
TDDD14/TDDD85 Lecture 3: Nondeterministic
Finite Automata
Victor Lagerkvist (based on slides by Christer Bäckström and
Gustav Nordh)

In this lecture note we consider an extension of DFA where the ma-
chine when reading a symbol has the choice between multiple transi-
tions, so-called nondeterministic finite automata (NFA). Despite appearing
to be a powerful generalisation of DFA we will see that each such au-
tomaton can be converted to a DFA accepting the same language, using
the subset construction method.

Background and Intuition
q1 q2

0
1

0

1

Figure 1: A DFA for the language of
Boolean strings ending with 1.

q1 q2

0, 1

1

Figure 2: An NFA for the language of
Boolean strings ending with 1.

q1 q2

0, 1

1

Figure 3: 011 (the machine is in its
initial state).

q1 q2

0, 1

1

Figure 4: 011 (the machine stays in its
initial state).

q1 q2

0, 1

1

Figure 5: 011 (the machine may be in
both q1 and q2).

q1 q2

0, 1

1

Figure 6: 011 (the machine may be in
both q1 and q2).

Recall that a DFA is deterministic: for each state and symbol there
exists precisely one transition to a state. However, in general, might it
be possible to have a choice between two or more states by allowing
nondeterministic transitions? Consider e.g. the automaton in Figure 2,
which accepts the same language as the DFA in Figure 1. What hap-
pens if the machine in the initial state q1 reads 1: does it stay in q1 or
proceed to the accept state q2?

In this lecture we explore this concept by considering a generalisa-
tion of DFA making use of nondeterminism, so-called nondeterministic
finite automata (NFA). Loosely speaking, an NFA is an automaton
which when reading a symbol has the possibility of choosing several
possible states.

Definition 1. (Informal) A nondeterministic finite automaton (NFA)
consists of five components: a set of states, an alphabet, a transition func-
tion which for each state and symbol from the alphabet returns a set of new
states, a start (or initial) state, and a set of accept states.

The nondeterministic component of an NFA may be understood
in two different ways. First, we may view an NFA as an automaton
which is allowed to choose one of many possible transitions, and
different choices can lead to different outcomes. The machine accepts
a string if there is some sequence of choices leading to a final state,
and rejects a string if every choice is wrong. The second viewpoint
is more pragmatic: each transition may lead to multiple new states
which the machine explores in parallel. Thus, the NFA reads the
input string symbol by symbol, stores a set of “active” states, and
in each iteration applies the transition function to every active state.
For example, we may understand the NFA in Figure 2 as follows. If
we are in state q1 and read 1 then we have the choice of transitioning

tddd14/tddd85 lecture 3: nondeterministic finite automata 2

to either q1 or q2. Thus, the machine can stay in q1 for as long as it
wants, repeatedly reading 0 and 1, but once it has transitioned to q2

by reading 1 it cannot go back to q1. Hence, the language accepted by
this machine is the set of all Boolean strings ending with 1, i.e., the
language {x1 | x ∈ {0, 1}∗}. Here, it might be instructive to compare
this NFA with the corresponding DFA in Figure 1. The behaviour of
this NFA on the input string 011 is visualised in Figure 3– 6, where
each active state is coloured in red. The machine accepts the string in
Figure 6 since q2 is a final state. p q r

0, 1

1 0, 1

Figure 7: An NFA for {x1y | x ∈
{0, 1}∗, y ∈ {0, 1}}.

p q r

0, 1

1 0, 1

Figure 8: 0101

p q r

0, 1

1 0, 1

Figure 9: 0101

p q r

0, 1

1 0, 1

Figure 10: 0101

p q r

0, 1

1 0, 1

Figure 11: 0101

p q r

0, 1

1 0, 1

Figure 12: 0101 (rejected)

Let us consider one additional example before turning to the for-
mal definition of an NFA. The NFA in Figure 7 is an extension of the
NFA in Figure 2 which accepts the set of Boolean strings where the
second-to-last symbol is 1, i.e., the set {x1y | x ∈ {0, 1}∗, y ∈ {0, 1}}.
The behaviour of this NFA on input string 0101 is visualised in
Figure 8– 12, where active state(s) and the chosen transition(s) are
coloured in red. The machine rejects 0101 since no active state in
Figure 12 is a final state.

