
TDDD14/TDDD85 Lecture 1: Introduction and
Formal Languages
Victor Lagerkvist (based on slides by Christer Bäckström and
Gustav Nordh)

In this lecture note we give an introduction to the fundamental con-
cepts of the course, define the notion of a formal language, and the
basic operations over these mathematical objects.

Introduction

The heart of this course is to study models of computation.
What can we compute with very limited memory, and what can we
compute with an unbounded amount of memory? Consider e.g. the
difference between a machine which recognizes a 4-digit numerical
PIN code (Figure 1) and a full-blown personal computer (Figure 2). Is
there a fundamental difference between these two devices?

Figure 1: A simple computer?

While the simple machine in Figure 1 in principle could be imple-
mented by a small, universal computer, it is not a great leap of faith
to imagine that there might exist a simpler model of representation
for the PIN code machine since it at any stage only needs to read a
single digit as input and proceed accordingly, without needing to
care about any past attempts. For example, suppose that the correct
code is “1234”. Then the machine may immediately reject the current
attempt if it reads a symbol outside the set {1, 2, 3, 4}, and reset the
memory state. Similarly, if the machine is in its initial state, reads the
symbol “1”, then it may immediately reject if the next symbol is not
“2”.

Figure 2: A more universal computer?

In contrast, a universal computer certainly seems more compli-
cated since it e.g. has access to additional memory which may be
used to aid the computation. Another striking difference is that the
PIN code machine — at least in principle — always terminates with
a definite answer, but that it is certainly possible to write a computer
program which does not terminate.

However, the title of this course is “formal languages and au-
tomata theory” and not “models of computation”, so what is the
connection between these concepts? Given a computation device we
typically want to use it to solve a given problem by computing some-
thing. As a theoretical convenience it is in this context furthermore
common to only consider decision problems, which are idealizations
of computational problems where it is sufficient to always answer
either yes or no. For example, in the PIN code example we are given

tddd14/tddd85 lecture 1: introduction and formal languages 2

a string and want to answer yes if and only if the string is the correct
PIN code 1234. Similarly, if we are writing a compiler for a computer
language, then at some stage in this process we want to verify that a
given program is syntactically correct, which we can also report by
answering yes or no.

More generally, if we have a machine M which always attempts to
answer yes or no to a given input, then the set of input strings for
which the machine answers yes is known as the language of M and
is in symbols typically written as L(M). Thus, if M is the machine
in Figure 1 which only accepts the PIN code 1234, then L(M) =

{1234}. Hence, each computation device, an automaton, corresponds
to a language, and our main objective is to describe the expressive
power of different types of automata and study properties of the
resulting languages. Let us now briefly describe the three main types
of languages and automata that we will encounter in our course.

Finite Automata
Control unit

Read-only input tape

4 7 1 1 ...

Figure 3: A visualisation of a finite
automaton.

A finite automata represents the simplest possible model of compu-
tation which is still powerful enough to result in interesting applica-
tions. This device consists of a finite number of “states” representing
different stages of the computation, and for each symbol in the input
string 1 proceeds to a new state through a set of transition rules. If

1 Sometimes visualized as an old-school
magnetic tape.there are no symbols left to read and the automaton reaches a so-

called accept state then the machine answers yes, and otherwise no.
Crucially, a finite automaton has very little memory of the past, may
not modify the input string in any form, and always terminates. See
Figure 3 for a visualisation of a finite automaton. The PIN code ma-
chine from Figure 1 is an example of a finite automaton.

The corresponding languages are so-called regular languages, and
exactly corresponds to languages describable by regular expressions,
which has an abundance of applications in computer science.

Pushdown Automata
Control unit

Read-only input tape

4 7 1 1 ...

Stack4

7

1

Figure 4: A visualisation of a pushdown
automata.

The pushdown automaton is a generalisation of finite automata
where the machine is equipped with additional memory in the form
of a stack, where symbols may be pushed and pulled. Thus, a push-
down automaton can store an unbounded amount of items, but only
within the confinements of a stack (e.g., we only have access to the
topmost element). For example, assume that we in the context of a
parser want to be able to recognise whether a given string of paren-
theses is balanced, i.e., each left parenthesis (has a matching right
parenthesis) later in the string. This language is known to not be
regular but can easily be recognised by a pushdown automaton by

tddd14/tddd85 lecture 1: introduction and formal languages 3

pushing and pulling in an appropriate way depending on whether
the current input symbol is (or). See Figure 4 for a visualisation of a
pushdown automaton.

The corresponding class of languages is the set of context-free
languages and is a much richer class of languages than regular lan-
guages. An important application may be found in parsing of pro-
gramming languages where it is common to describe the language in
question by a context-free grammar, and then parse the language by
using algorithms inspired by pushdown automata.

Turing Machines
Control unit

Read-write tape

4 7 1 1 ...

Figure 5: A visualisation of a Turing
machine.

The most powerful model of computation that we consider is the
Turing machine, named after the British mathematician Alan Turing.
The difference between a Turing machine and the two previously
mentioned classes of automata is that a Turing machine may not
only inspect the input string, but also (1) modify it and (2) make
it longer so that the Turing machine in effect also has unbounded
memory (see Figure 5). This seemingly minor modification results in
a significantly increased expressive strength, and a Turing machine
is believed to be able to compute everything that can be computed,
a conjecture known as the Church-Turing thesis. Modern computers,
including smartphones and similar devices, all operate in a fashion
similar to Turing machines. The main advantage of studying Turing
machines instead of concrete computers is that they are much simpler
to describe and reason with, which in turn makes it easier to prove
mathematical properties.

