
TDDD14/TDDD85 Lecture 6: Pumping Lemma,
Myhill-Nerode, and Homomorphisms
Victor Lagerkvist (based on slides by Christer Bäckström)

So far in the course we have mainly focused on providing methods to
prove regularity of languages. In this lecture we turn to the opposite
problem: how can we prove that a given language is not regular?
We describe two methods for this purpose, the pumping lemma and
the Myhill-Nerode theorem, and consider a new closure property of
regular languages which in some circumstances can also be used to
prove non-regularity.

Background and Intuition

By now we have seen several characterizations of regular languages
and have a vast array of tools to prove that a language is regular. For
example, given a language A we could: construct a DFA, construct an
NFA, construct a regular expression, or show that A can be expressed
as the union, star, or concatenation, of simpler, regular languages.
But what if all these methods fail? In fact, what if they cannot suc-
ceed, since the language in question is not regular?

The most straightforward example of a non-regular language
stems from the following application: assume that we in the context
of parsing of programming languages need the ability to recognise
whether a sequence of left parentheses ( and right parentheses )

is evenly balanced, in the sense that each left parenthesis is closed
by a matching right parenthesis. In fact, let us make this scenario
even simpler: given a string x we merely want to be able to decide
whether it can be broken down into two parts x = x1x2 where x1 con-
sists of n consecutive left parentheses, and x2 of n consecutive right
parentheses (for some n). To make this typographically simpler we
furthermore write 0 to indicate a left parenthesis (, and 1 to denote a
right parenthesis ). Hence, the language in question is {0n1n | n ≥ 1},
meaning that 000111 is included but 00011 is not. Might it be possible
to construct a DFA for this language? This would be good news since
DFAs can be implemented efficiently with a low memory footprint.

However, it is far from obvious that this is possible. It is easy
to see that we for each fixed k directly can accept the string 0k1k by
“hardwiring” a DFA with 2k + 1 states which accepts 0k1k and noth-
ing else. More generally, if we have a DFA with n states which claims
to accept L then it seems that we could “trick” it simply by feeding
it the string 0n+11n+1, which would force it to return to a previously
visited state and forget the number of zeroes that it has read. Com-
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pare this with the natural strategy of recognising this language in a
computer program, e.g., by (1) incrementing a counter each time we
read 0, and (2) decrement the counter each time we read 1, and after
having exhausted the input string we accept the string if and only if
the total count is 0. However, this strategy cannot be encoded by a
DFA since this counter cannot be of a fixed size.

Hence, we suspect that {0n1n | n ≥ 1} is not regular, but while it
is good to have an intuition of why this might be the case, a formal
proof would be even better. But how can we rule out that every DFA
fails to recognise the language? We will present two methods for
this purpose, the pumping lemma and the Myhill-Nerode theorem, and
in doing so we will also establish important properties of regular
languages.

The Pumping Lemma for Regular Languages

We begin by describing an important property of regular languages
and finite automata called the pumping lemma. The basic idea is sim-
ple: if we have a DFA and take a sufficiently long input string and
simulate the DFA then some states will be visited several times since
each DFA has a fixed number of states. More precisely, let M be a
DFA with n states. Suppose M accepts some string s1, s2, . . . , sn of
length n. Then there must be n + 1 states r0, r1, . . . , rn such that1 1 See Definition 3 in Lecture 2 if you

are confused why the number of states
must be n + 1 in this case.

r0
s1→ r1

s2→ r2 . . . sn→ rn.

However, M has only n states, so there must be some k and l such
that rk = rl . Without loss of generality, assume that k < l (Figure 1).

r0 rk rl rn
s1, . . . , sk sk+1, . . . , sl sl+1, . . . , sn Figure 1: After having read

s1, . . . , sk , sk+1, . . . , sl the machine re-
turns to rk = rl .

