
TDDD14/TDDD85 Lecture 4: Closure Properties
and Regular Expressions
Victor Lagerkvist (based on slides by Christer Bäckström and
Gustav Nordh)

In this lecture we will describe yet another characterization of regular
languages using regular expressions. We will prove that regular expres-
sions turn out to be yet another characterization of regular languages,
and in the process investigate closure properties of regular languages.

Background and Intuition

Regular expressions are an incredibly useful formalism for ex-
tracting and searching after data in text. For example, using the Unix
utility grep we could issue the command grep “ *[0-9]” test.txt

to match all lines starting with blanks followed by a digit in the file
text.txt. Broadly speaking, engines for regular expressions operate
by “compiling” regular expressions to an intermediate data structure
which is easier to work with than the original string, and the effi-
ciency of the engine largely depends on the choice of this intermedi-
ate format. The preferred representation depends on the application
in question, but being able to compile a regular expression to a sim-
pler form which is easier to execute is advantageous for many types
of regular expressions.

In fact, in this lecture we will prove that we already have a perfect
machine for this purpose: the DFA. We will (1) prove that one for
each regular expression can define an equivalent NFA, which by the
subset construction admits an equivalent DFA, and (2) that there for
each DFA exists a regular expression defining the same language.
This not only leads to a new characterization of regular languages,
but also to an important application of DFAs. However, before we
begin with this task we investigate closure properties of regular lan-
guages, since these closure properties will make it much simpler to
relate regular expressions to DFAs.

Closure Properties of Regular Languages

As promised, we begin by investigating closure properties of reg-
ular languages, before turning to regular expressions. The general
idea is as follows: given regular languages A1, . . . , Ak, which opera-
tions can be performed on A1, . . . , Ak while still guaranteeing that the
result is a regular language?



tddd14/tddd85 lecture 4: closure properties and regular expressions 2

Note that set operations such as union
intersection, and concatenation, are just
binary functions which takes sets as
arguments and returns new sets.

Definition 1. Let A be a set of languages. Say that A is closed under a
function f : Ak → A if f (A1, . . . , Ak) ∈ A for all A1, . . . , Ak.

For example, the set of regular languages would be closed under ∪
(union) if A1 ∪ A2 is a regular language whenever A1 and A2 are two
regular languages. Which methods to we have available to prove that
a language is regular? Our best chance at the moment is to attempt
to construct an NFA for A1 ∪ A2, and the most straightforward way
of accomplishing this is to first take NFAs N1 and N2 accepting these
A1 and A2, i.e., L(N1) = A1 and L(N2) = A2, and then trying to
combine these machines in order to construct an NFA for A1 ∪ A2.
The two automata N1 and N2 are visualised in Figure 1 and Figure 2,
where we for illustrative purposes have not bothered to write out the
names of any states, or labelled the transitions with symbols. The two
machines may then be combined as follows.

Figure 1: The NFA N1.

Figure 2: The NFA N2.

Theorem 1. The set of regular languages is closed under union.

Proof. Assume that N1 and N2 are the NFAs in Figure 1 and Fig-
ure 2 and consider the following NFA which uses an ε-transition to
“simulate” N1 and N2.

s

ε

ε

Given a string s the automaton then begins in the new start state
and is then able to proceed either to the part of the automaton cor-
responding to N1, or to the part of the automaton corresponding to
N2.

Theorem 2. The set of regular languages is closed under concatenation.

Proof. Similar to the previous proof we assume that A1 and A2 are
two regular languages and that N1 and N2 be two NFAs accepting
these languages (Figure 1 and Figure 2). Now consider the following
NFA which uses an ε-transition to first proceed through N1 and then
immediately jump to N2.



tddd14/tddd85 lecture 4: closure properties and regular expressions 3

ε

ε

Given a string s the automaton then begins in N1 and after having
reached an original accepting state it jumps to N2 with an ε-transition
and simulates N2 on the rest of the string.

