TDDD14 / TDDD85 - Lecture 10

Equivalence between CFG and PDA

August Ernstsson, 2024 (based on lecture notes by Jonas Wallgren)

LINKOPING
IIQ" UNIVERSITY

From last week

LINKOPING
IIQ“ UNIVERSITY

Definition 1: Greibach normal form

* A grammar 1s in Greibach normal form (GNF)
e if all productions have the form A — aB;B2Bs...

* (Sequence of B’s may be empty)
» Every CFG can be converted to a CFG in GNF.

» Greibach normal form will be important in lecture 10.

LINKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 8, 2024

Simplification — € productions and unit productions

« £ productions: A — ¢
« Unit productions: A — B

* These rules can be convenient when defining a grammar.
» But: needlessly complicates analysis or implementation.

LINKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 8, 2024

Definition 1: Pushdown Automata

« APDAis aseptuple<Q, %, T',0,s, 1L, F)
* () = set of states
3 = (input) alphabet
 I' = stack alphabet
e s = start state € (Q
» F =final states C Q
« | = start stack symbol
0 = transition relation C (Q x (X2 UA{e}) xI') x (Q x I'«))

LINKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 9, 2024

The transition relation o
e 0 = transition relation C (Q x (Z U {e}) x I') x (Q x I'x))

e ((p, a, A, {q, By, Bo...Bn) € 0 means:

» In state p with A on top of the stack:
* Read a,
* g0 1o state q,
» change the stack top A to B:B....Bn (the left end being the new stack top).

LINKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 9, 2024

The transition relation o
e 0 = transition relation C (Q x (Z U {e}) x I') x (Q x I'x))

e (p, &, A, (q, B1, B2...Bn)) € 0 means:

» In state p with A on top of the stack, without reading anything:
* GO to state q,
 change the stack top A to B:B....By (the left end being the new stack top).

LINKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 9, 2024

Acceptance

» Two different modes of acceptance are used in the literature.
» A PDA can accept a string if

» the stack is empty, or

» 1f it reaches a final state.

e Definition 4
« A PDA accepts the string xif ¢s, x, L) =*(q, €, y) whenq &€ F .

e Definition 5
« A PDA accepts the string x if s, x, L) =% (q, &, &) whenq &€ Q

LINKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 9, 2024

Configurations

« What we handled in Example 2 are called configurations.

* Definition 2. A configuration is a triple <q, X, y), where:

o q =statee
* X = string € 2. From Example 2:
e vy =stack &€ I'x (q1, 01c01, R) - <(q1, 1c01, BR)

« Definition 3. The next-configuration relation —
 If p, a, A, {(q, y)) € 0 then (p, ay, Ap) — (q, y, YB»
» It (p, &, A), {q, V) E0 then {p,y, AB> = <q,y, YB»

LINKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 9, 2024

10

Notation

— in CFGs, A — B etc.

—> in PDA state transitions

—M in PDA state transitions, PDA M

n—> in PDA state transitions, n steps

*—> in PDA state transitions, any number of steps
= derivation of a string in CFG

*=> derivation of a string in CFG, n steps

=Im leftmost derivation of a string in CFG

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

Let’s start!

LINKOPING
IIQ“ UNIVERSITY

12

Today’s topic

* In this lecture, we will show that context free grammars and pushdown
automata have the same power.

» Equivalence between CFG and PDA.

« Comment on DPDAs if there 1s time.

* We will return to PDAs later when we compare different classes of
languages.

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

13

Introduction

e In lecture 7 we introduced CFGs to express languages where there are some
dependencies inside the strings that can’t be decribed using regular expressions

e e.g. that brackets match.
* In lecture 9 we introduced PDAs for the same puropse.

 Like we did for regular languages, we will now prove that the automata and the
notation for this new class of languages (CFLs) are equivalent.

 This is done 1n two steps: first the equivalence is proved as an implication in
one direction, then in the other direction.

« The importance doesn’t lie in the proofs but in the existence of the conversions
and their consequences.

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

14

CFG to PDA

« We prove that given a CFG we can construct a PDA that accepts the language of the CFG.
 The starting point is a grammar G = (N, %, P, S) on Greibach normal form,

e e.g. every rule in P has the form A — ¢B:B....B, (Wherec € X, Bi€ N, n = 0).
« Now, create a PDAM = ({q}, 2, N, 0, q, S, &), where

» There 1s just one state.

* The stack symbols are the nonterminals with the grammar start symbol as the stack start
symbol.

» There are no final states, so acceptance will be by empty stack.

* The idea is that when there is a nonterminal on the stack top you choose one of the
grammar rules for that nonterminal, read the a first in its right-hand side, and “queue”
all the B:s on the stack. So, 6 will for each grammar rule contain «(q, ¢, A), {q, B1, B2...Bn))

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

15

Example 1

« A grammar on Greibach normal form for arithmetic expressions with start symbol E,
E—aX |bX |aY|bY|aYX |bYX |a|b
T—aY|bY|al|b
X — +K
Y = *T
 If we construct a PDA as above 5 of the 14 elements in 0 will be:
» g, a, E), {(q, Y X)),
« q, *, Y ,4q, T),
e {q, +, X, {q, E»,
« {q, b, T >, {q, &,
» (q, a, E), (q, .

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

E—>aX |bX |aY |bY|aYX |bYX|a|b ©

Example 1, continued T—aY|bY|a|b

X — +E
Y — *T
» Performing the following derivation:
e E=a¥YX=axTX=a+*sbX=asb+E=axb+a

* Corresponds to the following next-configuration steps using the PDA:

e (q,ax*b+a,E)—

e (q, *b+a,YX)—

e (q, b+aTX)—

¢ (q, +a, X)—

* (q, a, E)—

* {q, €€)

 and the string is accepted with empty stack!

