TDDD14 / TDDD85 - Lecture 7 Context-free Grammars

August Ernstsson, 2024 (based on lecture notes by Jonas Wallgren〕

About me

- Postdoc at IDA
- Research and interests
- High-level parallel programming languages, concepts, libraries
- Heterogeneous computer architectures (multi-core and GPU programming)
- High-performance computing (clusters, supercomputers)
- Languages, parsers, syntax trees etc. are valuable tools in my own research

Coming up next in the course

- This week
- Today: Context-free grammars (CFG) introduction
- Wednesday: CFG rewriting, GFG normal forms
- Next week
- Monday: Pushdown automata (PDA)
- Friday: Equivalence between CFG and PDA
- Then three weeks with one lecture per week
- Properties of CFGs and parsing methods for CFGs

Let's start!

Introduction

- The language $\left\{o^{n} 1^{n} \mid n \geq 0\right\}$ is not regular
- We were unable to handle it with the formalisms so far
- In this part of the course, we will introduce those that allow us to!
- We will start with notation, and get to automata next week.

Context-free Grammars

```
<expression> ::= <expression> * <expression>
    | <expression> + <expression>
    | <number>
<number> ::= <digit> <number>
    | <digit>
<digit> ::= o|1|2|3|4|5|6|7|8|9
```

- BNF: Backus-Naur Form

Example 1

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E}|\mathrm{E}+\mathrm{E}| \mathrm{N} \\
& \mathrm{~N} \rightarrow \mathrm{DN} \mid \mathrm{D} \\
& \mathrm{D} \rightarrow \mathrm{O}|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

- A grammar for expressions (E) of numbers (N) of digits (D)
- Each line is called a production (sometimes rule is used)
- " \rightarrow " can be read "is composed of"
- Different syntax is used, e.g. ::= or \leftarrow
- Often < > are used to denote nonterminals (not part of the actual string)

Abbreviations for combining productions

<expression> ::= <expression>* <expression>
| <expression> + <expression>
| <number>

Equivalent to

<expression> ::= <expression> * <expression>
<expression> ::= <expression> + <expression>
<expression> ::= <number>

Abbreviations for combining productions

<expression> ::= <expression>* <expression>
| <expression> + <expression>
<number>

Equivalent to

<expression> ::= <expression> * <expression>
<expression> ::= <expression> + <expression>
<expression> ::= <number>

And to

<expression> ::= <expression> * <expression> | <expression> + <expression> | <number>

Definition 1: Context-free grammars

- A grammar is a quadruple $\mathrm{G}=<\mathrm{N}, \Sigma, \mathrm{P}, \mathrm{S}>$ where
$\mathrm{N}=$ set of nonterminals
$\Sigma=$ set of terminals (the alphabet)
$\mathrm{P} \subseteq \mathrm{N} \times(\mathrm{N} \cup \Sigma) *=$ set of production rules $\mathrm{S} \in \mathrm{N}=$ start symbol
- P is a set of elements with
- A left-hand side that is a nonterminal
- A right-hand side that is a mix of terminals and nonterminals

Derivations

- Performing a derivation
- Begin with the start symbol S;
- step by step, use the production rules in P;
- finally, end up with a string of nonterminals.
- In general, we use small greek letters for sequences of nonterminals and terminals.
- Example: $\alpha, \beta, \gamma \in(N \cup \Sigma) *$
- Capital latin letters stand for nonterminals.

Derivations

- Performing a derivation
- Begin with the start symbol S;
- step by step, use the production rules in P;
- finally, end up with a string of nonterminals.
- In general, we use small greek letters for sequences of nonterminals and terminals.
- Example: $\alpha, \beta, \gamma \in(N \cup \Sigma)$ *
- Capital latin letters stand for nonterminals.
- So, if we have reached $\alpha A \gamma$ and in the grammar there is a rule $A \rightarrow \beta$ then we can get $\alpha \beta \gamma$
- i.e. the middle A has been replaced by the β from the right-hand-side of the grammar rule.
- This is written $\alpha A \gamma \Rightarrow \alpha \beta \gamma$

Derivations, cont.

- $\alpha A \gamma \Rightarrow \alpha \beta \gamma$ is one context-free derivation step. We don't care about what α and γ are.
- We can always do the replacement of A with β. We can ignore the context of A.

Derivations, cont.