Theorem 3. The set of regular languages is closed under the star operation.

Proof. Let A1 be a regular language and let N1 be an NFA accepting
this language (Figure 1). We will use ε-transitions so that we, when
an accepting state is reach, have the possibility of jumping back to
the start state. In addition we need to explicitly force the automa-
ton to accept the empty string ε, which we can do by adding a new
start state, make it an accepting state, and adding an ε-transition
to the original start state. Hence, we obtain the following NFA.

ε

ε

ε

Given a string s the automata then either accepts immediately (if
s = ε) or begins simulating N1. After having reached the original
accepting state it then has the possibility of jumping back to the
original start state.

Regular Expressions

We now turn to the formal definition of regular expressions. There
are several equal characterizations of regular expressions and we
settle for the following definition which using as few constructs as
necessary.



tddd14/tddd85 lecture 4: closure properties and regular expressions 4

Definition 2. Let Σ be an alphabet. We will simultaneously define a reg-
ular expression and the language that each construct defines, where L(R)
will denote the language described by the regular expression R. Then, R is a
regular expression if R is

1. a for a ∈ Σ, L(a) = {a},

2. ε, L(ε) = {ε},

3. ∅, L(∅) = ∅,

4. R1 + R2 where R1 and R2 are regular expressions, L(R1 + R2) =

L(R1) ∪ L(R2)
1, 1 Some authors prefer to write R1 + R2

as R1 ∪ R2 (or R1|R2), but we prefer the
former to avoid overloading the usage
of ∪.

5. R1R2 where R1 and R2 are regular expressions, L(R1R2) = L(R1)L(R2),
and

6. R∗1 where R1 is a regular expression, L(R∗1) = L(R1)
∗.

Trivia: the operations defining regular
expressions together with an alphabet
forms as Kleene algebra, roughly mean-
ing that ∅ behaves as 0, ε behaves as 1,
+ behaves as addition, concatenation
behaves as multiplication. The star
operation does not have a direct counter
part in arithmetic but may be thought
of as a variant of iterated multiplication.

The star operation has higher precedence than concatenation and
+, and concatenation has higher precedence than +. However, if
there is any risk of confusion we typically use parentheses to clarify
the intended meaning.

Example 1. Let R = (0 + 1)∗0. What is the language of this regular ex-
pression? It consists of two parts, (0 + 1)∗, and 0, and if we can understand
these two subexpressions, then understanding (0 + 1)∗0 is simple. However,
since (0 + 1)∗ simpy describes all Boolean strings, the regular expression
(0 + 1)∗0 must define the set of Boolean strings ending with 0.

In this example we could immediately see the the language defined by
the regular expression, but this is not always so simple if the expression is
larger. In such a case it is good to be able to explicitly calculate the resulting
language L(R), which we can do by following the rules in Definition 2.
In this particular example we get L(R) = L((0 + 1) ∗ 0) = L((0 +

1)∗)L(0) = L((0 + 1)∗){0} = L(0 + 1)∗{0} = (L(0) ∪ L(1))∗{0} =

({0} ∪ {1})∗{0} = {0, 1}∗{0}.

Let us consider a few more examples.

Example 2. Let R = (0 + 1)∗00(0 + 1)∗. Then each string defined by
this regular expression can be “broken down” into three parts: an arbitrary
string in (0 + 1)∗ = {0, 1}∗, the string of two consecutive zeroes 00, and
again an arbitrary string in (0 + 1)∗ = {0, 1}∗. Hence, L(R) is the set of
all Boolean strings containing at least two consecutive zeroes.

Let R = (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)∗1234(0 + 1 + 2 + 3 +
4 + 5 + 6 + 7 + 8 + 9)∗. Then L(R) defines the same language as the PIN
code automaton from lecture 1, but arguably does so in a more natural way.