Formal Definition

Recall that P(A) = {X | X ⊆ A} denotes the powerset of a
set A, i.e., the set of all subsets of A. For example, P(∅) = {∅},
P({q}) = {∅, {q}}, P({q1, q2}) = {∅, {q1}, {q2}, {q1, q2}}. The for-
mal definition of an NFA is now surprisingly undramatic, but we will
make one additional generalisation where we allow transitions with-
out reading a symbol from the input string, so-called ε-transitions.

Definition 2. A nondeterministic finite automaton (NFA) is a 5-tuple
(Q, Σ, δ, q0, F) where

1. Q is a finite set called the states,

2. Σ is an alphabet,

3. δ : Q× Σ ∪ {ε} → P(Q) is the transition function.

4. q0 ∈ Q is the start state,

5. F ⊆ Q is the set of accept states.

An NFA with ε-transitions is sometimes called an ε-NFA. Note that
the only difference to a DFA lies in the transition function δ which (1)
allows the NFA to jump from one state to another without reading
a symbol from the input string, if the two states have an ε-transition
between them, and (2) returns a set of potential states instead of a
single state.

tddd14/tddd85 lecture 3: nondeterministic finite automata 3

Example 1. Let us see how the NFA in Figure 7 can be formally represented
as a 5-tuple (Q, Σ, δ, q0, F) via Definition 2.

1. Q = {p, q, r},

2. Σ = {0, 1},

3. q0 = p,

4. F = {r},

and where δ is defined as

• δ(p, 0) = {p}, δ(p, 1) = {p, q},

• δ(q, 0) = δ(q, 1) = {r},

• δ(r, 0) = δ(r, 1) = ∅.

Let us immediately consider an example showing the usefulness of
ε-transitions.

Example 2. Assume that we now want to define an NFA for the language
of Boolean strings which (1) ends with 1 or where (2) the second symbol
to the right is 1. Hence, we want to construct an NFA for the language
{x1 | x ∈ {0, 1}∗} ∪ {x1y | x ∈ {0, 1}∗, y ∈ {0, 1}}. Recall that we
already have a DFA recognising {x1 | x ∈ {0, 1}∗} (Figure 1) and an NFA
recognising {x1y | x ∈ {0, 1}∗, y ∈ {0, 1}} (Figure 7). Can we somehow
use these automata to avoid having to construct an NFA from scratch?
Here, ε-transitions prove to be very useful indeed. Consider the NFA in
Figure 13 which is constructed by taking the two aforementioned NFAs and
creating a new start state from which we have ε-transitions to the original
two machines. Then the machine starts in the new start state but may use
ε-transitions to proceed to any of the original machines. The behaviour of
this machine on the input string 01 is visualised in Figure 15– 18 in the
appendix.

s

q1 q2

p q r

ε
0, 1

1 0, 1

ε

1

0 1

0

Figure 13: An NFA with ε-transitions
recognising {x1 | x ∈ {0, 1}∗} ∪ {x1y |
x ∈ {0, 1}∗, y ∈ {0, 1}}.

tddd14/tddd85 lecture 3: nondeterministic finite automata 4

Last, we generalise the notion of “acceptance” in the context of
NFAs.

Definition 3. Let N = (Q, Σ, δ, q0, F) be an NFA and s be a string
of length n over Σ. Say that N accepts s if there is a sequence of states
r0, r1, . . . , rm, m ≥ n, from Q such that s can be written as s = s1s2 . . . sm

where each si ∈ Σ ∪ {ε} such that This might look slightly awkward,
but the condition s = s1s2 . . . sm for
si ∈ Σ ∪ {ε} means that we are allowed
to “insert” the empty string ε in s when
we want to use an ε-transition.

• r0 = q0,

• ri+1 ∈ δ(ri, si+1) for i ∈ {0, . . . , m− 1}, and

• rm ∈ F.

Thus, an NFA accepts a string if there exists a sequence of transi-
tions from the start state to an accepting state, and rejects if no such
sequence of transitions exists.

Example 3. Let us consider the NFA in Figure 7 and the string 0101.
Proving that this string is not accepted is more difficult than in the DFA
case since we have to rule out every possible sequence of state transitions.
Consider the following applications of δ and compare them with Figure 8–
12.

1. δ(p, 0) = {p}1. 1 Read 0, in state p: stay in p.

2. δ(p, 1) = {p, q}2. 2 Read 1 in state p: go to p or q.

(a) δ(p, 0) = {p}3. 3 Read 0 in state p: go to p.

