
TDDD14/TDDD85 Lecture 5: Minimization of Au-
tomata
Victor Lagerkvist (based on slides by Christer Bäckström)

In this lecture we describe a minimisation algorithm which for a given
DFA produces an equivalent DFA with a minimal number of states.
This procedure can be combined with earlier algorithms and can e.g.
be used to compile a regular expression to a DFA with a minimal
number of states.

Background and Intuition
q1 q2

0, 1
1

Figure 1: An NFA for {x1 | x ∈ {0, 1}∗}.

a b

c d

1

0

11

0

1

0 0

Figure 2: A DFA for the language
{x1 | x ∈ {0, 1}∗}.

a b

0 1
1

0

Figure 3: A smaller DFA accepting
{x1 | x ∈ {0, 1}∗}.

By now it should not come as a surprise that not all automata are
created equal, and that one for each regular language can define
many different DFAs which recognises the language. Among these
infinite possibilities, should there be a preference? If no other heuris-
tic is given then it is reasonable that we prefer a DFA which is as
small and simple as possible, since this (1) typically makes it easier
to understand the automaton, and (2) a DFA with fewer states can
be simulated more efficiently. For example, when we studied regular
expressions in the previous lecture we described a method for com-
piling regular expressions to DFA by first converting the regular ex-
pression to an NFA, and then applying the subset construction from
lecture 3. Unfortunately, the subset construction typically fails to
produce DFAs that are minimal with respect to the number of states,
even when much smaller DFAs exist. For example, consider the NFA
in Figure 1 which recognises the language {x1 | x ∈ {0, 1}∗}. If
we apply the subset construction to this automaton then we obtain a
DFA with 4 states, one state for every non-empty subset of {q1, q2}.
This DFA is visualized in Figure 2, where we have taken the liberty
of renaming the 4 states to a, b, c, d. By previous lectures we already
know that a smaller DFA exists (Figure 3), but can we somehow con-
struct the DFA with only 2 states from the larger DFA with 4 states?
Hence, we want a minimisation algorithm which given a DFA con-
structs an equivalent DFA with a minimal number of states.

Consider the following concerning the DFA in Figure 2: regardless
of whether we are in state a, b, c, d and have just read the symbol 1,
then we are in state b or d, which are both accept states. Similarly, if
we have just read the symbol 0, then we must be in state a or c, and
neither is an accept state. Hence, it does not matter whether we are
in state b or state d since (1) both are accept states, (2) reading 1 still
results in an accept state, and (3) reading 0 results in a non-accept
state. Similarly, the machine does not need to separate between a and

tddd14/tddd85 lecture 5: minimization of automata 2

c since reading 1 results in an accept state, and reading 0 results in a
non-accept state. Hence, in a certain sense, b is equivalent with d, and
a is equivalent with c. This suggests that we can merge a and c to a
single state, and b and d to a single state, and update all transitions
accordingly (Figure 3). We will see that this idea is more general
and that it is possible to define an equivalence relation over the set of
states of a DFA which can be used to define a state-minimal quotient
automaton. We use these ideas and propose a minimisation algorithm
which given a DFA computes an equivalent quotient automaton
by iteratively computing all states that are equivalent and can be
collapsed into a single state.

Equivalence Relations

Before turning to the concrete case of DFA we recall the important
concept of an equivalence relation.

Definition 1. A binary relation R on a set S is an equivalence relation if it
satisfies the following three properties:

1. reflexive: R(x, x) for all x ∈ S,

2. symmetric: R(x, y)⇒ R(y, x) for all x, y ∈ S,

3. transitive: R(x, y) and R(y, z)⇒ R(x, z) for all x, y, z ∈ S.

Example 1. Let Σ = {0, 1}. Define the binary relation R on Σ∗ such that
R(x, y) if and only if |x| = |y|, i.e., two strings are considered equivalent
if they have the same length. We claim that R is an equivalence relation
over Σ∗, and to prove this claim we have to show that the three properties
defining an equivalence relation hold for the relation R. This turns out to be
very simple for R, but we spell out the details just to be sure.