Hence, the machine returns to rk (Figure 2).

r0 rk rn
s1, . . . , sk

sk+1, . . . , sl

sl+1, . . . , sn

Figure 2: Since rk = rl the sequence of
transitions can be visualised as a loop.

But if we previously had the choice of going from rl = rk to rn by
reading sl+1, . . . , sn then it must be possible to go directly from rk to
rn by reading sl+1, . . . , sn (Figure 3).
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r0 rk rn
s1, . . . , sk sl+1, . . . , sn Figure 3: M must also accept

s0, . . . , sk , sl+1, . . . , sn.

r0 rk rn
s1, . . . , sk

sk+1, . . . , sl

sk+1, . . . , sl

sl+1, . . . , sn

Figure 4: M must also accept
s0, . . . , sk , (sk+1, . . . , sl)

2, sl+1, . . . , sn.

In addition, since we previously went from rk to rk by reading
sk+1, . . . , sl there is nothing that prevents us from repeating this one
additional time (Figure 4).

Naturally, we can repeat this a third time, a fourth time, and so on,
as long as we desire. Thus, for each i ≥ 0 the automaton M accepts
the string s0, . . . , sk, (sk+1, . . . , sl)

i, sl+1, . . . , sn. Constructing the string
s0, . . . , sk, (sk+1, . . . , sl)

i, sl+1, . . . , sn is called “pumping”, and this
property of all regular languages can be summarised as follows.

Lemma 1. (Pumping lemma) If L is a regular language, then there exists
a positive integer p (the pumping length) such that every string s ∈ L,
where |s| ≥ p, can be partitioned into three pieces, s = xyz, such that the
following conditions hold:

1. |y| > 0,

2. |xy| ≤ p, and

3. for each i ≥ 0, xyiz ∈ L.

Proof. (Sketch)
r0 rk rl rn

x y z

Figure 5: The DFA transitions from r0 to
rn by reading s = xyz where rk = rl .

r0 rk rn
x

y

z

Figure 6: Since rk = rl we can loop in rk .

If L is regular, then there is some DFA M that recognizes L. Let p
be the number of states of M, and let s = s1, s2, . . . , sn be a string in
L(M) such that n ≥ p.

Let r0, r1, . . . , rn be the states M passes when reading s, where r0 is
the start state and rn is an accept state. It follows that two of the first
p + 1 states must be the same, i.e., there exists k and l (0 ≤ k < l ≤ p)
such that rk = rl . We partition s as

s = s1, . . . , sk︸ ︷︷ ︸
x

, sk+1, . . . , sl︸ ︷︷ ︸
y

, sl+1, . . . , sn︸ ︷︷ ︸
z

.

See Figure 5 for a visualisation. Since rk = rl we can repeat y any
number of times, including 0 (Figure 6). Hence, M accepts all strings
of the form xyiz for all i ≥ 0. Put together, this gives us

1. |y| > 0, since y = sk+1, . . . , sl and k < l,
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2. |xy| ≤ p, since k, l ≤ p,

3. xyiz ∈ L(M) for all i ≥ 0,

and have thus proven the pumping lemma.

In the next section we will see that the pumping lemma is a useful
tool to prove that a given language is not regular.

Inverting the Pumping Lemma

The pumping lemma proves a property of regular languages: if a
language is regular then the conditions in the pumping lemma hold.
If we want to prove that a language is not regular, then we must “in-
vert” the lemma. Hence, if we let R be the statement “L is regular”
and P be the rest of the statement “there exists a positive integer
p, . . .” from the pumping lemma then the pumping lemma states:
R ⇒ P. However, this is logically equivalent to the contrapositive
form: ¬P ⇒ ¬R. Hence, if we can prove that ¬P is true, i.e., that
P does not hold, then we would obtain a method for proving non-
regularity. We provide a detailed exposition of how to simplify ¬P in
the appendix, and for the moment simply state the resulting variant
of the pumping lemma as follows.