Our aim is now to prove that regular expressions exactly coincide
with regular languages.



tddd14/tddd85 lecture 4: closure properties and regular expressions 5

Theorem 4. A language is regular if and only if some regular expression
describes it.

Recall that NFAs and DFAs have the
same strength. Hence, for the first
statement we choose to construct an
NFA since using an NFA gives us
more flexibility, but for the second
statement we choose to use a DFA as
a starting point since it makes it easier
to construct an equivalent regular
expression.

Since this is an “if and only if” statement there are two statements
that have to be proven. First, given a regular expression R, construct
an NFA N such that L(R) = L(N). Second, given a DFA D, construct
a regular expression R such that L(D) = L(R). We tackle these two
problems in the following two sections.

Regular Expressions to Finite Automata

To prove the first condition in Theorem 4 we show that there for any
regular expression R exists an NFA N where L(R) = L(N).

Lemma 1. If a language is described by a regular expression then it is
recognized by an NFA.

Proof. (Sketch) We describe the construction of the NFA NR for a
regular expression R recursively as follows.

1. If R = R1 + R2 then L(R1 + R2) = L(R1) ∪ L(R2) and we recur-
sively compute NR1 and NR2 and then construct the NFA NR for
L(R1) ∪ L(R2) from Theorem 1.

2. If R = R1R2 then L(R1R2) = L(R1)L(R2) and we recursively com-
pute NR1 and NR2 and then construct the NFA NR for L(R1)L(R2)

from Theorem 2.

3. If R = R∗1 then L(R∗1) = L(R1)
∗ and we recursively compute NR1

and then construct the NFA NR for L(R1)
∗ from Theorem 3.

We leave the three non-recursive base cases as an exercise (see Exer-
cise 2 on p. 9).

To obtain a DFA one may then, for example, use the subset con-
struction from lecture 3.

Finite Automata to Regular Expressions

We now turn to the second condition in Theorem 4. Our aim is thus
to prove the following lemma.

Lemma 2. If a language is recognized by a DFA then it is described by a
regular expression

Proof. (Sketch) We provide a proof sketch based on the GNFA-method.
For full details and a correctness proof, see Lemma 1.60 in Sipser 2. 2 M. Sipser. Introduction to the Theory

of Computation. Course Technology,
Boston, MA, third edition, 2013

The basic idea is to consider a generalised NFA (GNFA) where transi-
tions may be marked with regular expressions and not only alphabet



tddd14/tddd85 lecture 4: closure properties and regular expressions 6

q1 q2

(00)∗

01∗

01 + 10

0∗ Figure 3: A GNFA.

symbols. For example, the automaton in Figure 3 is a GNFA where
we may transition from q1 to q2 by the strings 0, 01, 011, and so on.

Given a DFA the plan is then to gradually convert this automaton
to an equivalent GNFA which has a very simple form, consisting of
a start state, an accept state, and a single transition from the start
state to the accept state, labelled with the desired regular expression.
Initially we perform the following three simple steps.

1. Add a new start state with an ε-transition to the old start state.

2. Add a new accept state with an ε-transitions from all old accept
states

3. Replace transitions of the form a, b, c by a + b + c.

Clearly, these steps do not affect the recognised language, and the
only purpose behind them is to get a few steps closer to the desired
GNFA. See Figure 6 for an example. The crucial step is now to sim-
plify the automaton by gradually removing states until only the new
start state and the new accept state remain. However, it is clear that
we cannot simply remove a state, since any transition leading to the
state that was removed would no longer be valid. In general, assume
that we have the GNFA in Figure 4, where R1, R2, R3, R4 are regular
expressions, and that we want to remove the state se.

s1 se s2

R2

R1 R3

R4

Figure 4: The R1R∗2 R3 + R4 rule: before.

We claim that this is correctly accomplished by the the GNFA in
Figure 5.

s1 s2
R1R∗2 R3 + R4 Figure 5: The R1R∗2 R3 + R4 rule: after.

