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Definition 1: Greibach normal form

• A grammar is in Greibach normal form (GNF) 
• if all productions have the form A → aB1B2B3… 
• (Sequence of B’s may be empty) 

• Every CFG can be converted to a CFG in GNF. 

• Greibach normal form will be important in lecture 10.
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Simplification — ε productions and unit productions

• ε productions: A → ε 

• Unit productions: A → B 

• These rules can be convenient when defining a grammar. 
• But: needlessly complicates analysis or implementation.
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Definition 1: Pushdown Automata

• A PDA is a septuple ⟨ Q, Σ, Γ, δ, s, ⊥, F ⟩ 
• Q = set of states 
• Σ = (input) alphabet 
• Γ = stack alphabet 
• s = start state ∈ Q 
• F = final states ⊆ Q 
• ⊥ = start stack symbol 
• δ = transition relation ⊆ (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ∗))
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The transition relation δ

• δ = transition relation ⊆ (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ∗)) 

• ⟨⟨p, a, A⟩, ⟨q, B1, B2 . . . Bn⟩⟩ ∈ δ means: 
• In state p with A on top of the stack: 
• Read a, 
• go to state q, 
• change the stack top A to B1B2…Bn (the left end being the new stack top).
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The transition relation δ

• δ = transition relation ⊆ (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ∗)) 

• ⟨⟨p, ε, A⟩, ⟨q, B1, B2...Bn⟩⟩ ∈ δ means: 
• In state p with A on top of the stack, without reading anything: 
• Go to state q, 
• change the stack top A to B1B2…Bn (the left end being the new stack top).
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Acceptance

• Two different modes of acceptance are used in the literature. 
• A PDA can accept a string if 
• the stack is empty, or 
• if it reaches a final state. 

• Definition 4 
• A PDA accepts the string x if ⟨s, x, ⊥⟩ →* ⟨q, ε, γ⟩ when q ∈ F . 
• Definition 5 
• A PDA accepts the string x if ⟨s, x, ⊥⟩ →* ⟨q, ε, ε⟩ when q ∈ Q
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Configurations

• What we handled in Example 2 are called configurations. 

• Definition 2. A configuration is a triple ⟨q, x, γ⟩, where: 
• q = state ∈ Q 
• x = string ∈ Σ∗ 
• γ = stack ∈ Γ∗ 

• Definition 3. The next-configuration relation → 
• If ⟨⟨p, a, A⟩, ⟨q, γ⟩⟩ ∈ δ then ⟨p, ay, Aβ⟩ → ⟨q, y, γβ⟩⟩ 
• If ⟨⟨p, ε, A⟩, ⟨q, γ⟩⟩ ∈ δ then ⟨p, y, Aβ⟩ → ⟨q, y, γβ⟩⟩
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From	Example	2:	
⟨q1,	01c01,	R⟩	→	⟨q1,	1c01,	BR⟩
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Notation

→         in CFGs, A → B etc. 

→         in PDA state transitions 
→M        in PDA state transitions, PDA M 
n→         in PDA state transitions, n steps 
*→         in PDA state transitions, any number of steps 

⇒         derivation of a string in CFG 
*⇒         derivation of a string in CFG, n steps 
⇒lm       leftmost derivation of a string in CFG

10



Let’s start!
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Today’s topic

• In this lecture, we will show that context free grammars and pushdown 
automata have the same power. 
• Equivalence between CFG and PDA. 

• Comment on DPDAs if there is time. 
• We will return to PDAs later when we compare different classes of 

languages.

12



August	Ernstsson,	TDDD14	/	TDDD85	lecture	10,	2024

Introduction

• In lecture 7 we introduced CFGs to express languages where there are some 
dependencies inside the strings that can’t be decribed using regular expressions 
• e.g. that brackets match. 

