
TDDD14/TDDD85 Lecture 2: Deterministic Finite
Automata
Victor Lagerkvist (based on slides by Christer Bäckström and
Gustav Nordh)

In this lecture note we define (deterministic) finite automata and ex-
emplify how they can be constructed. We use this class of automata to
define the class of regular languages.

Background and Intuition

Recall the PIN code example from lecture 1: a simple machine
which reads symbols from the alphabet {0, 1, . . . , 9} and recognises
the code 1234. We previously stated that the language of this ma-
chine was {1234}, but to make the example slightly more realistic we
in addition assume that that the machine accepts a numerical string
if it contains 1234 as a subsequence. More formally, this implies that
the language of the machine is {0, 1, . . . , 9}∗{1234}{0, 1, . . . , 9}∗. We
now want to construct a machine, an automaton, for this language.

Definition 1. (Informal) A deterministic finite automaton1 (DFA) con- 1 A DFA is said to be deterministic since
there for each state and symbol exists
exactly one possible transition to a new
state. An automaton where we have
multiple possible transitions is said to
be nondeterministic and is the topic of
the next lecture.

sists of five components: a set of states, an alphabet, a transition function
which for each state and symbol from the alphabet returns a new state, a
start (or initial) state, and a set of accept states.

We visualize a DFA as a directed graph where each node repre-
sents a state, and where a directed edge between two nodes repre-
sents a transition from one state to another by reading a single sym-
bol from the input string. In addition, the accept state is indicated by
encircling the node in question, and the initial state is indicated by an
arrow −→. Informally, a DFA then takes a string (over the current al-
phabet) as input, reads one symbol from this string at a time, and in
each iteration proceeds to a state by using the transition function. If
there are no symbols left and the machine ends up in an accept state,
then the machine accepts the string, and otherwise rejects.

How can we then construct a DFA for the language of numerical
strings containing 1234 as a subsequence? In general, do not try to
solve the entire problem at once, and instead concentrate on a part
of the problem, e.g., by solving a relaxed problem and then trying to
extend this to a full solution. In the case of this DFA, the language Two hints for constructing a DFA for a

given language.

1. Simplify the problem/language.

2. Begin by defining the most impor-
tant states: worry about transitions
and exactly how the states should be
achieved later.

appears to be too complicated for us to immediately see all states and
transitions. Hence, we initially try to figure out the most important
states and then worry about transitions later. Thus, we definitely
need one state when we have read 1, one state where we have read



tddd14/tddd85 lecture 2: deterministic finite automata 2

1 followed by 2 (i.e., 12), one state where we have read 123, and an
accept state which we end up in after having read 1234. In addition,
we need a start state, and a series of transitions between the states,
and thus obtain the following.

qs q1 q12 q123 q1234
1 2 3 4 Figure 1: Attempt 1 (incomplete).

Thus, this “automaton”2 begins in state qs and transitions to the 2 This is not yet a DFA, not even accord-
ing to the informal definition, since the
transition function is not fully specified.
But we will worry about that later.

final state q1234 by reading the symbols 1, 2, 3, and 4. The naming
scheme for the remaining states should be fairly obvious: qs is the
start state, in q1 we have read 1, in q12 we have read 12, and in q123

we have read 123. However, while this automaton correctly accepts
the string 1234, we have not yet considered the cases where 1234 is a
substring. A first attempt of remedying this might look as follows.

qs q1 q12 q123 q1234

0, . . . , 9

1 2 3 4

0, . . . , 9 Figure 2: Attempt 2 (incomplete and
incorrect).

But now we have introduced an additional error: which state
should the automaton transition to if it in state qs reads the sym-
bol 1: qs or q1? This is an example of nondeterminism which is not
allowed to occur in a DFA. Since this is a rather serious error it is
best to fix it immediately. Let us reason as follows. If we in state qs

read 1 then we should transition to q1. Hence, we need to remove
1 from the loop in qs, meaning that we stay in qs only if we read a
symbol in {0, 2, . . . , 9}. However, when in state q1 we also need the
possibility of going back to qs if we read a symbol which is not 2, or
1, i.e., 0, 3, . . . , 9. Furthermore, if we are in state q1 and read 1, then
we should simply stay in q1. These changes lead to the following
automaton.

qs q1 q12 q123 q1234

0, 2, . . . , 9

1 2 3 4

0, . . . , 9

0, 3, . . . , 9

1
Figure 3: Attempt 3 (incomplete).

This is certainly more promising than earlier attempts, but what
happens if we in state q12 or state q123 read the symbol 1? The most



tddd14/tddd85 lecture 2: deterministic finite automata 3

reasonable course of action is to proceed to q1, so we need to explic-
itly add those transitions.

qs q1 q12 q123 q1234

0, 2, . . . , 9

1 2 3 4

0, . . . , 9

0, 3, . . . , 9

1
1

1 Figure 4: Attempt 4 (incomplete).

Only two uncertainties remain: what happens if we in state q12

read a symbol which is not 1 or 3, and if we in state q123 read a sym-
bol which is not 1 or 4? Then the string read so far is not 1234, and
we have to go back to the initial state qs. This leads to the following.

qs q1 q12 q123 q1234

0, 2, . . . , 9

1 2 3 4

0, . . . , 9

0, 3, . . . , 9
0, 2, 4, . . . , 9

0, 2, 3, 5, . . . , 9

1
1

1 Figure 5: Attempt 5 (complete).

Formal Definition

The formal definition of a DFA should now not come as great
surprise, given the informal definition in Definition 1 and the con-
struction of the DFA in Figure 5.

