
TDDD14/TDDD85 Lecture 9:

Pushdown Automata

Jonas Wallgren

Abstract

This lecture inroduces the automata handling context-free languages (CFLs).

1 Introductory example

Recall figure 4 in lecture 1. To be able to handle e.g. nested brackets we
introduce a stack to the mechanism of a DFA/NFA. Every time we read a
symbol (or ε) we may check the stack before and we may change the stack
afterwards. (E.g. in recognizing {0n1n|n > 0} you can push an x everytime
you read a 0 and pop everytime you read a 1.) The automaton is called a
push-down automaton, PDA. It is important to know that in its standard form
a PDA is non-deterministic, it’s an NPDA. It is the type of automaton that
accepts CFLs. The deterministic form, DPDA, accepts a restricted form of
CFLs. We will return to such automata later.

The transition function/relation in this case takes an argument triple: cur-
rent state, read symbol (or ε), and stack top. It gives a result pair: new state
and result on stack.

Example 1. A push-down automaton for L = {wcwR|w ∈ {0, 1}∗},
where xR is w reversed, i.e. palindromes over {0,1} with a c in the center.

• Read 0, 1, or c.

• Put B, G, or R on the stack.1

• Start in state q1.

• Start with R on the stack.

The following table shows the behaviour of the transition relation (In this case
it is a (partial) function.):

1The stack symbols are independent of the symbols in the analyzed string.

1



Top of State Symbol read
stack 0 1 c

q1 PushB PushG

B q1 q1 q2
q2 Pop

q2
q1 PushB PushG

G q1 q1 q2
q2 Pop

q2
q1 PushB PushG

R q1 q1 q1
q2 Without reading : Pop

q2

To show how such an automaton tries to accept a string the steps are il-
lustrated in the following way: On the first line you see the start state, the
string, and the start stack. Then each successive line shows the current state,
the unread part of the string, and the current stack contents after performing
the action specified by the transition relation on the preceding line.

Example 2. Does 01c10 belong to the language?
State Remaining string Stack2 Comment
q1 01c10 R The start situation
q1 1c10 BR According to column 0, row Rq1 in the table
q1 c10 GBR According to column 1, row Bq1 in the table
q2 10 GBR etc.
q2 0 BR

q2 R

q2 String read, stack empty : Accept!

So, the whole string could be read, and when it was completely read the stack
was empty, which is one of two ways that a string coud be accepted. A string is
also accepted if you end up in a final state.

Now, you can see how the different symbols and states work in this example,
the “meaning” of them: All symbols before c are read in q1, all symbols after c
are read in q2. If you read a 0 before the c you push a B on the stack. You can
read a 0 after the c only if there is a B on the stack top. Correspondingly for 1
and G.

2 PDA

After the introductory example we now can define a PDA.

Definition 1. A PDA is a septuple 〈Q,Σ,Γ,δ,s,⊥,F〉, where

2The stack top is to the left.

2



• Q=set of states

• Σ=(input) alphabet

• Γ=stack alphabet

• s=start state∈Q

• F=final states⊆Q

• ⊥=start stack symbol

• δ=transition relation⊆ (Q× (Σ ∪ {ε})× Γ)× (Q× Γ∗))

The first part of a δ element is a triple of a state, a read symbol or ε, and a
stack symbol. The second part is a pair of a state and a string of stack symbols.
The result of a use of δ thus is not just one new symbol on the stack, but a
sequence of stack symbols (or nothing). That will be used in the transformation
from a CFG to a PDA.

〈〈p, a,A〉, 〈q,B1, B2 . . . Bn〉〉 ∈ δ means:
In state p with A on top of the stack:

• Read a,

• go to state q,

• change the stack top A to B1B2 . . . Bn (the left end being the new stack
top).

〈〈p, ε, A〉, 〈q,B1, B2 . . . Bn〉〉 ∈ δ means:
In state p with A on top of the stack, without reading anything:

• Go to state q,

• change the stack top A to B1B2 . . . Bn (the left end being the new stack
top).

Example 3. The PDA in Example 1 can formally be specified as
{{q1, q2}, {0, 1, c}, {B,G,R}, δ, q1, R, ∅}, where δ is defined according to the ta-
ble.

2.1 Configurations

What we handled in Example 2 are called configurations.

Definition 2. A configuration is a triple 〈q, x, γ〉, where:

• q=state∈Q

• x=string∈ Σ∗

3



• γ=stack∈ Γ∗

Describing the action of a PDA could be done by showing the steps of the
following relation:

Definition 3. The next-configuration relation →
If 〈〈p, a,A〉, 〈q, γ〉〉 ∈ δ then 〈p, ay,Aβ〉 → 〈q, y, γβ〉〉
If 〈〈p, ε, A〉, 〈q, γ〉〉 ∈ δ then 〈p, y, Aβ〉 → 〈q, y, γβ〉〉

From Example 2:
〈q1, 01c01, R〉 → 〈q1, 1c01, BR〉

Many steps between configurations is written
∗

→. Using the transition relation
of PDA M in n steps is written

n
→
M

.

2.2 Acceptance

A PDA can accept a string if the stack is empty or if it reaches a final state.