Lemma 2. (Inverted pumping lemma) If there for each positive integer p
(the pumping length) exists a string s ∈ L, |s| ≥ p, such that for each
partitioning s = xyz where

1. |y| > 0,

2. |xy| ≤ p, and

3. there exists i ≥ 0 such that xyiz /∈ L,

then L is not regular .

To reiterate, the inverted pumping lemma implies that to prove
that a language L is not regular, we must:

1. Assume an arbitrary pumping length p (we cannot choose it).

2. Choose a suitable string s ∈ L of length ≥ p.

3. Show that for all possible choices of strings x, y, z such that s = xyz,
|y| > 0 and |xy| ≤ p, there is some i ≥ 0 s.t. xyiz 6∈ L.

Why then, do we state and prove the pumping lemma in the form
of Lemma 1, and not its inverted form? The reason is simply that
we in mathematics typically strive for simplicity. Hence, instead of
proving a statement ¬B⇒ ¬A we prefer the simpler, direct statement
A ⇒ B. Let us now see how the pumping lemma can be used to
prove non-regularity of a language.
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Example 1. We will use the (inverted) pumping lemma to prove that
L = {0n1n | n ≥ 0} is not regular. The basic idea is to produce a string
which is not of the form 0n1n by finding a suitable string and a segment
in this string which we can “pump” in order to create a string with more
zeroes than ones. Hence, the idea is rather straightforward, but we need to be
careful to ensure that we strictly follow the premises.

1. Assume L has a pumping length p. Hence, we cannot make any assump-
tions on p, we just know that it is an arbitrary positive natural number.

2. Next, choose s = 0p1p, which is in L. Note that for the particular
language L we did not have any meaningful choice of the string s, since
each string in L is of the form 0n1n for some n ≥ 1.

For all choices of x, y, z such that s = xyz, |y| > 0 and |xy| ≤ p, the
string xy can only contain zeroes2. Hence, it must hold that: 2 Since s = 0p1p any prefix of length

≤ p can only consist of zeroes

Hint: to get an intuition of the parti-
tioning s = xyz it can be worthwhile
to consider a few concrete examples
of s ∈ L. These examples are only for
illustrative purposes and should not be
part of your written solution.

1. y = 0m for some m > 0,

2. x = 0k for some k ≥ 0 s.t. k + m ≤ p and

3. z = 0p−k−m1p.

Note that the constraints on k and m cover all possible choices of x, y
and z, and we have xyz = 0k0m0p−k−m1p = 0p1p = s. Last, to prove
the claim we must show that there exists an i ≥ 0 such that xyiz 6∈ L.
However, this is very simple for the language L. Simply choose i = 2. We
get xy2z = 0k02m0p−k−m1p = 0p+m1p 6∈ L. It follows that L cannot be
regular.

From this example we see the most difficult part of applying the
pumping lemma is to partition the string s into xyz of the required
form. However, once this is done, it is typically rather easy to fin-
ish the proof by producing a string not in the language. Last, let us
remark that the pumping lemma as we have proved it only gives a
necessary, but not sufficient, condition for regularity. Hence, there are
languages whose non-regularity cannot be proven by the pumping
lemma, but which can be proved non-regular by the method pro-
posed in the forthcoming section.

The Myhill-Nerode Theorem

We now turn to a second method for proving non-regularity. This
method is more powerful than the pumping lemma and leads to
an entirely new, complete, characterization of regular languages.
However, the theorem is more complicated than the pumping lemma
and harder to visualize, so we begin by stating it in an informal way.



tddd14/tddd85 lecture 6: pumping lemma, myhill-nerode, and homomorphisms 6

Theorem 1. (Informal Myhill-Nerode) Let L ⊆ Σ∗ be a language. Then the
following statements are equivalent:

1. L is regular,

2. there exists a special equivalence relation over Σ∗ describing L3, 3 Roughly: each DFA for L can be
described by such an equivalence
relation, and for each such equivalence
relation one can construct a DFA for L.