Definition 2. A deterministic finite automaton (DFA) is a 5-tuple
(Q, Σ, δ, q0, F) where

1. Q is a finite set called the states,

2. Σ is an alphabet,

3. δ : Q× Σ→ Q is the transition function,

4. q0 ∈ Q is the start state,

5. F ⊆ Q is the set of accept states.

The notation δ : Q × Σ → Q simply means that δ is a binary
(2-arity) function which takes a state from Q and a symbol from
Σ as arguments, and returns a state. It is common to represent the



tddd14/tddd85 lecture 2: deterministic finite automata 4

transition function δ as a table where each row consists of a state q, a
symbol x ∈ Σ, and the new state δ(q, x). See Figure 6 for an example
of a DFA, and Figure 7 for the corresponding transition table.

Example 1. Let us see how the DFA in Figure 5 can be formally represented
as a 5-tuple (Q, Σ, δ, q0, F) via Definition 2.

1. Q = {qs, q1, q12, q123, q1234},

2. Σ = {0, 1, . . . , 9},

3. q0 = qs,

4. F = {q1234},

and where δ is defined as

• δ(qs, 1) = q1, δ(qs, x) = qs for x ∈ {0, 2, . . . , 9},

• δ(q1, 1) = q1, δ(q1, 2) = q12, δ(q1, x) = qs for x ∈ {0, 3, . . . , 9},

• δ(q12, 1) = q1, δ(q12, 3) = q123, δ(q12, x) = qs for x ∈ {0, 2, 4, . . . , 9},

• δ(q123, 4) = q1234, δ(q123, 1) = q1, δ(q123, x) = qs for x ∈
{0, 2, 3, 5, . . . , 9},

• δ(q1234, x) = q1234 for x ∈ {0, . . . , 9}.

Definition 3. Let M = (Q, Σ, δ, q0, F) be a DFA and s = s1s2 . . . sn a
string over Σ. Then M accepts s if there is a sequence of states r0, r1, . . . , rn

from Q such that

• r0 = q0,

• δ(ri, si+1) = ri+1(i ∈ {0, . . . , n− 1}), and

• rn ∈ F.

In other words there exists a sequence of state transitions from the
initial state to the accept state where each transition is determined by
the current symbol from the input string, the current state, and the
transition function. It is important to understand and be able to ap-
ply Definition 3 since it can be used to verify whether a constructed
DFA is actually correct.

Definition 4. A DFA M = (Q, Σ, δ, q0, F) recognises the language
A ⊆ Σ∗ if A = {s | M accepts s}, and we let L(M) denote the language
recognised by M.

We now have everything in place to define the important concept
of a regular language.



tddd14/tddd85 lecture 2: deterministic finite automata 5

Definition 5. Let Σ be an alphabet. A language A ⊆ Σ∗ is said to be
regular if L(M) = A for some DFA M = (Q, Σ, δ, q0, F).

Let us wrap up by showing a concrete example of Definition 3.
Consider the DFA in Figure 6 where the transition function δ is de-
fined according to the table in Figure 7, and the string s = s1s2s3s4s4 =

0101.
qs q f

0
1

0

1

Figure 6: A DFA for the language of
Boolean strings ending with 1.

0 1
qs qs q f
q f qs q f

Figure 7: The transition table corre-
sponding to the DFA in Figure 6.

qs q f

0
1

0

1

Figure 8: 0101

qs q f

0
1

0

1

Figure 9: 0101

qs q f

0
1

0

1

Figure 10: 0101

qs q f

0
1

0

1

Figure 11: 0101

qs q f

0
1

0

1

Figure 12: 0101

Using Definition 3 we can easily prove that the DFA accepts s
by iteratively computing the states r0, r1, . . . , r4 as follows (the state
transitions are visualised in Figures 8– 12, where the underlined
number represents the number currently being inspected, and where
the current state is coloured red).

1. r0 = qs.

2. r1 = δ(r0, s1) = δ(qs, 0) = qs.

3. r2 = δ(r1, s2) = δ(qs, 1) = q f .

4. r3 = δ(r2, s3) = δ(q f , 0) = qs.

5. r4 = δ(r3, s4) = δ(qs, 1) = q f .

Since r4 = q f is an accepting state we conclude that the DFA
accepts 0101.

Summary

We defined deterministic finite automata, leading to the class
of regular languages. How much can we generalise a DFA without
leaving the realm of regular languages? We investigate this question
in the next lecture by defining and exemplifying nondeterministic
finite automata.

Food for Thought

1. Are there any devices/systems around you that could be mod-
elled as a DFA?

2. Is the device that you are currently reading this document on a
DFA?

3. How could you simulate a DFA on an input string in your favourite
programming language?

4. We required the transition function δ to be fully specified. Assume
that we relax this and allow δ to be a partial function, meaning



tddd14/tddd85 lecture 2: deterministic finite automata 6

that δ is allowed to be undefined for some states and symbols. Is
every language accepted by such an automaton accepted by some
DFA?


	Background and Intuition
	Formal Definition
	Summary
	Food for Thought

