TDDD14 / TDDD85 — Lecture 12 LL(1) and LR(0) parsing

August Ernstsson, 2024 (based on lecture notes by Jonas Wallgren)

From previous lectures

Closure under union

- Theorem 1. CFLs are closed under union.
- Proof. Construct a new grammar:
 - $G_3 = \langle N_1 \cup N_2 \cup \{S_3\}, \qquad \Sigma_1 \cup \Sigma_2, \qquad P_1 \cup P_2 \cup \{S_3 \rightarrow S_1 \mid S_2\}, \qquad S_3 \rangle$
 - (If N₁ and N₂ are not disjoint sets, rename the nonterminals in N₂)
 - Now, starting from S_3 all derivations starting with either S_1 or S_2 can be performed
 - All strings in L(G₁) and L(G₂) can be derived
 - $L(G_3) = L(G_1) \cup L(G_2)$

Closure under concatenation

- Theorem 2. CFLs are closed under concatenation.
- Proof. Construct a new grammar:
 - $G_4 = \langle N_1 \cup N_2 \cup \{S_4\}, \qquad \Sigma_1 \cup \Sigma_2, \qquad P_1 \cup P_2 \cup \{S_4 \to S_1S_2\}, \qquad S_4 \rangle.$
 - (If N₁ and N₂ are not disjoint sets, rename the nonterminals in N₂)
 - Now, starting from S₄ all derivations consist of one part derived from S₁ in L(G₁) followed by one part derived from S₂ in L(G₂),
 - $L(G_4) = L(G_1)L(G_2)$.

Let's start!

Today's topic

- In formal langauge theory you can use a PDA/DPDA to reason about accepting or rejecting a string in the language defined by a CFG.
- But in a more practical setting, in compiler theory and technology, you need something that
 - whose formulation comes closer to the grammar,
 - comes closer to implementation,
 - while being at least somewhat efficient.
- This lecture presents two such methods: LL(1) and LR(0) parsing.
- In the next lecture a third one: LR(1).

Parsing

- In compilers you call the process of accepting or rejecting a string parsing
 - it is not primarily seen as a method to accept or reject a string,
 - but to build its derivation tree, or parse tree.
- The methods presented in these two lectures will still only accept or reject strings,
 - but they are constructed in such a way that they could be extended with code that builds the trees.

Definitions

- **Definition 1**. A *prefix* of a string is an initial part of it.
 - Example: The prefixes of "abcd" are ε, "a", "ab", "abc", and even "abcd".
- **Definition 2**. A *sentential form* is a string $\gamma \in (\Sigma + N)*$ of terminals and nonterminals that may be derived from the start symbol: $S *\Rightarrow \gamma$.
 - Example: $S \Rightarrow aAbC$ (in grammar G8 in lecture 11).
- **Definition 3**. A *token* in compilers is what in formal languages is called a symbol (in the alphabet).
 - The leaves of our parse trees will be called tokens.

End-of-string marker

- We want to be able to explicitly recognize the end of a string.
- Therefore, all strings in those cases are equipped with an extra, last end-of-string symbol $\$ \notin \Sigma$.

Working grammar

- We will use this small example grammar (start symbol S):
 - $S \rightarrow aBCd$
 - $B \rightarrow pq$
 - $C \rightarrow rs$
- The language of this grammar contains just the string *apqrsd*, so it is regular, but it can be used to illustrate the ideas and techniques.
- One possible leftmost derivation: $S \Rightarrow_{lm} aBCd \Rightarrow_{lm} apqCd \Rightarrow_{lm} apqrsd$
 - (On whiteboard)
- One possible rightmost derivation: $S \Rightarrow_{rm} aBCd \Rightarrow_{rm} aBrsd \Rightarrow_{lm} apqrsd$
 - (On whiteboard)

LL(1) parsing

- L: Left to right reading of the string.
- L: Leftmost derivation.
- (1) 1 token lookahead.
 - To decide what to do during the parsing, you are allowed to peek at the next token (without really using it).
- Definition 4. For a nonterminal A in a grammar
 - FOLLOW(A) = { $a \in \Sigma \mid \exists \gamma_1, \gamma_2 : S \Rightarrow \gamma_1 A a \gamma_2 \} \cup \{ \$ \mid \exists \gamma_1 : S \Rightarrow \gamma_1 A \}$

Follow sets

- To be able to handle lookahead we need the following construction:
- **Definition 4**. For a nonterminal A in a grammar
 - FOLLOW(A) = { $a \in \Sigma \mid \exists \gamma_1, \gamma_2 : S \Rightarrow \gamma_1 Aa\gamma_2 \} \cup \{ \$ \mid \exists \gamma_1 : S \Rightarrow \gamma_1 A \}$
- If a sentential form can contain A immediately followed by a,
 - then a belongs to FOLLOW(A).
- And if a sentential form can end in A, then a special end-of-string marker,
 - Then \$ belongs to FOLLOW(A).
- So, in our example grammar, $FOLLOW(B) = \{r\}$, $FOLLOW(C) = \{d\}$, $FOLLOW(S) = \{\$\}$.

Definition: LL(1)

• **Definition 5**. A grammar is LL(1) iff whenever there are two rules $A \rightarrow \alpha$ and $A \rightarrow \beta$, the following holds:

```
1. If \alpha *\Rightarrow a\gamma_1 and \beta *\Rightarrow b\gamma_2 then a \neq b (Error in lecture notes)
```

- 2. If $\alpha * \Rightarrow \epsilon$ then $\underline{not} \beta * \Rightarrow \epsilon$.
- 3. If $\alpha *\Rightarrow \epsilon$ and $\beta *\Rightarrow a\gamma$ then $a \notin FOLLOW(A)$.