1. For every x ∈ Σ∗ it holds that |x| = |x|. Hence, R(x, x) and R is
reflexive.

2. For all x, y ∈ Σ∗, if |x| = |y|, then |y| = |x|. Hence, R(x, y) implies
R(y, x), and R is symmetric.

3. For all x, y, z ∈ Σ∗, if |x| = |y| and |y| = |z|, then |x| = |z|. Hence, if
R(x, y) and R(y, z), then R(x, z), and R is transitive.

The main point of an equivalence relation R is to be able to group
elements together when they are considered to be “equivalent” with
respect to R.

Definition 2. Let R be an equivalence relation. Each string x ∈ Σ∗ has an
associated equivalence class [x], defined as [x] = {y ∈ Σ∗ | R(x, y)}.

tddd14/tddd85 lecture 5: minimization of automata 3

Example 2. We continue the previous example where R(x, y) if and only if
|x| = |y|. Then [x] is the set of all strings that have the same length as x,
including x itself. For example, we have

• [ε] = {ε} (since ε is the unique string of length 0),

• [0] = [1] = {0, 1},

• [00] = [01] = [10] = [11] = {00, 01, 10, 11},

and so on. Note that we have an infinite number of equivalence classes
in this case since each string is related to the finite set of strings of the same
length.

It follows from the definition that each element belongs to exactly
one equivalence class. Let S be a set and R an equivalence relation
on S. Let P be the set of all equivalence classes for R. Then P is a
partition of S, i.e.:

• each equivalence class is non-empty,

• P covers S, i.e. every x ∈ S belongs to some equivalence class, and

• if X and Y are equivalence classes s.t. X 6= Y, then X ∩Y = ∅.

In the previous example, R gives a partition with one equivalence
class Pi for each i ∈ N, such that Pi = {|x| ∈ Σ∗ | |x| = i}. For
instance, P0 = [ε] and P3 = [001].

Quotient Automata

Is it then possible to define an equivalence relation over the states of
an automaton, so that two states which are deemed equivalent can be
collapsed without affecting the language of the automaton? Hence,
let (Q, Σ, δ, q0, F) be a DFA, and let p, q ∈ Q be two states. We begin
by making the following two observations.

1. We cannot collapse p and q if p ∈ F and q 6∈ F1. 1 Otherwise we cannot distinguish
between accept and reject.

2. If we collapse p and q and there is some a ∈ Σ such that δ(p, a) 6=
δ(q, a), then we must collapse also δ(p, a) and δ(q, a) to one state2. 2 Otherwise we have two choices on the

symbol a.

More generally, the following extension of a transition function δ

will be very useful to define the necessary equivalence relation.

Definition 3. Let (Q, Σ, δ, q0, F) be a DFA. Let δ̂ be the extension of δ to
strings, defined such that for all states p ∈ Q:

• δ̂(p, ε) = p, and

tddd14/tddd85 lecture 5: minimization of automata 4

• δ̂(p, xa) = δ(δ̂(p, x), a) for all x ∈ Σ∗ and all a ∈ Σ.

Example 3. For the DFA in Figure 2, restated in Figure 4, we e.g. have that

1. δ̂(a, ε) = a,

2. δ̂(a, 00) = a,

3. δ̂(a, 000) = c,

4. δ̂(a, 001) = b,

5. δ̂(b, 0011) = b,

6. δ̂(b, 00111) = d, and

7. δ̂(d, 001) = b.

a b

c d

1

0

11

0

1

0 0

Figure 4: The DFA from Figure 2.

More generally these examples lead to the following observations. Regardless
of our current state, if we have just read 0, then we must be in a or c, and
are therefore not in an accept state. Similarly, regardless of our current state,
if we have just read 1, then we must be in b or d, i.e., an accept state. This
leads to the following description of δ̂ with respect to the states a and c, for
any x ∈ Σ∗:

• δ̂(a, x0) 6∈ F and δ̂(c, x0) 6∈ F, and

• δ̂(a, x1) ∈ F and δ̂(c, x1) ∈ F.

Hence, for any string x ∈ Σ∗ we have that δ̂(a, x) ∈ F if and only if
δ̂(c, x) ∈ F. Similarly, for any string x ∈ Σ∗ we also have that δ̂(b, x) ∈ F
if and only if δ̂(d, x) ∈ F.

With the help of δ̂ we are now ready to define an equivalence
relation over the states of an automaton.