3. there exists a special equivalence relation encoding a unique minimal
automaton recognising L.

The third item is the most relevant for our purposes so we begin
by describing this “special equivalence relation”.

Definition 1. Let Σ be an alphabet and let L ⊆ Σ∗ be a language (L need
not be regular.) Define the relation ≡L such that for all x, y ∈ Σ∗ x ≡L y if
and only if for all z ∈ Σ∗, xz ∈ L⇔ yz ∈ L.

Thus, two strings are equivalent under ≡L whenever appending a
third string does not affect membership in the language L. It is not so
difficult to prove that ≡L is an equivalence relation over Σ∗, and the
idea behind the definition of ≡L is then that its equivalence classes
correspond to states in a minimal DFA recognising L4. In addition, 4 Recall that in the minimisation algo-

rithm we collapsed states if they led
to the same outcome with respect to
acceptence and rejectence. In other
words, take two states p and q that
are equivalent, and assume that the
machine has read x when in state p and
y when in state q. Then, for any string
z, the machine either accepts both xz
and yz or has to reject both xz and yz.
The intuition behind ≡L is then that
if we take two strings x and y in the
same equivalence class, then for any
third string z, either xz and yz are both
in the language, or are both not in the
language. Hence, ≡L can be seen as
an encoding of a minimal DFA for L,
but can be defined directly from the
language L and does not have to be
constructed from a specific DFA.

≡L is known to

1. be right congruent, i.e., for all x, y ∈ Σ∗ and all a ∈ Σ, if x ≡L y,
then xa ≡L ya, and

2. refine L, i.e. if x ≡L y, then x ∈ L⇔ y ∈ L.

Depending on the language L then ≡L might or might not be
of finite index, meaning that ≡L has a finite number of equivalence
classes.

Example 2. Let us return to the language L = {x1 | x ∈ {0, 1}∗} which
we constructed a minimal automaton for in the previous lecture, and see
what the corresponding relation ≡L looks like. Then we e.g. have that

1. 0 ≡L ε,

2. 0 ≡L 0,

3. 1 ≡L 11,

4. 0 ≡L 00,

5. 0n ≡L 0m for all n, m ≥ 1,

6. 01 ≡L 11,

7. x1 ≡L y1 for all x, y ∈ {0, 1}∗.



tddd14/tddd85 lecture 6: pumping lemma, myhill-nerode, and homomorphisms 7

However, 01 is not related to 00 since if we let z = ε then 01ε = 01 ∈ L
but 00ε = 00 /∈ L. Based on these examples we see that ≡L only has the two
equivalence classes [0] = {x0 | x ∈ {0, 1}∗} ∪ {ε} and [1] = {x1 | x ∈
{0, 1}∗}, which exactly corresponds to the states of the minimal automaton
that we constructed in the previous lecture.

In fact, if the relation ≡L is of finite index, then these equivalence
classes exactly correspond to the number of states in a minimal DFA
accepting L. Similarly, the Myhill-Nerode theorem states that if L is
regular, then ≡L is of finite index and there exists a unique minimal
DFA accepting L5. Moreover, this DFA is precisely the minimal DFA 5 At least up to renaming of states, i.e.,

up to isomorphism.constructed by the minimisation algorithm in the previous lecture.
However, the Myhill-Nerode theorem is even stronger than this,

but before we can relate the equivalence relation ≡L to the second
item in the Myhill-Nerode theorem we have to properly define this
statement.

Definition 2. Let Σ be an alphabet and let L ⊆ Σ∗ be a language. An
equivalence relation ≡ on Σ∗ is a a Myhill-Nerode relation for L if it is
right congruent, refines L, and is of finite index.

As we have already stated, ≡L is not necessarily a Myhill-Nerode
relation since it might not be of finite index. The idea behind Myhill-
Nerode relations is then that one for each DFA can “encode” the
automaton by defining a suitable Myhill-Nerode relation.