Why? Before removing se we had the choice of transitioning from
s1 to se using R1, looping in se by reading R2, and finally transition-
ing to s2 by reading R3. But this sequence of transitions precisely



tddd14/tddd85 lecture 4: closure properties and regular expressions 7

corresponds to the regular expression R1R∗2 R3, and to ensure that the
old transition from s1 to s2 using R4 is still valid we end up with the
regular expression R1R∗2 R3 + R4. See Figure 7 and Figure 8 for a con-
crete example, where we have removed the state q2. In order to apply
the R1R∗2 R3 + R4 rule we have to ensure that we apply it for all states
in the automaton matching the configuration in Figure 4, and update
the transition between these two states accordingly. q1 q2

0

1

0

1

Figure 6: A DFA for the language
{x1 | x ∈ {0, 1}∗}.

qs q1 q2 q f
ε ε

0

1

0

1

Figure 7: The NFA resulting from
adding a new start and accept state.

qs q1 q f
ε

11∗0 + 0

11∗

Figure 8: The GNFA resulting from
eliminating q2 and simplifying 11∗ε+∅.

qs q f
(11∗0 + 0)∗(11∗)

Figure 9: The GNFA resulting from
eliminating q1 and simplifying ε(11∗0 +
0)∗(11∗) + ∅.

1. First, consider s1 = q1 and s2 = q f . We then want to update
the transition between q1 and q f . We have that R1 = 1, R2 = 1,
R3 = ε, and that R4 = ∅ (since there is no transition from q1 to q2

in Figure 7). This gives the expression R1R∗2 R3 + R4 = 11∗ε + ∅,
equivalent to 11∗, which we use to update the transition from q1 to
q f .

2. Second, consider s1 = s2 = q1. This case is needed since we in
Figure 7 have a transition from q2 to q1 which needs to be taken
into account when q2 is removed, since we previously had the
choice of going back and forth between q1 and q2. Then R1 = 1
(q1 to q2), R2 = 1 (q2 to q2), R3 = 0 (q2 to q1) and R4 = 0 (q1

to q1). This gives the expression R1R∗2 R3 + R4 = 11∗0 + 0, and
we therefore update the transition from q1 to q1 to reflect this
(Figure 8).

We repeat the state removal step for each state different from the
start and accept state. Hence, in Figure 8 we should now attempt
to remove q1. Thus, s1 = qs, se = q1, and s2 = q f , giving R1 = ε,
R2 = 11∗0 + 0, R3 = 11∗ + ∅, and R4 = ∅. Hence, R1R∗2 R3 + R4 =

ε(11∗0 + 0)∗(11∗ + ∅) + ∅ that we simplify to (11∗0 + 0)∗(11∗)
and becomes the new transition between qs and q f (Figure 9). Since
only the start state qs and accept state q f remain with the transition
labelled R = (11∗0 + 0)∗(11∗), the regular expression corresponding
to the original automaton in Figure 6 is R.

Let us briefly summarise the GNFA method for converting a DFA
to a regular expression from the proof sketch of Lemma 2.

1. Add a new start state with an ε-transition to the old start state.

2. Add a new accept state with an ε-transitions from all old accept
states.

3. Replace transitions of the form a, b, c by a + b + c.

4. (a) Pick a state q distinct from the start and accept state.

(b) For all states q1 and q2, including the case when q1 = q2, when
the R1R∗2 R3 + R4 rule is applicable, update the transition from
q1 to q2 with R1R∗2 R3 + R4 (simplify if possible).



tddd14/tddd85 lecture 4: closure properties and regular expressions 8

(c) Remove q and go back to step 4.(a).

5. When only the start and accept state remain with transition R then
output R.

How do I Know that my Answer/Solution is Correct?

The GNFA method for converting a DFA to a regular expression is
more complicated than the other procedures and methods that we
have encountered thus far. While the idea of gradually removing
states is not so difficult, even minor mistakes can propagate and
result in an erroneous answer.