Definition 4. Let (Q, Σ, δ, q0, F) be a DFA. Define the binary relation ≈
on the set Q of states such that for any two states p, q ∈ Q

p ≈ q

holds if and only if for all x ∈ Σ∗

δ̂(p, x) ∈ F ⇔ δ̂(q, x) ∈ F.

In other words two states p and q are treated as equivalent if the
automaton when starting in either p or q on any input string reaches
an accept state from p if and only if it reaches an accept state from
q. Hence, when it comes to acceptance, which is all that matters in a
DFA, the machine is unable to distinguish between the two states p
and q.

tddd14/tddd85 lecture 5: minimization of automata 5

Example 4. In Example 3 we have already proven that δ̂(a, x) ∈ F if and
only if δ̂(c, x) ∈ F for any string x ∈ Σ∗, and that δ̂(b, x) ∈ F if and only if
δ̂(d, x) ∈ F for any string x ∈ Σ∗. But this is precisely the definition of the
relation ≈, meaning that a ≈ c and b ≈ d.

We can then easily prove that ≈ results in an equivalence relation
over the states of an automaton.

Lemma 1. Let (Q, Σ, δ, q0, F) be a DFA. Then ≈ is an equivalence relation
over Q.

Proof. The relation ≈ has the properties:

1. p ≈ p for all p (reflexive),

2. if p ≈ q, then q ≈ p (symmetric), and

3. if p ≈ q and q ≈ r, then p ≈ r (transitive).

Hence, ≈ is an equivalence relation.

Furthermore, this defines an equivalence class [p] for every state p
as

[p] = {q | q ≈ p}.

Recall that an equivalence relation defines a partition, so every state
belong to exactly one equivalence class, i.e. p ≈ q if and only if
[p] = [q].

The idea is then to use the equivalence relation ≈ and construct an
automaton containing one state for each equivalence class of ≈. This
formalises the earlier intuition that we could collapse “equivalent”
states.

Definition 5. Let M = (Q, Σ, δ, q0, F) be a DFA. We define the quotient
automaton M/≈ = (Q′, Σ, δ′, q′0, F′) where Trivia: the idea of grouping elements

together according to an equivalence re-
lation is a very powerful mathematical
idea. In abstract and universal alge-
bra this is known as a quotient algebra,
and generalises the idea of a quotient
automaton. For example, if we group
together numbers which are congruent
modulo 2, i.e., all even numbers, then
addition and multiplication of these
numbers remain even, and we obtain a
well-defined quotient algebra.

• Q′ = {[p] | p ∈ Q},

• δ′([p], a) = [δ(p, a)],

• q′0 = [q0], and

• F′ = {[p] | p ∈ F}.

Example 5. Recall the automaton from Figure 4 where we in Example 4
proved that a ≈ c and b ≈ d.

[a] [b]

0 1
1

0

Figure 5: The minimised quotient
automaton.

This leads to the equivalence classes [a] and [b], and the quotient automa-
ton M/≈ where Q′ = {[a], [b]} (Figure 5). Up to renaming of states, this
is precisely the 2-state DFA from Figure 3, but we were able to construct it
automatically once we had determined the equivelence relation ≈.

tddd14/tddd85 lecture 5: minimization of automata 6

The idea behind the minimisation algorithm is then to compute
the quotient automaton by iteratively computing the equivalence
classes of ≈. We will see how this can be done in the next section, but
before we turn to this we have to prove that the quotient automaton
M/≈ actually defines the same language as the original automaton M
(otherwise, the whole idea fails).

Theorem 1. L(M) = L(M/≈) for any DFA M.

Proof. Let M = (Q, Σ, δ, q0, F) be a DFA and let M/≈ = (Q′, Σ, δ′, q′0, F′)
be its corresponding quotient automaton. Our aim is to prove that
L(M) = L(M/≈), which we will accomplish by proving that for every
input string x, M accepts the string if and only if L(M/≈) accepts
the string. In symbols, this means that we need to prove that for any
x ∈ Σ∗ it holds that δ̂(q0, x) ∈ F if and only if δ̂′([q0], x) ∈ F′.

