TDDD14 / TDDD85 – Lecture 8 CFG Rewriting and Normal Forms

August Ernstsson, 2024 (based on lecture notes by Jonas Wallgren)

Reminders: From last lecture

- CFG: <u>context-free grammar</u>
 - $G = \langle N, \Sigma, P, S \rangle$ (nonterminals, alphabet (terminals), productions, start symbol)
 - **Example**: G = <{E}, {a,b,c}, P, E>
 - Where P is described by $E \rightarrow E^*E \mid E+E \mid a \mid b \mid c$ (set of productions)
- CFL: <u>context-free language</u>
 - L(G) = language generated by grammar G
 - Superset of regular languages
- <u>Derivations</u>
 - **Example**: $E \Rightarrow E + E \Rightarrow E + E^*E \Rightarrow E + E^*c =$
 - Derivation (parse) trees
 - Leftmost and rightmost derivations
- Ambiguous grammars

$$\Rightarrow$$
 E+b*c \Rightarrow a+b*c

Reminders: Notational practice

- <u>Nonterminals</u>: *capital latin letters*
 - A, B, C, P, Q, S, T, ...
- <u>Terminals</u>: *small latin letters*
 - a, b, c, p, q, r, ...
- <u>Strings</u> of terminals and/or nonterminals: *small greek letters*
 - α, β, γ, ...

Ambiguous Grammar Example

string

• On the whiteboard: example of two different leftmost derivations for the same

Let's start!

Introduction

- Rewriting grammars Why?
 - Simplification
 - Minimize the number of productions
 - Efficiency
 - Analysis: Proving properties
 - Implementation, for example a parser
 - Parser generators
 - grammar of a certain form

• Some types of analysis or parser methods implementations may require

Simplification – Unnecessary symbols

- Consider a grammar over $\Sigma = \{a\}$
 - Grammar G1
 - $S \rightarrow AB|a$
 - $A \rightarrow a$
- **First step**: find out which nonterminals can produce strings.
 - Look "from right to left"
 - A: a string in Σ * can be derived.
 - S: a string in Σ * can be derived.
 - B: no string in Σ* can be derived!

Simplification – Unnecessary symbols, cont.

- Consider a grammar over $\Sigma = \{a\}$
 - Grammar G2
 - $S \rightarrow a$
 - $A \rightarrow a$
- - Look "from left to right"
 - S can be reached from S (trivial)
 - A can't be reached from S!

• **Second step**: which nonterminals can be reached from start symbol S

Simplification – Unnecessary symbols, cont.

- Consider a grammar over $\Sigma = \{a\}$
 - Grammar G3
 - $S \rightarrow a$
- All three grammars define the same language.
 - $L(G_1) = L(G_2) = L(G_3)$

Simplification – ε productions and unit productions

- ε productions: $A \rightarrow \varepsilon$
- Unit productions: $A \rightarrow B$
- These rules can be convenient when defining a grammar.
- But: needlessly complicates analysis or implementation.

- Example grammar over $\Sigma = \{a, b, q, p\}$
 - Grammar G4
 - $S \rightarrow aSb \mid T$
 - $T \rightarrow pTq \mid \epsilon$

LINKÖPING

- $L(G_4) = \{a^m p^n q^n b^m \mid m \ge 0 \land n \ge 0\}.$
- If $A \rightarrow \alpha B\gamma$ and $B \rightarrow \varepsilon$ are in P' then put $A \rightarrow \alpha\gamma$ in P'
- If $A \rightarrow B$ and $B \rightarrow \beta$ are in P' then put $A \rightarrow \beta$ in P'

Simplification – ε productions and unit productions

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

11

Simplification – ε productions and unit productions

- Start: P' = P = { $S \rightarrow aSb, S \rightarrow T, T \rightarrow pTq, T \rightarrow \epsilon$ } (4 productions)
- Extension steps:
 - If $A \rightarrow \alpha B\gamma$ and $B \rightarrow \varepsilon$ are in P' then put $A \rightarrow \alpha\gamma$ in P'
 - If $A \rightarrow B$ and $B \rightarrow \beta$ are in P' then put $A \rightarrow \beta$ in P'
- Application: (colored by which extension step is used)
 - Since $S \to T$ and $T \to \varepsilon$ in P', put $S \to \varepsilon$
 - Since $T \rightarrow pTq$ and $T \rightarrow \epsilon$ in P', put $T \rightarrow pq$
 - Since $S \rightarrow aSb$ and $S \rightarrow \epsilon$ in P', put $S \rightarrow ab$ in P'
 - Since $S \rightarrow T$ and $T \rightarrow pTq$ in P', put $S \rightarrow pTq$ in P'
 - Since $S \rightarrow pTq$ and $T \rightarrow \epsilon$ in P', put $S \rightarrow pq$ in P'

in P' in P'

(Note: First row matches both types of extension. This was what caused some confusion during the lecture.)