How Can I Verify my Answer?

Even if we follow the GNFA method and simplify it is possible to
end up with a large regular expression and it can be difficult to verify
its correctness just by “looking” at it. For example, if we forget to
simplify even for the simple automaton in Figure 6 we obtained
(11∗0 + 0)∗(11∗) even though (0 + 1)∗1 describes the same language.
The easiest course of action is to simply test your regular expression,
similarly to how you would test a function/procedure which has just
been implemented in a programming language.

1. Define a handful of input strings and begin by simulating the
NFA on these strings. This can be done either by hand, or by using
one of the numerous tools available online. This will not take more
than a couple of minutes once you are used to the procedure.

2. Compare the results with your regular expression. Either by hand,
with a programming language which supports regular expres-
sions, or by using a tool such as grep. Using grep you could e.g.
have a text file where each line consists of a string, and only out-
put the strings matching a given regular expression.

How Can I Verify my Solution?

Assume that you have verified your answer by the method outlined
in the preceding section. This is not a strict guarantee that the so-
lution is also correct since you might for example have introduced
errors which have cancelled each other out, or made invalid assump-
tions.

First, attempt to verify your solution by going through each step,
from the beginning to the end, and check its soundness. Did you
really check all transitions involved when removing a state, and
did you correctly compute R1R∗2 R3 + R4? This might appear to be



tddd14/tddd85 lecture 4: closure properties and regular expressions 9

tiresome but it is in general much quicker to verify a solution than to
generate it from scratch. Some more general guidelines to check for
are given below.

1. Do not try to be clever and remove several states in one iteration.
Simply pick one state and update all involved transitions accord-
ingly.

2. You should simplify regular expressions but you have to be abso-
lutely certain that they are equivalent. For example, L(R + ∅) =

L(R), but L(R+ ε) is in general not equal to L(R). However, L(R∅)

is in general not equal to L(R), while L(Rε) = L(R). Making one
small mistake in the beginning of the procedure, e.g., by confusing
ε with ∅, could make the rest of the solution wrong.

3. When picking a state to remove you have to update all affected
transitions, including loops.

4. The resulting regular expression depends on the order which you
have picked states. Hence, your solution may be perfectly correct
even if the answer differs from a given answer.

Summary

We defined regular expressions, a class of expressions which not
only have an abundance of applications, but also turned out to be yet
another description of regular languages. Crucially, in the process
we have also proved closure properties of regular languages and de-
scribed how regular expressions can be converted to finite automata,
and how finite automata can be converted to regular expressions.
In the next lecture we will return to finite automata and describe a
useful minimisation algorithm for DFAs.

Food for Thought

1. The constructions in the proofs of the closure properties in Theo-
rem 1, Theorem 2, and Theorem 3 were for simplicity presented in
a visual form. Given N1 = (Q, Σ, δ, q0, F) and N2 = (Q′, Σ′, δ′, q′0, F′),
can you think of a way to explicitly define the NFA for the lan-
guage L(N1) ∪ L(N2)?

2. In the proof of Lemma 1 we did not cover every type of regular
expression. Which cases are missing from Definition 2, and for
each such regular expression, how can you define the correspond-
ing NFA?



tddd14/tddd85 lecture 4: closure properties and regular expressions 10

3. The main selling point in this lecture is the realisation that DFAs,
NFAs, and regular expressions turned out be equivalent char-
acterizations of the class of regular languages. However, certain
languages are much more succinctly represented by regular ex-
pressions than by DFAs, and vice versa. Can you come up with a
regular expression where the equivalent DFA is much larger?

References

M. Sipser. Introduction to the Theory of Computation. Course Technol-
ogy, Boston, MA, third edition, 2013.


	Background and Intuition
	Closure Properties of Regular Languages
	Regular Expressions
	How do I Know that my Answer/Solution is Correct?
	Summary
	Food for Thought