Hence, let p ∈ Q and let x ∈ Σ∗ be an arbitrary string. We will
prove by induction over the length of x that δ̂(p, x) ∈ F if and only if
δ̂′([p], x) ∈ F′. So in particular this holds when p = q0.

Base case: |x| = 0, so x = ε is the only possibility.

• We have δ̂(p, ε) = p and δ̂′([p], ε) = [p].

• We have p ∈ F if and only if [p] ∈ F′ by definition of M/≈.

• Hence, δ̂(p, ε) ∈ F if and only if δ̂′([p], ε) ∈ F′.

Induction step: suppose the claim holds for all strings of length n,
for some n ≥ 0. We must prove that it holds also for strings of length
n + 1.

• Let a ∈ Σ and x ∈ Σn. Then |ax| = n + 1.

• Let q = δ(p, a).

• Then δ′([p], a) = [δ(p, a)] = [q].

• It follows from the induction hypothesis that δ̂(q, x) ∈ F if and
only if δ̂′([q], x) ∈ F′.

• Hence, δ̂(p, ax) ∈ F if and only if δ̂′([p], ax) ∈ F′.

This proves the claim, so it follows that for all x ∈ Σ∗, it holds
that δ̂(q0, x) ∈ F if and only if δ̂′([q0], x) ∈ F′. Hence, L(M) =

L(M/≈).

While the construction of a quotient automaton and the result-
ing proof of equivalence turned out to be more complicated than
many of the arguments that we have seen earlier in the course, the
basic idea is still (1) that some states can be proven to be equivalent
when it comes to acceptance, and (2) to minimise the automaton

tddd14/tddd85 lecture 5: minimization of automata 7

we collapse equivalent states into a single state. Hence, if you have
difficulties understanding the formal proof of Theorem 1 then it is
a good idea to return to it after having understood and applied the
minimisation algorithm which we will now describe.

The Minimisation Algorithm

Based on the ideas in the preceding section we now describe an
algorithm which for any given DFA M computes the quotient au-
tomaton M/≈ which describes the same language. We want to com-
pute the equivalence relation ≈, and the idea is to gradually mark
pairs of states which are not equivalent under ≈ and thus never can
be collapsed into a single state. Initially, given two states p and q,
what is the easiest possible check for this? This is just the case when
p is an accept state, and q is not an accept state, since this implies
that p /∈ [q]. Hence, we perform this check for any pairs of states in
the automaton, and mark these states. What should be the second
check? Given states p and q we then check if there exist transitions
from p and q (under the same input symbol) so that one of these
transitions lead to a previously marked state, but the other to an un-
marked state. In the next step, we repeat this again, but also take the
marked states from the previous step into account. This idea can be
generalised and summarised as follows.

Marking algorithm

1. For all pairs of states {p, q}:

• if p ∈ F and q 6∈ F, then mark {p, q}.

2. For all unmarked pairs of states {p, q}

• if there is some a ∈ Σ such that {δ(p, a), δ(q, a)} is marked then
mark {p, q}.

3. Repeat 2 until no new pair is marked.

If a pair of states {p, q} is still unmarked, then p ≈ q, and the
minimised automaton is the quotient automaton M/≈. We consider a
concrete example of the marking algorithm in the appendix on p. 9.

Food for Thought

1. We never actually prove that the marking algorithm and the re-
sulting quotient automaton is the smallest (with respect to the
number of states) automaton recognising the language in question.

tddd14/tddd85 lecture 5: minimization of automata 8

Try to come up with a DFA where the quotient automaton is not
the smallest possible one for the language in question. Hint: it is
possible to come up with an example where the minimal automa-
ton consists of only one state.

2. What is the time complexity of the proposed minimisation algo-
rithm (with respect to the number of states of the given DFA)? Can
the number of steps be bounded by a polynomial?

3. Can the minimisation algorithm be directly generalised to NFAs?
Why, or why not?

tddd14/tddd85 lecture 5: minimization of automata 9

Appendix

We now consider a concrete, larger example of the minimisation
algorithm. Assume that we are given the DFA M in Figure 6.

a b c

d e f

0

1
1

0

1

0
1

1

0
1 00

Figure 6: The DFA M.

We are interested in minimising the number of states and thus
want to compute the equivalence relation ≈ so that we can compute
the quotient automaton M/≈.