- $\alpha A \gamma \Rightarrow \alpha \beta \gamma$ is one context-free derivation step. We don't care about what α and γ are.
- We can always do the replacement of A with β. We can ignore the context of A.
- Several derivation steps one after another is denoted by \Rightarrow *
- Example: $\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{N}+\mathrm{E} \Rightarrow \mathrm{N}+\mathrm{N} \Rightarrow \mathrm{DN}+\mathrm{N} \Rightarrow 1 \mathrm{~N}+\mathrm{N} \Rightarrow \cdots \Rightarrow 123+456$
- Thus E \Rightarrow * $123+456$

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E}|\mathrm{E}+\mathrm{E}| \mathrm{N} \\
& \mathrm{~N} \rightarrow \mathrm{DN} \mid \mathrm{D} \\
& \mathrm{D} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Definition 2: Context-free languages

$$
L(G)=\left\{w \in \Sigma * \mid S \Rightarrow^{*} w\right\}
$$

- Language L of grammar G is
- the set of all strings of terminals from the alphabet Σ
- that can be derived from the start symbol S in zero or more steps.
- The language of a CGF is called a context-free language (CFL).
- The strings are of finite length, but the grammar is generally infinite.

Example 2

- Grammar G1:

$$
\begin{aligned}
& \mathrm{N}=\{\mathrm{X}\} \\
& \Sigma=\{\mathrm{a}, \mathrm{~b}\} \\
& \mathrm{S}=\mathrm{X} \\
& \mathrm{P}=\{\mathrm{X} \rightarrow \mathrm{aXb} \mid \varepsilon\}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{X} \Rightarrow \varepsilon & , \mathrm{X} \Rightarrow^{*} \varepsilon \\
\mathrm{X} \Rightarrow \mathrm{aXb} \Rightarrow \mathrm{ab} & , \mathrm{X} \Rightarrow^{*} \mathrm{ab} \\
\mathrm{X} \Rightarrow \mathrm{aXb} \Rightarrow \mathrm{aaXbb} \Rightarrow \mathrm{aabb} & , \mathrm{X} \Rightarrow^{*} \text { aabb }
\end{array}
$$

- Thus $\{\varepsilon, \mathrm{ab}, \mathrm{aabb}\} \subseteq \mathrm{L}(\mathrm{G} 1)$

Example 3

- Grammar G2:

$$
\begin{aligned}
& \mathrm{N}=\{\mathrm{X}\} \\
& \Sigma=\{\mathrm{a}, \mathrm{~b}\} \\
& \mathrm{S}=\mathrm{X} \\
& \mathrm{P}=\{\mathrm{X} \rightarrow \mathrm{aXa}|\mathrm{bXb}| \mathrm{a}|\mathrm{~b}| \varepsilon\}
\end{aligned}
$$

$X \Rightarrow \mathrm{aXa} \Rightarrow \mathrm{abXba} \Rightarrow \mathrm{abbXbba} \Rightarrow \mathrm{abbbba}$
$\mathrm{X} \Rightarrow \mathrm{bXb} \Rightarrow \mathrm{baXab} \Rightarrow \mathrm{babab}$

- It seems like $\mathrm{L}(\mathrm{G} 2)=\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\} * \mid \mathrm{x}=$ reverse(x$)\}$, i.e. palindromes over Σ.

Derivation trees [parse trees)

- The derivation $\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{N} \Rightarrow \cdots$ could be depicted in a tree.
- Start symbol (here E) is found in the root.
- The tree shows where productions were applied - but not in which step-order.
- "Derivation tree" is the more theoretical term.

- "Parse tree" is more often used in practical contexts, e.g. parsing programs.

Definition 3: Derivation trees

- A derivation tree is a tree such that:
- The root of a derivation tree is \mathbf{S}.
- Each leaf of a derivation tree $\in \Sigma$.
- Each inner node of a derivation tree $\in \mathrm{N}$.
- If the node A has the children p, q, r, ...
- then there is a rule $\mathrm{A} \rightarrow \mathrm{pqr} . . . \in \mathrm{P}$

Example 4

- The derivation tree for the string 123+456:

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E}|\mathrm{E}+\mathrm{E}| \mathrm{N} \\
& \mathrm{~N} \rightarrow \mathrm{DN} \mid \mathrm{D} \\
& \mathrm{D} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Example 4, cont.

