathrm{A}^{\prime} \rightarrow \mathrm{pA}^{\prime}\left|\mathrm{qA}^{\prime}\right| \mathrm{rA}^{\prime} \mid \varepsilon$

Left recursion

- Mutual recursion:
- a rule for A begins with B and a rule for B begins with A
- There could also be yet more complicated cases.
- But all such recursivity is solvable.
- All grammars can be rewritten to non-leftrecursive form.

To think about

- How do the various rewriting methods affect the number of productions?
- Could there e.g. be exponential blow-up?
- Give a grammar in Chomsky normal form for
- the language $\left\{a^{n} b^{2 n} c^{k} \mid n \geqslant 1 \wedge k \geqslant 1\right\}$

Coming up

- This week
- Today: Context-free grammars (CFG) introduction
- Wednesday: CFG rewriting, GFG normal forms
- Next week
- Monday: Pushdown automata (PDA)
- Friday: Equivalence between CFG and PDA
- Then three weeks with one lecture per week
- Properties of CFGs and parsing methods for CFGs

Thanks for today!

