
TDDD14 / TDDD85 — Lecture 10
Equivalence between CFG and PDA

August Ernstsson, 2024 (based on lecture notes by Jonas Wallgren)

From last week

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Definition 1: Greibach normal form

• A grammar is in Greibach normal form (GNF)
• if all productions have the form A → aB1B2B3…
• (Sequence of B’s may be empty)

• Every CFG can be converted to a CFG in GNF.

• Greibach normal form will be important in lecture 10.

3

August Ernstsson, TDDD14 / TDDD85 lecture 8, 2024

Simplification — ε productions and unit productions

• ε productions: A → ε

• Unit productions: A → B

• These rules can be convenient when defining a grammar.
• But: needlessly complicates analysis or implementation.

4

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Definition 1: Pushdown Automata

• A PDA is a septuple ⟨ Q, Σ, Γ, δ, s, ⊥, F ⟩
• Q = set of states
• Σ = (input) alphabet
• Γ = stack alphabet
• s = start state ∈ Q
• F = final states ⊆ Q
• ⊥ = start stack symbol
• δ = transition relation ⊆ (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ∗))

5

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

The transition relation δ

• δ = transition relation ⊆ (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ∗))

• ⟨⟨p, a, A⟩, ⟨q, B1, B2 . . . Bn⟩⟩ ∈ δ means:
• In state p with A on top of the stack:
• Read a,
• go to state q,
• change the stack top A to B1B2…Bn (the left end being the new stack top).

6

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

The transition relation δ

• δ = transition relation ⊆ (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ∗))

• ⟨⟨p, ε, A⟩, ⟨q, B1, B2...Bn⟩⟩ ∈ δ means:
• In state p with A on top of the stack, without reading anything:
• Go to state q,
• change the stack top A to B1B2…Bn (the left end being the new stack top).

7

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Acceptance

• Two different modes of acceptance are used in the literature.
• A PDA can accept a string if
• the stack is empty, or
• if it reaches a final state.

• Definition 4
• A PDA accepts the string x if ⟨s, x, ⊥⟩ →* ⟨q, ε, γ⟩ when q ∈ F .
• Definition 5
• A PDA accepts the string x if ⟨s, x, ⊥⟩ →* ⟨q, ε, ε⟩ when q ∈ Q

8

August Ernstsson, TDDD14 / TDDD85 lecture 9, 2024

Configurations

• What we handled in Example 2 are called configurations.

• Definition 2. A configuration is a triple ⟨q, x, γ⟩, where:
• q = state ∈ Q
• x = string ∈ Σ∗
• γ = stack ∈ Γ∗

• Definition 3. The next-configuration relation →
• If ⟨⟨p, a, A⟩, ⟨q, γ⟩⟩ ∈ δ then ⟨p, ay, Aβ⟩ → ⟨q, y, γβ⟩⟩
• If ⟨⟨p, ε, A⟩, ⟨q, γ⟩⟩ ∈ δ then ⟨p, y, Aβ⟩ → ⟨q, y, γβ⟩⟩

9

From Example 2:	
⟨q1, 01c01, R⟩ → ⟨q1, 1c01, BR⟩

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

Notation

→ in CFGs, A → B etc.

→ in PDA state transitions
→M in PDA state transitions, PDA M
n→ in PDA state transitions, n steps
*→ in PDA state transitions, any number of steps

⇒ derivation of a string in CFG
*⇒ derivation of a string in CFG, n steps
⇒lm leftmost derivation of a string in CFG

10

Let’s start!

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

Today’s topic

• In this lecture, we will show that context free grammars and pushdown
automata have the same power.
• Equivalence between CFG and PDA.

• Comment on DPDAs if there is time.
• We will return to PDAs later when we compare different classes of

languages.

12

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

Introduction

• In lecture 7 we introduced CFGs to express languages where there are some
dependencies inside the strings that can’t be decribed using regular expressions
• e.g. that brackets match.

• In lecture 9 we introduced PDAs for the same puropse.
• Like we did for regular languages, we will now prove that the automata and the

notation for this new class of languages (CFLs) are equivalent.
• This is done in two steps: first the equivalence is proved as an implication in

one direction, then in the other direction.
• The importance doesn’t lie in the proofs but in the existence of the conversions

and their consequences.