- A derivation tree is a tree such that:
- The root of a derivation tree is S .
- Each leaf of a derivation tree $\in \Sigma$.
- Each inner node of a derivation tree $\in \mathrm{N}$.
- If the node A has the children $\mathrm{p}, \mathrm{q}, \mathrm{r}, \ldots$
- then there is a rule $\mathrm{A} \rightarrow \mathrm{pqr} . . . \in \mathrm{P}$

Left and right (-most) derivations

- We will consider the grammar $\mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E}|\mathrm{E}+\mathrm{E}| \mathrm{a}|\mathrm{b}| \mathrm{c}$

Left and right (-most) derivations

- We will consider the grammar $\mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E}|\mathrm{E}+\mathrm{E}| \mathrm{a}|\mathrm{b}| \mathrm{c}$
- An example derivation
$\cdot \underline{\mathrm{E}} \Rightarrow \underline{\mathrm{E}^{*}} \mathrm{E} \Rightarrow \underline{\mathrm{E}}+\mathrm{E}^{*} \mathrm{E} \Rightarrow \mathrm{a}+\underline{\mathrm{E}}^{*} \mathrm{E} \Rightarrow \mathrm{a}+\mathrm{b}^{*} \underline{\mathrm{E}} \Rightarrow \mathrm{a}+\mathrm{b}^{*} \mathrm{c}$
- In each step, the leftmost nonterminal has been chosen
- Called a leftmost derivation, symbol: $\Rightarrow \mathrm{lm}$

Left and right (-most) derivations

- We will consider the grammar $\mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E}|\mathrm{E}+\mathrm{E}| \mathrm{a}|\mathrm{b}| \mathrm{c}$
- An example derivation
$\cdot \underline{\mathrm{E}} \Rightarrow \underline{\mathrm{E}^{*}} \mathrm{E} \Rightarrow \underline{\mathrm{E}}+\mathrm{E}^{*} \mathrm{E} \Rightarrow \mathrm{a}+\underline{\mathrm{E}}^{*} \mathrm{E} \Rightarrow \mathrm{a}+\mathrm{b}^{*} \underline{\mathrm{E}} \Rightarrow \mathrm{a}+\mathrm{b}^{*} \mathrm{c}$
- In each step, the leftmost nonterminal has been chosen
- Called a leftmost derivation, symbol: $\Rightarrow \mathrm{lm}$
- Another derivation
- $\underline{\mathrm{E}} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E}^{*} \underline{\mathrm{E}} \Rightarrow \mathrm{E}+\mathrm{E}^{*} \mathrm{c} \Rightarrow \mathrm{E}+\mathrm{b}^{*} \mathrm{c} \Rightarrow \mathrm{a}+\mathrm{b}^{*} \mathrm{c}$
- In each step, the rightmost nonterminal has been chosen
- Called a rightmost derivation, symbol: $\Rightarrow_{\mathrm{rm}}$

Leftmost and rightmost derivation trees

Leftmost

Rightmost

Oops! Error in published lecture notes?

Ambiguities

- We would like to analyze every string in exactly one way
- Different derivation/parse trees indicate an ambiguous grammar
- The grammar $\mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E}|\mathrm{E}+\mathrm{E}| \mathrm{a}|\mathrm{b}| \mathrm{c}$ handles arithmetic expressions
- If we evaluate $\mathrm{a}+\mathrm{b}^{*} \mathrm{c}$ by means of the parse tree, we will get different results
- Addition first
- Multiplication first
- Solution? Rewrite the grammar

Example 5

- Unambiguous arithmetic expression grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F}|\mathrm{~T} / \mathrm{F}| \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E})|\mathrm{a}| \mathrm{b} \mid \mathrm{c}
\end{aligned}
$$

- Different nonterminals for expressions (E), terms (T), and factors (F)
- Standard priorities and associativities
- We also have bracketed expressions with the expected priority

Final note

- Goes back to lecture 1 ...
- All regular languages are context free
- Set of regular languages are a subset of all context-free languages
- Building up the different classes of formal langauges and their relations!

To think about

- Is your favorite programming / markup language context-free?
- Is there a CFG for $\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}{ }^{\mathrm{n}} \mid \mathrm{n} \geqslant 0\right\}$?

Bonus: C++ standards document, annex A

Not part of the course material!

Annex A (informative) Grammar summary

1 This summary of C++ syntax is intended to be an aid to comprehension. It is not an exact statement of the language. In particular, the grammar described here accepts a superset of valid $\mathrm{C}++$ constructs. Disambiguation rules $(6.8,7.1,10.2)$ must be applied to distinguish expressions from declarations. Further, access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless constructs.

Thanks for today!