• In lecture 9 we introduced PDAs for the same puropse. 
• Like we did for regular languages, we will now prove that the automata and the 

notation for this new class of languages (CFLs) are equivalent. 
• This is done in two steps: first the equivalence is proved as an implication in 

one direction, then in the other direction. 
• The importance doesn’t lie in the proofs but in the existence of the conversions 

and their consequences.
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CFG to PDA

• We prove that given a CFG we can construct a PDA that accepts the language of the CFG. 
• The starting point is a grammar G = ⟨N, Σ, P, S⟩ on Greibach normal form, 
• e.g. every rule in P has the form A → cB1B2...Bn (where c ∈ Σ, Bi ∈ N, n ⩾ 0). 
• Now, create a PDA M = ({q}, Σ, N, δ, q, S, ∅⟩, where 
• There is just one state. 
• The stack symbols are the nonterminals with the grammar start symbol as the stack start 

symbol. 
• There are no final states, so acceptance will be by empty stack. 
• The idea is that when there is a nonterminal on the stack top you choose one of the 

grammar rules for that nonterminal, read the a first in its right-hand side, and “queue” 
all the B:s on the stack. So, δ will for each grammar rule contain ⟨⟨q, c, A⟩, ⟨q, B1, B2...Bn⟩⟩

14



August	Ernstsson,	TDDD14	/	TDDD85	lecture	10,	2024

Example 1

• A grammar on Greibach normal form for arithmetic expressions with start symbol E, 
E → aX | bX | aY | bY | aYX | bYX | a | b 
T → aY | bY | a | b 
X → +E 
Y → *T 

• If we construct a PDA as above 5 of the 14 elements in δ will be: 
• ⟨⟨q, a, E⟩, ⟨q, Y X⟩⟩, 
• ⟨⟨q, ∗, Y ⟩, ⟨q, T ⟩⟩, 
• ⟨⟨q, +, X⟩, ⟨q, E⟩⟩, 
• ⟨⟨q, b, T ⟩, ⟨q, ε⟩⟩, 
• ⟨⟨q, a, E⟩, ⟨q, ε⟩⟩.
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Example 1, continued

• Performing the following derivation: 
• E ⇒ aYX ⇒ a ∗ T X ⇒ a ∗ bX ⇒ a ∗ b + E ⇒ a ∗ b + a 

• Corresponds to the following next-configuration steps using the PDA: 
• ⟨q, a ∗ b + a, E     ⟩ → 
• ⟨q,    ∗ b + a, Y X ⟩ → 
• ⟨q,       b + a, T X ⟩ → 
• ⟨q,          + a, X    ⟩ → 
• ⟨q,              a, E    ⟩ → 
• ⟨q,               ε, ε    ⟩ 
• and the string is accepted with empty stack!

16E → aX | bX | aY | bY | aYX | bYX | a | b 
T → aY | bY | a | b 
X → +E 
Y → *T
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Theorem 1

• Theorem 1. If a language is defined by a CFG then it is accepted by a PDA. 
• Proof. Let z, y ∈ Σ∗, γ ∈ N ∗, A ∈ N . 
• Construct the PDA as outlined earlier. 
• Then A n⇒lm zγ ⇔ ⟨q, zy, A⟩ n→ ⟨q, y, γ⟩. 
• The grammar is on Greibach normal form: 
• Each derivation step and each next-config. step handles one non-terminal 
• Can formally be proved by induction over the number of steps! 

• From this it follows S ∗⇒lm x ⇔ ⟨q, x, S⟩ ∗→ ⟨q, ε, ε⟩, 
• i.e. if a string can be derived by the CFG it is accepted by the PDA.

17



August	Ernstsson,	TDDD14	/	TDDD85	lecture	10,	2024

Theorem 1, notes

• The construction presented above especially eases the induction proof. 
• In general you don’t need the grammar to be on Greibach normal form. 
• If you just want to do a transformation of a grammar into a PDA you can allow 

terminals on the stack. 
• For every grammar rule A → α: let ⟨⟨q, ε, A⟩, ⟨q, α⟩⟩ be an element in δ. 
• For every nonterminal a: let ⟨⟨q, a, a⟩, ⟨q, ε⟩⟩ be an element in δ.
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PDA to CFG

• In this section we prove that given a PDA we can construct a CFG that describes 
the language of the PDA. 
• First we transform a one-state PDA to a grammar 
• Then we will convert a many-state one to the one-state form. 