Iteration 0

We start off simple and draw the table in Figure 7.

a
b

c
d

e
f

Figure 7: The initial table.

For each pair of states {p, q} there now exists an entry in this table.
Note that since the relation ≈ is symmetric we do not need one entry
for a, b, and an additional entry for b, a, and so on. Next, we mark a
pair of states {p, q} if p ∈ F and q /∈ F (Figure 8).

a
b

c
d

e
f

Figure 8: Iteration 0: mark an entry
{p, q} if p ∈ F and q /∈ F.

Iteration 1

For each pair {p, q} which is not marked we now want to determine
if there exists an input symbol x ∈ {0, 1} such that {δ(p, x), δ(q, x)}

tddd14/tddd85 lecture 5: minimization of automata 10

has already been marked, in which case we mark {p, q} as well. In
this particular iteration it simply means that we mark {p, q} if there
exists an input symbol and transitions from p and q such that one
ends up in an accept state, but the other does not. This is easiest
accomplished by doing it in a systematic fashion as follows.

a
b

c
d

e
f

Figure 9: Marking {a, c}.

a
b

c
d

e
f

Figure 10: Marking {a, d}.

a
b

c
d

e
f

Figure 11: Marking {c, f }.

a
b

c
d

e
f

Figure 12: Marking {d, f }.

1. {a, c} : {δ(a, 0), δ(c, 0)} = {a, b} is marked, so mark {a, c}.

2. {a, d} : {δ(a, 0), δ(d, 0)} = {a, e} is marked, so mark {a, d}.

3. {a, f } : {δ(a, 0), δ(f , 0)} = {a, f } is unmarked, so also check 1.

4. {a, f } : {δ(a, 1), δ(f , 1)} = {b, e} is unmarked, so do not mark.

5. {b, e} : {δ(b, 0), δ(e, 0)} = {b, e} is unmarked, so also check 1.

6. {b, e} : {δ(b, 1), δ(e, 1)} = {c, d} is unmarked, so do not mark.

7. {c, d} : {δ(c, 0), δ(d, 0)} = {b, e} is unmarked, so also check 1.

8. {c, d} : {δ(c, 1), δ(d, 1)} = { f , a} is unmarked, so do not mark.

9. {c, f } : {δ(c, 0), δ(f , 0)} = {b, f } is marked, so mark {c, f }.

10. {d, f } : {δ(d, 0), δ(f , 0)} = {e, f } is marked, so mark {d, f }.

This sequence of markings is visualized in Figure 9– 12 where any
new marking is coloured in black. We thus end up with the markings
in Figure 13.

a
b

c
d

e
f

Figure 13: Iteration 1 (finished).

Iteration 2

Again, we repeat the step of finding an unmarked pair {p, q} where
{δ(p, x), δ(q, x)} has already been marked, following exactly the same
method as in iteration 1.

1. {a, f } : {δ(a, 0), δ(f , 0)} = {a, f } is unmarked, so also check 1.

2. {a, f } : {δ(a, 1), δ(f , 1)} = {b, e} is unmarked, so do not mark.

3. {b, e} : {δ(b, 0), δ(e, 0)} = {b, e} is unmarked, so also check 1.

4. {b, e} : {δ(b, 1), δ(e, 1)} = {c, d} is unmarked, so do not mark.

5. {c, d} : {δ(c, 0), δ(d, 0)} = {b, e} is unmarked, so also check 1.

tddd14/tddd85 lecture 5: minimization of automata 11

6. {c, d} : {δ(c, 1), δ(d, 1)} = { f , a} is unmarked, so do not mark.

However, in this iteration nothing new was marked, meaning that
there is no point in continuing with any further iteration, and we
terminate.

The Resulting Minimal Quotient Automaton

From Figure 13 only the pairs {a, f }, {b, e} and {c, d} are unmarked.
This means that a ≈ f , b ≈ e and c ≈ d, and from following the defi-
nition of a quotient automaton we obtain the automaton in Figure 14.

[a] [b] [c]

0

1

0
1

0

1

Figure 14: The minimal quotient au-
tomaton M/≈.

	Background and Intuition
	Equivalence Relations
	Quotient Automata
	The Minimisation Algorithm
	Food for Thought
	Appendix