(b) δ(p, 1) = {p, q}4. 4 Read 1 in state p: go to p or q.

(a) δ(q, 0) = {r}5. 5 Read 0, in state q: go to r.

(b) δ(r, 1) = ∅6. 6 Read 1, in state r: no transition.

The above applications show that there does not exist a sequence of states
r0 = p, r1, r2, r3, r4 = r where r1 ∈ δ(r0, 0), r2 ∈ δ(r1, 1), r3 ∈ δ(r2, 0),
r4 ∈ δ(r3, 1). Hence, we conclude that the NFA does not accept the string
0101.

Similarly to DFAs we then let L(N) be the set of strings accepted
by an NFA N. We will shortly see that there for each NFA N exists a
DFA D such that L(N) = L(D).

The Subset Construction

tddd14/tddd85 lecture 3: nondeterministic finite automata 5

We now describe a method for converting an NFA to an equivalent
DFA accepting the same language. For an NFA N = (Q, Σ, δ, q0, F)
and R ⊆ Q let E(R), the ε-closure of R, be the set of states that can be
reached from R using 0 or more ε-transitions. For example, if we take
the NFA in Figure 13 then E({s}) = {s, q1, q2}, E({q1}) = {q1}, and
E({s, r}) = {s, q1, p, r}.

Theorem 1. For each NFA N there exists a DFA D such that L(N) =

L(D).

Proof. Let N = (Q, Σ, δ, q0, F) be an NFA. We will construct a DFA
D = (Q′, Σ, δ′, q′0, F′) where In other words: in the new set of states

each state is a set of states over Q,
the start state is formed by taking the
start state q0 and all states that can be
reached by ε-transitions, and the set of
accepting states contains every state
which contains at least one accepting
state from F.

1. Q′ = P(Q),

2. q′0 = E({q0}), and

3. F′ = {R ∈ Q′ | R ∩ F 6= ∅}.

The transition function δ′ is then for each R ∈ Q′ and a ∈ Σ defined
by δ′(R, a) = {q ∈ Q | q ∈ E(δ(r, a)) for some r ∈ R}. In other words: δ′(R, a) contains the

states obtained by picking a state r ∈ R,
following the transition from r as
prescribed by the symbol a, and then
following 0 or more ε-transitions.

For correctness and additional details, see Theorem 1.39 in Sipser 7.

7 M. Sipser. Introduction to the Theory
of Computation. Course Technology,
Boston, MA, third edition, 2013

The proof of Theorem 1 suggests an algorithm for converting an NFA
to a DFA by iteratively computing the new transition function δ′. We
illustrate this method, the subset construction, by an example.

Example 4. We will use the subset construction from the proof of The-
orem 1 to convert the NFA N = (Q, Σ, δ, q0, F) in Figure 13 to an
equivalent DFA (P(Q), Σ, δ′, q′0, F′). From the figure we see that Q =

{s, q1, q2, p, q, r}, Σ = {0, 1}, q0 = s, and F = {q2, r}.
We could in principle do this by computing the powerset P(Q) of Q

and for each R ⊆ Q and a ∈ Σ compute the corresponding entry in
δ′, but this is cumbersome since even in this small example we have that
|P(Q)| = 26 = 64, which is hard to compute by hand. Can we do better?

In practice, it is often much simpler to iteratively compute δ′ by only
computing new entries when they are needed. Thus, we begin by comput-
ing the new start state q′0 = E({s}) = {s, q1, p}. The interpretation of
this state is then that we initially are in either state s, state q1, or state p,
depending on whether we have done an ε-transition or not. We then want to
compute δ′({s, q1, p}, 0) and δ′({s, q1, p}, 1) in order to complete this row
in the transition table of δ′. According to the proof of Theorem 1 we know
that δ′({s, q1, p}, 0) contains those state reachable from s, q1, or p by (op-
tionally) first following an ε-transition, and then following a transition by
reading 0. Using Figure 13 it is easy to verify that we can only reach q1 and
p in this way. Similarly, if we are in s, q1, or p, and read 1, then the only
possible states are q2, p, and q. Hence, we obtain the following row in the

tddd14/tddd85 lecture 3: nondeterministic finite automata 6

transition table of δ′, which we mark with→ to indicate that its the starting
state.