• A special case 
• Given a one-state PDA. The only important property of the PDA is its single 

state. Its Σ and Γ may overlap. The state may be final or not. 
• For every element ⟨⟨q, c, A⟩, ⟨q, B1B2...Bn⟩⟩ ∈ δ 
• Let the grammar have the rule A → cB1B2…Bn. 
• Let the start stack symbol of the PDA be the start symbol of the CFG.
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PDA to CFG: General case
• Let the starting point be the PDA M = ⟨ Q, Σ, Γ, δ, s, ⊥, {t} ⟩ with one final state. 
• We see from the construction of M’ in lecture 9 that a PDA M can be converted into a PDA M’ with just one 

final state. 
• When converting an NFA to a DFA a state in the resulting DFA can represent the possiblility of being in several 

states in the NFA. 
• In converting a many-state PDA to a one-state one we will in some similar manner put much information into 

the stack symbols. The stack symbols will have names with a structure representing their intended use. 
• If we with M have ⟨p, x, A⟩ n→M ⟨q, ε, ε⟩ we will with our new M’ have ⟨∗, x, [pAq]⟩ n→M’ ⟨∗, ε, ε⟩. 
• Note that [pAq] is just a name. The PDA doesn’t look at its parts, it can’t reconize them or separate them. 

But the name is constructed in such a way that we can handle it easily. 
• Now we can define M’ = ⟨ {∗}, Σ, Γ′, δ′, ∗, [s⊥t], ∅ ⟩, where Γ = Q × Γ × Q and ∗ is an arbitrarily chosen state 

name, just to be different from any other state name. 
• For every element ⟨⟨p, c, A⟩, ⟨q0, B1B2...Bn⟩⟩ ∈ δ we will have ⟨⟨∗, c, [pAqn]⟩, ⟨∗, [pBq1][q1Bq2]...[qn−1Bqn]⟩ ∈ δ′ 

for all q1, q2,...qn ∈ Q. 
• Yes, there should be an element in δ′ for every possible combination of n states in M.
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PDA to CFG: General case, cont.

• Lemma 1. If a language is accepted by a many-state PDA, it is accepted by a one-state 
one. 
• Proof. Construct M’ as above. 
• Then ⟨p, x, B1B2...Bn⟩ n→M ⟨qn, ε, ε⟩ ⇔ ⟨∗, x, [pB1q1][q1B2q2] . . . [qn−1pB1qn]⟩ n→M’ ⟨∗, ε, ε⟩ 
• The stack symbols in M’ are named after each step in M, so this could formally be proved 

by induction over n. 
• From this it follows ⟨s, x, ⊥⟩ ∗→M ⟨t, ε, ε⟩ ⇔ ⟨∗, x, [s⊥t]⟩ ∗→M’ ⟨∗, ε, ε⟩, 
• i.e. if a string is accepted by a many-states PDA it is accepted by a one-state one. 

• Theorem 2. If a language is accepted by a PDA then it is the language of a CFG. 
• Proof. According to Lemma 1 a many-states PDA can be converted to a one-state one. 

According to section 3.1 a one-state PDA can be transformed into a CFG.
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Deterministic PDA

• In a DFA the transition function must be just that, a (total) function that is defined 
for all arguments. 
• In any state, for any symbol read, there must be a state to go to. 
• Sometimes we, informally, allow the transition to be a partial function. 

• Definition 1. A deterministic pushdown automaton, DPDA, is a PDA where δ is a 
partial function. 
• So, there is for every state p 
• either at most one ⟨⟨p, a, A⟩, ⟨q, β⟩⟩ for each symbol a or a ⟨⟨p, ε, A⟩, ⟨q′, β′⟩⟩ in δ. 

• If a DPDA accepts x with empty stack it can’t accept xy (y ≠ ε) with empty stack.  
• Prefix property: A string in the accepted language cannot be a proper prefix of 

another string in the language.
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To think about

• In Section 2 we, given a CFG, constructed a (nondeterministic) PDA 
recognising the same language as the grammar. 
• Can you find any part in the construction where nondeterminism is used, or 

seems to be important? 
• Assume that we write a computer program which simulates a PDA (using a 

brute force approach which explores all possible transitions). Now we have a 
method for recognising a language represented by a context-free grammar, by 
(1) converting the grammar to a PDA, and (2) simulating the PDA on an input 
string. 
• Can you think of any weaknesses of this approach?
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Coming up soon …

• The next week: 
• Wednesday: Closure properties and pumping lemma for CFLs 

• The week after next: 
• Monday: LL(1) and LR(0) parsing 
• Friday: LR(1) parsing (Note: Will likely be moved here!)
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Thanks for today!