Example 3. For each DFA M there exists a canonical Myhill-Nerode rela-
tion which can be defined as follows. Given a DFA M we define the relation
≡M such that

x ≡M y

if and only if
δ̂(q0, x) = δ̂(q0, y)

for any x, y ∈ Σ∗6. Then ≡M is an equivalence relation7 over Σ∗ where any 6 Recall from the previous lecture that δ̂
is the extension of δ to strings over Σ∗.
7 Why? It is a good exercise to attempt
to prove this.

two strings are “equivalent” if they lead to the same state in the automaton
M. We will soon also see that M is a Myhill-Nerode relation for L(M).

Note that ≡M is defined with respect to a given DFA M, while
the relation ≡L is defined with respect to the given language L. The
Myhill-Nerode theorem then relates these concepts together as fol-
lows.

Theorem 2. (Myhill-Nerode) Let L ⊆ Σ∗ be a language. Then the following
statements are equivalent:

1. L is regular,

2. there exists a Myhill-Nerode relation for L,
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3. the relation ≡L has a finite number of equivalence classes.

We provide a short proof sketch of the main ideas in the appendix.
For now, it is sufficient to understand (1) that Myhill-Nerode re-
lations are equivalence relations corresponding to DFAs in a very
precise way, and (2) that (non)regularity of a language can always be
proven by showing that ≡L has a (in)finite number of equivalence
classes. Furthermore, the number of equivalence classes of ≡L exactly
corresponds to the number of states in a minimal DFA accepting L.
Hence, we have developed an entirely new method to prove that a
language is regular by using equivalence relations which (at least
superficially) seems to be quite far away from automata. Let us now
consider a “practical” application of the Myhill-Nerode theorem
which we can use to prove non-regularity of languages.

Example 4. We return to the language L = {0n1n | n ≥ 1}, which
we have already proven to be non-regular by the pumping lemma, and give
an alternative and, arguably, more elegant proof using the Myhill-Nerode
theorem. For each 0n ∈ {0, 1}∗, n ≥ 1, consider the equivalence class
[0n]. Could it be the case that 0m ∈ [0n] for any m 6= n? If this were
the case, then 0n ≡L 0m, and by definition of ≡L it would then hold that
0nz ∈ L if and only if 0mz ∈ L for any string z ∈ {0, 1}∗. However, this
is evidently false since 0n1n ∈ L but 0m1n /∈ L. Hence, ≡L has an infinite
number of equivalence classes, which implies that L is not regular by the
Myhill-Nerode theorem.

Importantly, this example shows that the Myhill-Nerode theorem
can give a much more succinct proof of non-regularity, and it can do
so without us needing to remember exactly what a Myhill-Nerode
relation is, since we for each language L only need to take the defini-
tion of ≡L and determine the number of equivalence classes.

Pumping Lemma versus Myhill-Nerode

Hence, we have two methods to prove non-regularity of languages.
Which one is preferable to use in which case, and why do we present
both? For example, the Myhill-Nerode has the following advantages.

1. Gives a complete condition for regularity: if a language L is regular
then ≡L has finite index, otherwise not.

2. Can result in more succinct proofs.

3. Proves that each regular language has a unique, minimal DFA up
to isomorphism.

4. Less weird name.
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On the other hand, the pumping lemma also has several advan-
tages.

1. More direct argument which is directly related to how a DFA
operaters (for sufficiently long strings the DFA will loop on some
states).

2. We will see a generalisation which is applicable to context-free
languages.

3. Much easier to prove.

In the end, there are advantages and disadvantages to both, but
since the Myhill-Nerode theorem does not generalise to context-free
languages we have a larger focus on the pumping lemma in this
course.

Homomorphisms

In this section we describe a closure property of regular languages
which we have previously omitted. This new closure property, clo-
sure under homomorphisms, can sometimes be useful for proving that
a language is not regular given that we already know a non-regular
language (e.g., {0n1n | n ≥ 1}).