0 1
→ {s, q1, p} {q1, p} {q2, p, q}

Since there are no entries for {q1, p} and {q2, p, q} we continue with
those two entries, starting with {q1, p}.

0 1
→ {s, q1, p} {q1, p} {q2, p, q}

{q1, p} {q1, p} {q2, p, q}
δ′({q1, p}, 0) = {q1, p} and δ′({q1, p}, 1) = {q2, p, q} were obtained

in exactly the same way as earlier: if we are in state q1 or state p and read 0,
then the only possible states are q1 and p, meaning that we stay in {q1, p}.
Similarly, if we are in state q1 or p and read 1, then we end up in q2, p, or
q, explaining δ′({q1, p}, 1) = {q2, p, q}. We continue with the entry for
{q2, p, q}, and since this state is an accepting state we mark the correspond-
ing row with F.

0 1
→ {s, q1, p} {q1, p} {q2, p, q}

{q1, p} {q1, p} {q2, p, q}
F{q2, p, q} {q1, p, r} {q2, p, q, r}

We compute δ′({q2, p, q}, 0) = {q1, p, r} and δ′({q2, p, q}, 1) =

{q2, p, q, r}, and continue with the entry for {q1, p, r}, which is marked as
an accepting state since it contains r.

0 1
→ {s, q1, p} {q1, p} {q2, p, q}

{q1, p} {q1, p} {q2, p, q}
F{q2, p, q} {q1, p, r} {q2, p, q, r}
F{q1, p, r} {q1, p} {q2, p, q}

We compute δ′({q1, p, r}, 0) = {q1, p} and δ′({q1, p, r}, 1) =

{q2, p, q}, and since both of these entries are already in the current tran-
sition table we pick the only remaining state {q2, p, q, r}, mark it as an
accept state, and complete the table.

0 1
→ {s, q1, p} {q1, p} {q2, p, q}

{q1, p} {q1, p} {q2, p, q}
F{q2, p, q} {q1, p, r} {q2, p, q, r}
F{q1, p, r} {q1, p} {q2, p, q}

F{q2, p, q, r} {q1, p, r} {q2, p, q, r}
This DFA is visualized in Figure 14.

tddd14/tddd85 lecture 3: nondeterministic finite automata 7

{s, q1, p}

{q1, p}

{q2, p, q} {q1, p, r}

{q2, p, q, r}

0

1

0

1

0

10

1

0

1 Figure 14: The DFA corresponding to
the NFA in Figure 13 constructed via
the subset method.

Summary

We defined nondeterministic finite automata: a seemingly powerful
generalisation of DFA but which turned out to be yet another char-
acterization of regular languages since each NFA can be converted
into an equivalent DFA with the subset construction method. In the
forthcoming lecture we will describe yet another characterization of
regular languages using regular expressions, and investigate closure
properties of regular languages.

Food for Thought

1. We described the subset method for constructing an equivalent
DFA for a given NFA. In the worst-case, how many states does the
resulting DFA have if the given NFA has k states?

2. Assume that you are given an NFA N = (Q, Σ, δ, q0, F). Can you
think of a simple condition (involving δ) for when N is a DFA in
disguise, i.e., each transition is deterministic?

3. How could you simulate an NFA on an input string in your
favourite programming language? How would such a simulation
differ from simulating a DFA?

References

M. Sipser. Introduction to the Theory of Computation. Course Technol-
ogy, Boston, MA, third edition, 2013.

Appendix

tddd14/tddd85 lecture 3: nondeterministic finite automata 8

s

q1 q2

p q r

ε
0, 1

1 0, 1

ε

1

0 1

0

Figure 15: 01 (the NFA begins in its
initial state s).

s

q1 q2

p q r

ε
0, 1

1 0, 1

ε

1

0 1

0

Figure 16: 01 (before reading 0 the NFA
is allowed to use ε-transitions to q1 and
p).

s

q1 q2

p q r

ε
0, 1

1 0, 1

ε

1

0 1

0

Figure 17: 01 (the NFA has read 0 and
goes from q1 to q1 and from p to p,
but is no longer in s since there is no
transition to s from another state by 0).

s

q1 q2

p q r

ε
0, 1

1 0, 1

ε

1

0 1

0

Figure 18: 01 (the NFA has read 1,
proceeds from q1 to q2, from p to q, and
accepts since q2 is an accepting state).

	Background and Intuition
	Formal Definition
	The Subset Construction
	Summary
	Food for Thought
	Appendix