13

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

CFG to PDA

• We prove that given a CFG we can construct a PDA that accepts the language of the CFG.
• The starting point is a grammar G = ⟨N, Σ, P, S⟩ on Greibach normal form,
• e.g. every rule in P has the form A → cB1B2...Bn (where c ∈ Σ, Bi ∈ N, n ⩾ 0).
• Now, create a PDA M = ({q}, Σ, N, δ, q, S, ∅⟩, where
• There is just one state.
• The stack symbols are the nonterminals with the grammar start symbol as the stack start

symbol.
• There are no final states, so acceptance will be by empty stack.
• The idea is that when there is a nonterminal on the stack top you choose one of the

grammar rules for that nonterminal, read the a first in its right-hand side, and “queue”
all the B:s on the stack. So, δ will for each grammar rule contain ⟨⟨q, c, A⟩, ⟨q, B1, B2...Bn⟩⟩

14

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

Example 1

• A grammar on Greibach normal form for arithmetic expressions with start symbol E,
E → aX | bX | aY | bY | aYX | bYX | a | b
T → aY | bY | a | b
X → +E
Y → *T

• If we construct a PDA as above 5 of the 14 elements in δ will be:
• ⟨⟨q, a, E⟩, ⟨q, Y X⟩⟩,
• ⟨⟨q, ∗, Y ⟩, ⟨q, T ⟩⟩,
• ⟨⟨q, +, X⟩, ⟨q, E⟩⟩,
• ⟨⟨q, b, T ⟩, ⟨q, ε⟩⟩,
• ⟨⟨q, a, E⟩, ⟨q, ε⟩⟩.

15

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

Example 1, continued

• Performing the following derivation:
• E ⇒ aYX ⇒ a ∗ T X ⇒ a ∗ bX ⇒ a ∗ b + E ⇒ a ∗ b + a

• Corresponds to the following next-configuration steps using the PDA:
• ⟨q, a ∗ b + a, E ⟩ →
• ⟨q, ∗ b + a, Y X ⟩ →
• ⟨q, b + a, T X ⟩ →
• ⟨q, + a, X ⟩ →
• ⟨q, a, E ⟩ →
• ⟨q, ε, ε ⟩
• and the string is accepted with empty stack!

16E → aX | bX | aY | bY | aYX | bYX | a | b
T → aY | bY | a | b
X → +E
Y → *T

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

Theorem 1

• Theorem 1. If a language is defined by a CFG then it is accepted by a PDA.
• Proof. Let z, y ∈ Σ∗, γ ∈ N ∗, A ∈ N .
• Construct the PDA as outlined earlier.
• Then A n⇒lm zγ ⇔ ⟨q, zy, A⟩ n→ ⟨q, y, γ⟩.
• The grammar is on Greibach normal form:
• Each derivation step and each next-config. step handles one non-terminal
• Can formally be proved by induction over the number of steps!

• From this it follows S ∗⇒lm x ⇔ ⟨q, x, S⟩ ∗→ ⟨q, ε, ε⟩,
• i.e. if a string can be derived by the CFG it is accepted by the PDA.

17

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

Theorem 1, notes

• The construction presented above especially eases the induction proof.
• In general you don’t need the grammar to be on Greibach normal form.
• If you just want to do a transformation of a grammar into a PDA you can allow

terminals on the stack.
• For every grammar rule A → α: let ⟨⟨q, ε, A⟩, ⟨q, α⟩⟩ be an element in δ.
• For every nonterminal a: let ⟨⟨q, a, a⟩, ⟨q, ε⟩⟩ be an element in δ.

18

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

PDA to CFG

• In this section we prove that given a PDA we can construct a CFG that describes
the language of the PDA.
• First we transform a one-state PDA to a grammar
• Then we will convert a many-state one to the one-state form.

• A special case
• Given a one-state PDA. The only important property of the PDA is its single

state. Its Σ and Γ may overlap. The state may be final or not.
• For every element ⟨⟨q, c, A⟩, ⟨q, B1B2...Bn⟩⟩ ∈ δ
• Let the grammar have the rule A → cB1B2…Bn.
• Let the start stack symbol of the PDA be the start symbol of the CFG.