Definition 3. Let Σ and Γ be two alphabets. A function h : Σ∗ → Γ∗ is a
homomorphism8 if 8 homo ≈ similar, morphism ≈ shape.

Hence, think of a homomorphism as a
mapping resulting in a similar shape.
In this case concatenation has a “similar
shape” after the homomorphism.

1. h(xy) = h(x)h(y) for all x, y ∈ Σ∗

2. h(ε) = ε.

Note that any function h from Σ (i.e., the alphabet) to ∆∗ re-
sults in a homomorphism from Σ∗ to ∆∗, since we can extend h
to strings over Σ∗ in the natural way by letting h(s1s2 . . . sn) =

h(s1)h(s2) . . . h(sn) and h(ε) = ε. In fact, every homomorphism
between two languages can be described in this way.

Example 5. Let Σ = Γ = {a, b, c} and define h as

h(a) = bab, h(b) = cbc, h(c) = a.

Then h(abc) = h(a)h(b)h(c) = babcbca.

Homomorphisms can be extended to sets in a straightforward way,
i.e., if A ⊆ Σ∗, then h(A) = {h(x) | x ∈ A}. The set h(A) is the image
of A under h (see Figure 7).

It can then be proven that h(A) is regular whenever A is regular.
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Σ∗

A

Γ∗

h(A)

Figure 7: A visualisation of a homomor-
phism between Σ∗ and ∆∗.

Theorem 3. If A is regular, then h(A) is regular.

This implies that if h(A) is not regular then A cannot be regular,
either. Hence, if we already have a language which is not regular
and manage to provide a homomorphism to this language, then the
original language cannot be regular, and we do not have to prove
non-regularity from scratch by using the pumping lemma or the
Myhill-Nerode theorem. For a simple example, consider the language
A = {anbnc | n ≥ 1} over the alphabet {a, b, c}. We strongly suspect
that this language is not regular since it is very similar to {0n1n | n ≥
1}, and to prove this we can define the homomorphism h(a) = 0,
h(b) = 1, h(c) = ε, since then h(A) = {0n1n | n ≥ 1}.

We will not attempt to prove Theorem 3 (see, e.g., Theorem 10.2 in
Kozen 9) and instead consider an example which highlights the main 9 D. C. Kozen. Automata and Computabil-

ity. Springer-Verlag, Berlin, Heidelberg,
1st edition, 1997

idea.

q

r

s

2

3

Figure 8: q, r, s in the DFA M.

q q′

r

s

1
0

1

Figure 9: We add a new state q′ in the
DFA for h(A).

Example 6. Let us try to get some intuition for why h(A) is regular if A
is regular. Let Σ = {0, 1, 2, 3} and let Γ = {0, 1}. Define h as a binary
encoding of Σ, i.e., h(0) = 00, h(1) = 01, h(2) = 10 and h(3) = 11.
We now proceed as usual: if A ⊆ Σ∗ is regular, then there is some DFA M
for A, and we need to construct a DFA for h(A) using M. Assume that we
have a state s and transitions 2 and 3 in the machine M (Figure 8). Then
h(2) = 10 and h(3) = 11, so we add a new state q′ to the new DFA
(Figure 9) such that we end up in r if we read 10 from q, and in s if we read
11.

Analogously, one then introduces new states for all other pairs of tran-
sitions. This results in a DFA and it is not so difficult that it recognises
h(A).

We also define the backwards direction: if B ⊆ Γ∗, then

h−1(B) = {x ∈ Σ∗ | h(x) ∈ B}.

The set h−1(B) is the preimage of B under h and is visualized in Fig-
ure 10. Similarly to the previous case, one can prove that h−1(B) is
regular if B is regular.
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Σ∗

h−1(B)

Γ∗

B

Figure 10: A visualisation of the preim-
age of B under h.

Summary

We presented two methods for proving non-regularity of lan-
guages: the pumping lemma and the Myhill-Nerode theorem. In
addition we saw that regular languages are closed under homomor-
phisms, providing another tool for proving non-regularity.