• Interpretation:

- 1. If you look ahead on the next token you should be able to decide which rule to use.
- 2. You shouldn't be able to derive the empty string with different rules.
- 3. You shouldn't be able to choose between reading a and not do it.

Some LL(1) properties

- In a PDA, given the string ax and the stack Aγ, there could be several possible actions. If the grammar is LL(1), there is always *at most one* alternative.
- LL(1) grammars are unambiguous.
- LL(1) grammars can't have left-recursion.
 - If a given grammar has left-recursion it has to be rewritten in order to possibly become LL(1). See lecture 8.
- LL(1) grammars can't contain $A \rightarrow \alpha\beta \mid \alpha\gamma$.
 - If present, it has to be rewritten to $A \rightarrow \alpha B$, $B \rightarrow \beta \mid \gamma$ for the grammar to have a possibility to become LL(1).
 - Such rewriting is called left factoring.

Recursive descent parsing

- Recursive descent is one way of implementing an LL(1) parser.
- There is one subrogram pA for each nonterminal A.
- The body of a subprogram follows the right-hand side(s) of the rule(s) for the nonterminal.

Grammar rule	S → aBCd	T → aX bY	U → aM N
Procedure/function	procedure pS()	procedure pT()	procedure pU()
Program	<pre>read a; call pB(); call pC(); read d;</pre>	<pre>read first token; if a: call pX(); elsif b: call pY();</pre>	<pre>look at first token; if a: read first token; call pM(); elsif: call pN();</pre>

Table-driven parsing

- The grammar can be coded into a table.
- Parsing then is done by reading the table step by step while reading the string.
- It is like using the *next-configuration function* for a PDA.
- This will be treated in a compiler course.

LR(0) parsing

- L: Left to right reading of string.
- R: Rightmost derivation (in reverse).
- (o) means that we don't use any lookahead.
- LR parsing works by constructing an almost-DFA.
 - There are states and transitions, but we don't have any final states.
 - The states of the DFA contains LR items.
- **Definition 6**. An LR(o) item is a grammar rule with a dot somewhere in the right-hand side.
 - Examples of LR(o) items are $S \rightarrow aBCd$ $B \rightarrow p \cdot q$ $C \rightarrow rs \cdot$
 - The dot is a marker showing how much of a rule is used during the actual parsing.

Handles and viable prefixes

- If in a rightmost derivation there is a step aBCd \Rightarrow aBrsd we will in parsing look at aBrsd \Leftarrow rm aBCd from left to right: we will from the parts rs construct C.
 - The rs part is called a *handle*.
- A handle is what is to be replaced by a nonterminal in a backwards derivation step, a reduction step. We want to find the handles to know where to reduce.
- Starting from state o reading aBrs we end up in state 8 with a complete item. There a handle is found. All the prefixes up to that point—a, aB, aBr, and aBrs—are called viable prefixes.
- **Definition** 7. An item $A \rightarrow \alpha \cdot \beta$ is valid for a viable prefix $\delta \alpha$ if $S *\Rightarrow_{rm} \delta Aw \Rightarrow_{rm} \delta \alpha \beta w$
- I.e. the next step in the parsing is to reduce $\alpha\beta$ to A. We have just read as far as the α part of that, so an appropriate item is $A \rightarrow \alpha \cdot \beta$. The whole prefix up to this point is $\delta\alpha$, it is viable since we are about to read a handle. Thus the item is valid for this prefix.
- The states of the automaton contain valid items.

Building the LR(0) automaton

On the whiteboard.

Parsing: Using the automaton

- Parsing a string consists of two different actions: shift and reduce.
- Shift: One token is read and a transition step is taken in the automaton.
 - Example: In state 1 p is read and the new state is 5.
- Reduce: One new derivation step is found.
 - If the parse tree was built a new part of the parse tree could be built now.
 - Example: In state 6 the B node is built. That causes the control to go back to state 1 and continue to state 2 since the dot now can be moved over the B in the item in state 1.

Parsing: Using the automaton

- Like PDA configurations, parsing actions handle a stack and the input string.
- For every shift action:
 - Both the *symbol read* and the *new state* are <u>pushed</u> onto the stack.
- For every reduce action:
 - The *right-hand side of the current rule* are <u>popped</u> from the stack together with the *corresponding states*.
 - The *left-hand side of the grammar rule* is <u>pushed</u>, together with the resulting new state.

Using the automaton

Stack	Remaining string	Action
0	apqrsd	Shift
0a1	pqrsd	Shift
0a1p5	qrsd	Shift
0a1p5q6	rsd	Reduce B → pq
0a1B2	rsd	Shift
0a1B2r7	sd	Shift
0a1B27r7s8	d	Reduce $C \rightarrow rs$
0a1B2C3	d	Shift
0a1B2C3d4		Reduce S → aBCd
OS		Accept

Definitions: LR(0)

- **Definition 8**. A grammar is LR(o) if it is accepted by an LR(o) parser.
- **Definition 9**. A language is LR(o) if it has an LR(o) grammar.

To think about

- Recognizing CFLs needs a stack, e.g. as in a PDA.
 - Where is the corresponding stack in the recursive descent method?
- Implement a recursive descent parser for the example grammar used during this lecture in your favourite programming language.
- What is the complexity of the parsing methods proposed during this lecture?
 - How much memory is needed?

Coming up soon ...

- This week:
 - Monday: LL(1) and LR(0) parsing. Done!
 - Friday: LR(1) parsing

Thanks for today!