Definition 4. A PDA accepts the string x if 〈s, x,⊥〉
∗

→ 〈q, ε, γ〉 when q ∈ F .

Definition 5. A PDA accepts the string x if 〈s, x,⊥〉
∗

→ 〈q, ε, ε〉 when q ∈ Q.

So, there are two ways to define acceptance for PDAs. I have found no
motivation in the literature but a plausible explanation is that if you think
mainly in a DFA way you want the concept of final states and if you think that
the stack is the most important part of a PDA you want the empty stack to
signal acceptance.

Definition 6. The language of a PDA M.
L(M)= the set of all strings that are accepted by M in either way.

3 Equivalence between ways of acceptance

We will prove that if there is a PDA accepting the string x with empty stack
then there is a PDA accepting it in final state and v.v., i.e. the two ways of
accepting a string are equally powerful, they define the same class of languages.

We will perform the two proofs (the two directions of the implications making
up the equivalence) somewhat in parallel.

Our starting point is the PDA M=〈Q,Σ,Γ, δ, s,⊥, F 〉. It accepts strings in
either way.

Two new sets are defined:

If M accepts If M accepts
with empty stack : in final state :
G = Q G = F

∆ = {⊥⊥} ∆ = Γ ∪ {⊥⊥}

4



We now perform an operation a litle bit like the one done when constructing
the regular expression from a DFA — we add some extra handling in the start
and in the end.

We define a new PDA M ′ = 〈Q ∪ {u, t},Σ,Γ ∪ {⊥⊥}, δ′, u,⊥⊥, {t}〉, where

• u=new start state

• t=new final state

• ⊥⊥=new stack bottom symbol

• δ′=new transition relation, defined as: δ′ = δ ∪ { 〈〈u, ε,⊥⊥〉, 〈s,⊥⊥⊥〉〉,
〈〈q, ε, A〉, 〈t, A〉〉 for q ∈ G,A ∈ ∆,

〈〈t, ε, A〉, 〈t, ε〉〉 for A ∈ Γ ∪ {⊥⊥}}

So, the the first new element of δ′ says that in M’ you first just go from its
start state to the start state of M and you put the stack bottom of M on the
stack — to prepare for the simulation of M. The next new part of δ′ says that
when you are in an accepting situation in M you go to the accepting state of M’.
The third part says that if there is anything left on the stack you could remove it.

So, M’ accepts with empty stack and in final state.

Lemma 1. If M accepts x with empty stack then M’ accepts it.

Proof. M accepts with empty stack: 〈s, x,⊥〉
n
→
M

〈q, ε, ε〉.

Then 〈u, x,⊥⊥〉
1
→
M ′

〈s, x,⊥⊥⊥〉
n
→
M ′

〈q, ε,⊥⊥〉
1
→
M ′

〈t, ε,⊥⊥〉
1
→
M ′

〈t, ε, ε〉. The first step

as the new elements of δ′ states, the second step since δ′ contains δ, the last two
steps as the new elements of δ′ states.
So, 〈u, x,⊥⊥〉

∗

→
M ′

〈t, ε, ε〉, i.e. M’ accepts x if M accepts it with empty stack.

Lemma 2. If M accepts x in final state then M’ accepts it.

Proof. M accepts in final state: 〈s, x,⊥〉
n
→
M

〈q, ε, γ〉, where q ∈ F .

Then 〈u, x,⊥⊥〉
1
→
M ′

〈s, x,⊥⊥⊥〉
n
→
M ′

〈q, ε, γ⊥⊥〉
1
→
M ′

〈t, ε, γ⊥⊥〉
∗

→
M ′

〈t, ε, ε〉. The first

step as the new elements of δ′ states, the second step since δ′ contains δ, the
last two steps as the new elements of δ′ states.

Lemma 3. If M accepts x then M’ accepts it.

Proof. Follows from Lemma 1 and Lemma 2.

Lemma 4. If M’ accepts x then M accepts it.

5



Proof. Consider this sequence of steps:

〈u, x,⊥⊥〉
1
→
M ′

〈s, x,⊥⊥⊥〉
n
→
M ′

〈q, y, γ⊥⊥〉
1
→
M ′

〈t, y, γ⊥⊥〉
∗

→
M ′

〈t, ε, ε〉

The first step is the same initial one again. For M’ to accept x it must in the
process have reached a state q ∈ G since that is the only way δ′ can get the
automaton into the state t. That is shown in step 2, with a y that maybe not is
ε. The third step is just a move from q to t. Since we know that M’ accepts x
there must be some way to perform the last step. But in state t M cannot read
anything, so y must be ε. So if the second step is read from the M perspective
we get 〈s, x,⊥〉

n
→
M

〈q, ε, γ〉, i.e. M accepts x.

Theorem 1. Accepting with empty stack and accepting in final state are equiv-
alent.

Proof. It follows from Lemma 3 and Lemma 4.

4 More to think about

1. Can you think of a context-free language where we (at least intuitively)
need the power of non-determinism in a PDA to regognize the languge?

2. How could you simulate a PDA on an input string in your favourite pro-
gramming language? How would such a simulation differ from simulating
an NFA? How much memory does your implementation need?

6