Food for Thought

1. We have proved that {0n1n | n ≥ 1} is not regular. Write a func-
tion in your favourite programming language which recognises
this language, e.g., by returning 1 if the input string is in the lan-
guage, and 0 otherwise. For how large n does your program work?
How much memory does your program need with respect to the
length of the input string? What happens (in principle) if the input
string is of length 2k for some large k? Will your computer run out
of memory? If so, is your computer really more powerful than a
DFA?

2. Assume a person puts forth the following incorrect argument for
proving that L = {0n1n | n ≥ 1} is not regular.

(a) I will prove that L is not regular by finding a string in the
language which can be pumped so that the resulting string is
not in L.

(b) Hence, define the string s = 000111 where the pumping length
p ≤ 3.

(c) Then, for any partitioning s = xyz where |xy| ≤ p and every
i ≥ 0 the string xyiz is not in L.

(d) Hence, L is not regular.

What is/are the error(s) in the above claims?
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3. Assume that the person in the previous question is very stubborn
and now claims to have yet another proof (sadly, also incorrect) of
non-regularity of L.

(a) I will prove that L is not regular by finding a string in the
language which can be pumped so that the resulting string is
not in L.

(b) Hence, let p > 0 and pick a string s from {0n1n | n ≥ 1} of
length at least p.

(c) Then, partition s into xyz where |xy| ≤ p and xy = 0n. Then,
for every i ≥ 2 the string xyiz is not in L.

(d) Hence, L is not regular.

What is/are the error(s) in the above claims?

Appendix

The Inverted Pumping Lemma

We begin by rewriting the pumping lemma using logic notation:
L regular→

∃p > 0 ∀s ∈ L(|s| ≥ p) ∃x, y, z . (s = xyz ∧ |y| > 0 ∧ |xy| ≤ p∧
∀i ≥ 0 . xyiz ∈ L).

We will use the following rules of logic:

1. ¬∀x . φ(x)⇔ ∃x .¬φ(x),

2. ¬∃x . φ(x)⇔ ∀x .¬φ(x),

3. ¬(φ1 ∧ φ2 ∧ . . . ,∧φn)⇔ (¬φ1 ∨ ¬φ2 ∨ · · · ∨ ¬φn) (De Morgan),

4. (φ ∨ ψ)⇔ (¬φ→ ψ),

5. (φ1 ∨ · · · ∨ φn−1 ∨ φn)⇔ ((¬φ1 ∧ · · · ∧ ¬φn−1)→ φn) (3 + 4), and

6. (φ→ ψ)⇔ (¬ψ→ ¬φ).

We begin by using rule 6 and rewrite the statement into its contra-
positive form:

L not regular←

¬∃p > 0 ∀s ∈ L(|s| ≥ p) ∃x, y, z . (s = xyz ∧ |y| > 0 ∧ |xy| ≤ p∧
∀i ≥ 0 . xyiz ∈ L).

This expression is equivalent to the pumping lemma, but the right-
hand-side of the implication now states a condition for when L is not



tddd14/tddd85 lecture 6: pumping lemma, myhill-nerode, and homomorphisms 13

regular. We now want to rewrite the right-hand-side to a more useful
form by simplifying the expression as much as possible.

Use rule 2:

∀p > 0¬∀s ∈ L(|s| ≥ p) ∃x, y, z . (s = xyz ∧ |y| > 0 ∧ |xy| ≤ p∧
∀i ≥ 0 . xyiz ∈ L.

Use rule 1:

∀p > 0 ∃s ∈ L(|s| ≥ p)¬∃x, y, z . (s = xyz ∧ |y| > 0 ∧ |xy| ≤ p∧
∀i ≥ 0 . xyiz ∈ L).