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

17

Theorem 1

» Theorem 1. If a language is defined by a CFG then it is accepted by a PDA.
 Proof.Letz,yeXsx, yEN =+, AEN.

e Construct the PDA as outlined earlier.
» Then A n=Im 2Y <= <qa Zy, A> n—> <qa Y Y>

* The grammar is on Greibach normal form:
» Each derivation step and each next-config. step handles one non-terminal
» Can formally be proved by induction over the number of steps!
e From this it follows S .=m x < (q, X, S) .— (q, €, &,

* 1.e. 1f a string can be derived by the CFG it is accepted by the PDA.

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

18

Theorem 1, notes

» The construction presented above especially eases the induction proof.
 In general you don’t need the grammar to be on Greibach normal form.

» If you just want to do a transformation of a grammar into a PDA you can allow
terminals on the stack.

« For every grammar rule A — a: let <{q, €, A), {q, @) be an element in 0.

« For every nonterminal a: let (q, a, a), {q, €))> be an element in oO.

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

19

PDA to CFG

« In this section we prove that given a PDA we can construct a CFG that describes
the language of the PDA.

 First we transform a one-state PDA to a grammar
« Then we will convert a many-state one to the one-state form.
A special case

e Glven a one-state PDA. The only important property of the PDA is its single
state. Its ¥ and I' may overlap. The state may be final or not.

 For every element ({(q, ¢, A), {q, BiBs...Bn)) €0

 Let the grammar have the rule A — cB;B....Bu.
 Let the start stack symbol of the PDA be the start symbol of the CFG.

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

20

PDA to CFG: General case

e Let the starting point be the PDAM =<(Q, X, T, 0, s, L, {t}) with one final state.

* We see from the construction of M’ in lecture 9 that a PDA M can be converted into a PDA M’ with just one
final state.

 When converting an NFA to a DFA a state in the resulting DFA can represent the possiblility of being in several
states in the NFA.

 In converting a many-state PDA to a one-state one we will in some similar manner put much information into
the stack symbols. The stack symbols will have names with a structure representing their intended use.

o If we with M have (p, x, A) n—M (q, &, € we will with our new M’ have {x, X, [pAq]) n—=M {*, €, €).

* Note that [pAq] is just a name. The PDA doesn’t look at its parts, it can’t reconize them or separate them.
But the name is constructed in such a way that we can handle it easily.

« Now we can define M’ = ({x}, X, I'", 0/, =, [s1t], D), whereI' = Q x I" x Q and * is an arbitrarily chosen state
name, just to be different from any other state name.

 For every element ((p, ¢, A), <qo, BiB....Bn)) € 6 we will have ((x, ¢, [pAqnl), {*, [pPBq:1[q:Bqz]...[qn-1Ban]) € 6’
for all qi, qo,...qn € Q.

* Yes, there should be an element in 0’ for every possible combination of n states in M.

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

21

PDA to CFG: General case, cont.

 Lemma 1. If a language is accepted by a many-state PDA, it is accepted by a one-state
one.

 Proof. Construct M’ as above.
e Then (p, X, BiB2...Bn) n—=M (Qn, &, & < {(+, X, [pB1q1][q:B2q2] . . . [Qn-1pB1qn]> n—=w (%, €, €)

* The stack symbols in M’ are named after each step in M, so this could formally be proved
by induction over n.

e From this it follows (s, x, 1) .—Mm {, &, &) < (x, X, [SLt]) «—w {x, €, &),
* 1.e. 1f a string is accepted by a many-states PDA it is accepted by a one-state one.

« Theorem 2. If a language is accepted by a PDA then it is the language of a CFG.

* Proof. According to Lemma 1 a many-states PDA can be converted to a one-state one.
According to section 3.1 a one-state PDA can be transformed into a CFG.

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

22

Deterministic PDA

 In a DFA the transition function must be just that, a (total) function that is defined
for all arguments.

 In any state, for any symbol read, there must be a state to go to.
« Sometimes we, informally, allow the transition to be a partial function.

* Definition 1. A deterministic pushdown automaton, DPDA, is a PDA where 0 1s a
partial function.

 So, there is for every state p
» either at most one ((p, a, A), {q, B)) for each symbol a or a «p, €, A), <q’, B’)) In 0.

 If a DPDA accepts x with empty stack it can’t accept xy (y # €) with empty stack.

* Prefix property: A string in the accepted language cannot be a proper prefix of
another string in the language.

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

23

To think about

 In Section 2 we, given a CFG, constructed a (nondeterministic) PDA
recognising the same language as the grammar.

* Can you find any part in the construction where nondeterminism 1s used, or
seems to be important?

» Assume that we write a computer program which simulates a PDA (using a
brute force approach which explores all possible transitions). Now we have a

method for recognising a language represented by a context-free grammar, by

(1) converting the grammar to a PDA, and (2) simulating the PDA on an input
string.

 Can you think of any weaknesses of this approach?

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

24

Coming up soon ...

 The next week:

 Wednesday: Closure properties and pumping lemma for CFLs

* The week after next:
 Monday: LL(1) and LR(0) parsing
» Friday: LR(1) parsing (Note: Will likely be moved here!)

LNKOPING August Ernstsson, TDDD14 / TDDDS85 lecture 10, 2024

Thanks for today!

LINKOPING
IIQ“ UNIVERSITY

