
TDDD14 / TDDD85 — Lecture 12
LL(1) and LR(0) parsing

August Ernstsson, 2024 (based on lecture notes by Jonas Wallgren)

From previous lectures

August Ernstsson, TDDD14 / TDDD85 lecture 11, 2024

Closure under union

• Theorem 1. CFLs are closed under union.
• Proof. Construct a new grammar:
• G3 = ⟨ N1 ∪ N2 ∪ { S3 }, Σ1 ∪ Σ2, P1 ∪ P2 ∪ { S3 → S1 | S2 }, S3 ⟩.
• (If N1 and N2 are not disjoint sets, rename the nonterminals in N2)
• Now, starting from S3 all derivations starting with either S1 or S2 can be

performed
• All strings in L(G1) and L(G2) can be derived
• L(G3) = L(G1) ∪ L(G2)

3

August Ernstsson, TDDD14 / TDDD85 lecture 11, 2024

Closure under concatenation

• Theorem 2. CFLs are closed under concatenation.
• Proof. Construct a new grammar:
• G4 = ⟨ N1 ∪ N2 ∪ { S4 }, Σ1 ∪ Σ2, P1 ∪ P2 ∪ { S4 → S1S2 }, S4 ⟩.
• (If N1 and N2 are not disjoint sets, rename the nonterminals in N2)
• Now, starting from S4 all derivations consist of one part derived from S1 in

L(G1) followed by one part derived from S2 in L(G2),
• L(G4) = L(G1)L(G2).

4

Let’s start!

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Today’s topic

• In formal langauge theory you can use a PDA/DPDA to reason about
accepting or rejecting a string in the language defined by a CFG.
• But in a more practical setting, in compiler theory and technology, you need

something that
• whose formulation comes closer to the grammar,
• comes closer to implementation,
• while being at least somewhat efficient.

• This lecture presents two such methods: LL(1) and LR(0) parsing.
• In the next lecture a third one: LR(1).

6

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Parsing

• In compilers you call the process of accepting or rejecting a string parsing
• it is not primarily seen as a method to accept or reject a string,
• but to build its derivation tree, or parse tree.
• The methods presented in these two lectures will still only accept or reject

strings,
• but they are constructed in such a way that they could be extended with code

that builds the trees.

7

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Definitions

• Definition 1. A prefix of a string is an initial part of it.
• Example: The prefixes of ”abcd” are ε, ”a”, ”ab”, ”abc”, and even ”abcd”.

• Definition 2. A sentential form is a string γ ∈ (Σ + N)∗ of terminals and
nonterminals that may be derived from the start symbol: S ∗⇒ γ.
• Example: S ∗⇒ aAbC (in grammar G8 in lecture 11).

• Definition 3. A token in compilers is what in formal languages is called a
symbol (in the alphabet).
• The leaves of our parse trees will be called tokens.

8

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

End-of-string marker

• We want to be able to explicitly recognize the end of a string.
• Therefore, all strings in those cases are equipped with an extra, last end-of-

string symbol $ ∉ Σ.

9

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Working grammar

• We will use this small example grammar (start symbol S):
• S → aBCd

B → pq
C → rs

• The language of this grammar contains just the string apqrsd, so it is regular,
but it can be used to illustrate the ideas and techniques.
• One possible leftmost derivation: S ⇒lm aBCd ⇒lm apqCd ⇒lm apqrsd
• (On whiteboard)
• One possible rightmost derivation: S ⇒rm aBCd ⇒rm aBrsd ⇒lm apqrsd
• (On whiteboard)

10

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

LL(1) parsing

• L: Left to right reading of the string.
• L: Leftmost derivation.
• (1) 1 token lookahead.
• To decide what to do during the parsing, you are allowed to peek at the next

token (without really using it).

• Definition 4. For a nonterminal A in a grammar
• FOLLOW(A) = { a ∈ Σ | ∃γ1, γ2 : S ∗⇒ γ1Aaγ2 } ∪ { $ | ∃γ1 : S ∗⇒ γ1A }

11

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Follow sets

• To be able to handle lookahead we need the following construction:
• Definition 4. For a nonterminal A in a grammar
• FOLLOW(A) = { a ∈ Σ | ∃γ1, γ2 : S ∗⇒ γ1Aaγ2 } ∪ { $ | ∃γ1 : S ∗⇒ γ1A }

• If a sentential form can contain A immediately followed by a,
• then a belongs to FOLLOW(A).

• And if a sentential form can end in A, then a special end-of-string marker,
• Then $ belongs to FOLLOW(A).

• So, in our example grammar, FOLLOW(B) = {r}, FOLLOW(C) = {d}, FOLLOW(S) = {$}.

12

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Definition: LL(1)

• Definition 5. A grammar is LL(1) iff whenever there are two rules A → α and A → β,
the following holds:
1. If α ∗⇒ aγ1 and β ∗⇒ bγ2 then a ≠ b (Error in lecture notes)
2. If α ∗⇒ ε then not β ∗⇒ ε.
3. If α ∗⇒ ε and β ∗⇒ aγ then a ∉ FOLLOW(A).