Use rule 2:

∀p > 0 ∃s ∈ L(|s| ≥ p) ∀x, y, z .¬(s = xyz ∧ |y| > 0 ∧ |xy| ≤ p∧
∀i ≥ 0 . xyiz ∈ L).

Use rule 3 (De Morgan)

∀p > 0 ∃s ∈ L(|s| ≥ p) ∀x, y, z . (s 6= xyz ∨ |y| 6> 0 ∨ |xy| > p∨
¬∀i ≥ 0 . xyiz ∈ L).

Use rule 1 on the innermost quantifier:

∀p > 0 ∃s ∈ L(|s| ≥ p) ∀x, y, z . (s 6= xyz ∨ |y| 6> 0 ∨ |xy| > p∨
∃i ≥ 0 . xyiz 6∈ L).

Finally, turn the disjunction into an implication, using rule 5:

∀p > 0 ∃s ∈ L(|s| ≥ p) ∀x, y, z . ((s = xyz ∧ |y| > 0 ∧ |xy| ≤ p)

→ ∃i ≥ 0 . xyiz 6∈ L).

See Lemma 2 for the resulting variant of the pumping lemma.

The Myhill-Nerode Theorem

In this section we give a short proof sketch of the Myhill-Nerode
theorem by proving item 2 and item 3 in turn. For a detailed proof
we refer the interested reader to Kozen 10. 10 D. C. Kozen. Automata and Com-

putability. Springer-Verlag, Berlin,
Heidelberg, 1st edition, 1997Lemma 3. A language L is regular if and only if there exists a Myhill-

Nerode relation for L.

Proof. (Sketch) Let M be a DFA recognising L. We begin by proving
that the equivalence relation ≡M from Example 3 is a Myhill-Nerode
relation for L. For example, to prove that ≡M is right congruent we
may argue as follows. Let x and y be arbitrary strings in Σ∗ and let
a be an arbitrary symbol in Σ. Assume x ≡M y. Then δ̂(q0, x) =
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δ̂(q0, y) by definition. But then we get δ̂(q0, xa) = δ(δ̂(q0, x), a) =

δ(δ̂(q0, y), a) = δ̂(q0, ya). That ≡M refines L and that it is of finite
index can also proven with straightforward arguments.

For the other direction, assume that ≡ is a Myhill-Nerode relation
for L. The basic idea is then, since ≡ is an equivalence relation, to
define an automaton over the set of states {[x] | x ∈ Σ∗}, which is
finite since ≡ is a Myhill-Nerode relation, and must therefore be of
finite index. The start state is simply [ε], the set of final states is {[x] |
x ∈ L}, and the transition function δ is defined as δ([x], a) = [xa]. It
can then be proven that the resulting automaton recognises L.

The construction in the proof of Lemma 3 is in fact even more
powerful: if L is a regular language with a Myhill-Nerode relation
≡ and if we construct the DFA M≡ corresponding to ≡, then the
Myhill-Nerode relation ≡M≡ constructed from M≡ turns out to co-
incide with ≡11. Similarly, it is possible to prove that if one begins 11 Up to isomorphism.

with a DFA M and constructs the Myhill-Nerode relation ≡M, then
the DFA M≡M constructed from ≡M coincides with M.

Lemma 4. Let L be a language. Then there exists a Myhill-Nerode relation
for L if and only if ≡L has a finite number of equivalence classes.

Proof. If ≡ is a Myhill-Nerode relation for L then ≡ has a finite num-
ber of equivalence classes. It is then known that ≡L is coarser than ≡,
meaning that ≡⊆≡L. Since ≡ and ≡L are both equivalence relations
this means, informally that ≡L relates more elements together and
therefore have fewer (or as many) equivalence classes as ≡. Hence,
≡L has a finite number of equivalence classes since ≡ has a finite
number of equivalence classes.

The second statement follows directly by the given assumptions:
≡L is already known to be right congruent and to refine L, and if it
has a finite number of equivalence classes then it must be a Myhill-
Nerode relation.
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