19

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

PDA to CFG: General case
• Let the starting point be the PDA M = ⟨ Q, Σ, Γ, δ, s, ⊥, {t} ⟩ with one final state.
• We see from the construction of M’ in lecture 9 that a PDA M can be converted into a PDA M’ with just one

final state.
• When converting an NFA to a DFA a state in the resulting DFA can represent the possiblility of being in several

states in the NFA.
• In converting a many-state PDA to a one-state one we will in some similar manner put much information into

the stack symbols. The stack symbols will have names with a structure representing their intended use.
• If we with M have ⟨p, x, A⟩ n→M ⟨q, ε, ε⟩ we will with our new M’ have ⟨∗, x, [pAq]⟩ n→M’ ⟨∗, ε, ε⟩.
• Note that [pAq] is just a name. The PDA doesn’t look at its parts, it can’t reconize them or separate them.

But the name is constructed in such a way that we can handle it easily.
• Now we can define M’ = ⟨ {∗}, Σ, Γ′, δ′, ∗, [s⊥t], ∅ ⟩, where Γ = Q × Γ × Q and ∗ is an arbitrarily chosen state

name, just to be different from any other state name.
• For every element ⟨⟨p, c, A⟩, ⟨q0, B1B2...Bn⟩⟩ ∈ δ we will have ⟨⟨∗, c, [pAqn]⟩, ⟨∗, [pBq1][q1Bq2]...[qn−1Bqn]⟩ ∈ δ′

for all q1, q2,...qn ∈ Q.
• Yes, there should be an element in δ′ for every possible combination of n states in M.

20

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

PDA to CFG: General case, cont.

• Lemma 1. If a language is accepted by a many-state PDA, it is accepted by a one-state
one.
• Proof. Construct M’ as above.
• Then ⟨p, x, B1B2...Bn⟩ n→M ⟨qn, ε, ε⟩ ⇔ ⟨∗, x, [pB1q1][q1B2q2] . . . [qn−1pB1qn]⟩ n→M’ ⟨∗, ε, ε⟩
• The stack symbols in M’ are named after each step in M, so this could formally be proved

by induction over n.
• From this it follows ⟨s, x, ⊥⟩ ∗→M ⟨t, ε, ε⟩ ⇔ ⟨∗, x, [s⊥t]⟩ ∗→M’ ⟨∗, ε, ε⟩,
• i.e. if a string is accepted by a many-states PDA it is accepted by a one-state one.

• Theorem 2. If a language is accepted by a PDA then it is the language of a CFG.
• Proof. According to Lemma 1 a many-states PDA can be converted to a one-state one.

According to section 3.1 a one-state PDA can be transformed into a CFG.

21

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

Deterministic PDA

• In a DFA the transition function must be just that, a (total) function that is defined
for all arguments.
• In any state, for any symbol read, there must be a state to go to.
• Sometimes we, informally, allow the transition to be a partial function.

• Definition 1. A deterministic pushdown automaton, DPDA, is a PDA where δ is a
partial function.
• So, there is for every state p
• either at most one ⟨⟨p, a, A⟩, ⟨q, β⟩⟩ for each symbol a or a ⟨⟨p, ε, A⟩, ⟨q′, β′⟩⟩ in δ.

• If a DPDA accepts x with empty stack it can’t accept xy (y ≠ ε) with empty stack.
• Prefix property: A string in the accepted language cannot be a proper prefix of

another string in the language.

22

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

To think about

• In Section 2 we, given a CFG, constructed a (nondeterministic) PDA
recognising the same language as the grammar.
• Can you find any part in the construction where nondeterminism is used, or

seems to be important?
• Assume that we write a computer program which simulates a PDA (using a

brute force approach which explores all possible transitions). Now we have a
method for recognising a language represented by a context-free grammar, by
(1) converting the grammar to a PDA, and (2) simulating the PDA on an input
string.
• Can you think of any weaknesses of this approach?

23

August Ernstsson, TDDD14 / TDDD85 lecture 10, 2024

Coming up soon …

• The next week:
• Wednesday: Closure properties and pumping lemma for CFLs

• The week after next:
• Monday: LL(1) and LR(0) parsing
• Friday: LR(1) parsing (Note: Will likely be moved here!)

24

Thanks for today!