• Interpretation:
1. If you look ahead on the next token you should be able to decide which rule to use.
2. You shouldn’t be able to derive the empty string with different rules.
3. You shouldn’t be able to choose between reading a and not do it.

13

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Some LL(1) properties

• In a PDA, given the string ax and the stack Aγ, there could be several possible
actions. If the grammar is LL(1), there is always at most one alternative.
• LL(1) grammars are unambiguous.
• LL(1) grammars can’t have left-recursion.
• If a given grammar has left-recursion it has to be rewritten in order to

possibly become LL(1). See lecture 8.
• LL(1) grammars can’t contain A → αβ | αγ.
• If present, it has to be rewritten to A → αB, B → β | γ for the grammar to

have a possibility to become LL(1).
• Such rewriting is called left factoring.

14

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Recursive descent parsing

• Recursive descent is one way of implementing an LL(1) parser.
• There is one subrogram pA for each nonterminal A.
• The body of a subprogram follows the right-hand side(s) of the rule(s) for the

nonterminal.

15

Grammar rule S → aBCd T → aX|bY U → aM |N

Procedure/function procedure pS() procedure pT() procedure pU()

Program read a;
call pB();
call pC();
read d;

read first token;
if a:
 call pX();
elsif b:
 call pY();

look at first token;
if a:
 read first token;
 call pM();
elsif:
 call pN();

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Table-driven parsing

• The grammar can be coded into a table.
• Parsing then is done by reading the table step by step while reading the string.
• It is like using the next-configuration function for a PDA.
• This will be treated in a compiler course.

16

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

LR(0) parsing

• L: Left to right reading of string.
• R: Rightmost derivation (in reverse).
• (0) means that we don’t use any lookahead.

• LR parsing works by constructing an almost-DFA.
• There are states and transitions, but we don’t have any final states.
• The states of the DFA contains LR items.

• Definition 6. An LR(0) item is a grammar rule with a dot somewhere in the right-hand side.
• Examples of LR(0) items are S → · aBCd B → p · q C → rs ·
• The dot is a marker showing how much of a rule is used during the actual parsing.

17

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Handles and viable prefixes

• If in a rightmost derivation there is a step aBCd ⇒ aBrsd we will in parsing look at
aBrsd ⇐rm aBCd from left to right: we will from the parts rs construct C.
• The rs part is called a handle.

• A handle is what is to be replaced by a nonterminal in a backwards derivation step, a
reduction step. We want to find the handles to know where to reduce.
• Starting from state 0 reading aBrs we end up in state 8 with a complete item. There a handle

is found. All the prefixes up to that point—a, aB, aBr, and aBrs—are called viable prefixes.
• Definition 7. An item A → α · β is valid for a viable prefix δα if S ∗⇒rm δAw ⇒rm δαβw
• I.e. the next step in the parsing is to reduce αβ to A. We have just read as far as the α part of

that, so an appropriate item is A → α · β. The whole prefix up to this point is δα, it is viable
since we are about to read a handle. Thus the item is valid for this prefix.
• The states of the automaton contain valid items.

18

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Building the LR(0) automaton

• On the whiteboard.

19

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Parsing: Using the automaton

• Parsing a string consists of two different actions: shift and reduce.

• Shift: One token is read and a transition step is taken in the automaton.
• Example: In state 1 p is read and the new state is 5.

• Reduce: One new derivation step is found.
• If the parse tree was built a new part of the parse tree could be built now.
• Example: In state 6 the B node is built. That causes the control to go back to

state 1 and continue to state 2 since the dot now can be moved over the B in
the item in state 1.

20

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Parsing: Using the automaton

• Like PDA configurations, parsing actions handle a stack and the input string.

• For every shift action:
• Both the symbol read and the new state are pushed onto the stack.

• For every reduce action:
• The right-hand side of the current rule are popped from the stack together

with the corresponding states.
• The left-hand side of the grammar rule is pushed, together with the resulting

new state.

21

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Using the automaton
22

Stack Remaining string Action

0 apqrsd Shift

0a1 pqrsd Shift

0a1p5 qrsd Shift

0a1p5q6 rsd Reduce B → pq

0a1B2 rsd Shift

0a1B2r7 sd Shift

0a1B27r7s8 d Reduce C → rs

0a1B2C3 d Shift

0a1B2C3d4 Reduce S → aBCd

0S Accept

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Definitions: LR(0)

• Definition 8. A grammar is LR(0) if it is accepted by an LR(0) parser.

• Definition 9. A language is LR(0) if it has an LR(0) grammar.

23

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

To think about

• Recognizing CFLs needs a stack, e.g. as in a PDA.
• Where is the corresponding stack in the recursive descent method?

• Implement a recursive descent parser for the example grammar used during
this lecture in your favourite programming language.

• What is the complexity of the parsing methods proposed during this lecture?
• How much memory is needed?

24

August Ernstsson, TDDD14 / TDDD85 lecture 12, 2024

Coming up soon …

• This week:
• Monday: LL(1) and LR(0) parsing. Done!
• Friday: LR(1) parsing

25

Thanks for today!