Simplification – ε productions and unit productions

- Finally, remove all ε productions and unit productions from P' (3 of them).
- Grammar G5 = $\langle N, \Sigma, P', S \rangle$
 - $S \rightarrow aSb \mid ab \mid pTq \mid pq$
 - $T \rightarrow pTq \mid pq$
 - $S \rightarrow \varepsilon$
- **But**: $\varepsilon \in L(G_4)$
 - $L(G_5) = L(G_4) \{\epsilon\}$
 - We need to add $S \rightarrow \varepsilon$ to G5.
 - Now $L(G_5) = L(G_4)$.

- Grammar G4
 - $S \rightarrow aSb \mid T$
 - $T \rightarrow pTq \mid \epsilon$

Definition 1: Chomsky normal form

- A grammar is in <u>Chomsky normal form</u>
 - if all rules have the form $A \rightarrow a \text{ or } A \rightarrow BC$.
- Example: Grammar G6
 - $S \rightarrow aSb \mid ab \mid pTq \mid pq$
 - $T \rightarrow pTq \mid pq$

Chomsky normal form: Step 1

- Insert productions for every terminal ($\Sigma = \{a, b, q, p\}$)
 - $A \rightarrow a$, $B \rightarrow b$, $Q \rightarrow q$, $P \rightarrow p$
- Then update existing productions to replace the terminals
 - Grammar G7
 - $S \rightarrow ASB \mid AB \mid PTQ \mid PQ$
 - $T \rightarrow PTQ \mid PQ$

Chomsky normal form: Step 2

- Grammar G8 • Then for all productions of the form $A \rightarrow B_1B_2B_3...$ • $S \rightarrow AE |AB| PF | PQ$
 - replace it by $A \rightarrow B_1C$ and $C \rightarrow B_2B_3...$
 - Iterate as many steps as necessary.
- Grammar G7 (same as last slide)
 - $S \rightarrow ASB \mid AB \mid PTQ \mid PQ$
 - $T \rightarrow PTQ \mid PQ$
- $L(G8) = L(G7) = L(G6) = L(G4) \{\epsilon\}$

- $T \rightarrow PF \mid PQ$
- $E \rightarrow SB$
- $F \rightarrow TQ$
- $A \rightarrow a$
- $B \rightarrow b$
- $P \rightarrow p$
- $\mathbf{Q} \rightarrow \mathbf{q}$

Definition 1: Greibach normal form

- A grammar is in <u>Greibach normal form</u> (GNF)
 - if all productions have the form $A \rightarrow aB_1B_2B_3...$
 - (Sequence of B's may be empty)
- Every CFG can be converted to a CFG in GNF.
- Greibach normal form will be important in lecture 10.

Left recursion

- <u>Left recursive property</u>:
 - In at least one production for at least one nonterminal,
 - the same nonterminal occurs *first* in the right-hand side.
- **Example**: the productions
 - A \rightarrow Ap | q
- Possible derivation
 - $A \Rightarrow Ap \Rightarrow App \Rightarrow Appp \Rightarrow qppp$

Left recursion

- - Invokes the parsing procedure for A (Aproc)
 - $A \rightarrow Ap$: invoke Aproc again
 - $A \rightarrow Ap$: invoke Aproc again
 - $A \rightarrow Ap$: invoke Aproc again
 - There is infinite recursion!
 - as the parser is never given the chance to look for p or q.

•

• Consider: a (recursive descent) parser strictly following the grammar rules

Left recursion – Solution

- **Solution**: rewrite grammar!
- We want derivations on the form $B \Rightarrow qC \Rightarrow \cdots$
 - Always "consume" a terminal from the input string.
 - Input is finite, so this guarantees termination.
- Substitute left-recursive nonterminals A with A'
- For our example:
 - $A \rightarrow qA'$
 - $A' \rightarrow pA' \mid \epsilon$

Left recursion – Another example

- Another left-recursive set of productions:
 - $A \rightarrow Ap \mid Aq \mid Ar \mid a \mid b \mid c$
 - There are multiple cases of left-recursion.
 - We have to handle them all at once.
- Rewritten set of productions:
 - $A \rightarrow aA' \mid bA' \mid cA'$
 - $A' \rightarrow pA' \mid qA' \mid rA' \mid \epsilon$

Left recursion

- *Mutual* recursion:
 - a rule for A begins with B and a rule for B begins with A
- There could also be yet more complicated cases.
- But all such recursivity is solvable.
- All grammars can be rewritten to non-leftrecursive form.

To think about

- How do the various rewriting methods affect the number of productions? • Could there e.g. be exponential blow-up?
- Give a grammar in Chomsky normal form for • the language $\{a^nb^{2n}c^k \mid n \ge 1 \land k \ge 1\}$

Coming up

- This week
- Next week

 - Monday: Pushdown automata (PDA) • Friday: Equivalence between CFG and PDA
- Then three weeks with one lecture per week
 - Properties of CFGs and parsing methods for CFGs

Thanks for today!