Formal Languages

We now properly begin the first topic of the course. Thus far we
have seen examples of computation devices, automata, and argued
that each computation device corresponds to a language. But what,
precisely, is a formal language? Let us try to answer this question be-
fore we continue by studying classes of automata. Our first definition
is that of an alphabet, which behaves similarly to an alphabet in many
natural languages, in the sense that it is used as building blocks to
form words.

Definition 1. An alphabet is a finite set of symbols (typically denoted by
Σ).

The condition that an alphabet is finite is crucial2. Otherwise, 2 Note that Σ is allowed to be the
empty set ∅. We could explicitly
have forbidden the empty set to be an
alphabet but this would lead to a less
elegant definition.

given a symbol, how could we verify that the symbol is included in

tddd14/tddd85 lecture 1: introduction and formal languages 4

an alphabet? The definition of a string over an alphabet then follows
naturally.

Definition 2. A string over an alphabet Σ is a finite sequence of symbols
over Σ, i.e., each symbol is included in Σ.

A formal language, or simply language, is then just a set (finite or
infinite) of strings over a given alphabet Σ. However, before we turn
to properties and operations over languages we will define some
important operations over strings.

Example 1. Consider the following strings and alphabets.

• 1010 is a string over Σ1 = {0, 1}.

• 1234 is a string over Σ2 = {1, . . . , 9}.

• theory is a string over Σ3 = {a, b, . . . , z}.

• fact:theory is a string over Σ4 = {fact, theory, lemma, proof, :}.

Note that we in the last three examples did not require each sym-
bol in the alphabet. This is perfectly fine since the condition in Defi-
nition 2 only requires that each symbol is included in the alphabet.

Definition 3. The length of a string x, written |x|, is the number of sym-
bols in x.

The only aspect of this definition which might be puzzling is that
“the number of symbols in x” depends on the alphabet in question.

Example 2. |1010| = |1234| = 4 (with respect to Σ1 and Σ2), |theory| =
6 (with respect to Σ3), and |fact : theory| = 3 (with respect to Σ4).

Definition 4. The empty string (ε) is the string of length 0.

The empty string plays roughly the same role as the number 0
in arithmetics and the empty set ∅ in set theory. Let us proceed by
defining a handful of additional operations over strings.

Definition 5. The concatenation of x and y is written xy.

Note that the empty string concatenated to any string x does not
result in a new string, i.e., εx = xε = x.

Example 3. If x = red and y = fox then xy = redfox.

Naturally, we may also concatenate a string x with itself, and this
operation is important enough to warrant a definition.

Definition 6. Let x be a string.

• x0 = ε, and

tddd14/tddd85 lecture 1: introduction and formal languages 5

• xk =

ktimes︷ ︸︸ ︷
x . . . x for k ≥ 1.

Example 4. If x = 01 and y = 00 then x3y = 01010100.

Definition 7. Let Σ be an alphabet. We let Σ∗ = {x | x is string over Σ}
be the set of strings over Σ.

As a convention we let ∅∗ = {ε} (recall that an alphabet is allowed
to be empty)3. We now have sufficient machinery to continue the 3 Trivia: if you have previously taken a

course in abstract algebra, then it might
be interesting to note that Σ∗ with con-
catenation and unit element ε forms a
monoid, since the concatenation operator
is associative. This explains why the
empty string ε behaves similarly to 0.

study of formal languages. It may be illuminating to see that the
notion of a formal language may concisely be defined via Σ∗.

Definition 8. Let Σ be an alphabet. A set X ⊆ Σ∗ is called a formal
language, or simply a language.

Example 5. If Σ = {0, 1, . . . , 9} then the following sets are all examples of
formal languages over Σ.

1. ∅,

2. {ε}

3. {9, 10, 11},

4. {1234},

5. Σ∗ = N (the set of all natural numbers).

Note that ∅ (the set without elements) and {ε} (the set containing the
empty string) are two different sets, but both are languages over Σ since (1)
∅ is a subset of every set and (2) Σ∗ by definition contains ε since ε trivially
is a string over Σ.

Given two languages A and B over an alphabet Σ there are many
natural ways to combine A and B to obtain a new language over Σ.
For example, we could produce the set containing all elements which
are elements of both A and B (intersection), or the set consisting of
elements included in either A or B (union). Formally, we define these
operators, and a handful more, as follows.

Definition 9. Let A and B be languages over an alphabet Σ. We define the
following set operations.

1. A ∩ B = {x | x ∈ A, x ∈ B} (intersection).

2. A ∪ B = {x | x ∈ A or x ∈ B} (union).

3. Ā = {x ∈ Σ∗ | x /∈ A} (complement).

4. P(A) = 2A = {X | X ⊆ A} (powerset).

tddd14/tddd85 lecture 1: introduction and formal languages 6

5. AB = {xy | x ∈ A, y ∈ B} (concatenation).

6. • A0 = {ε}, and

• Ak =

k times︷ ︸︸ ︷
A . . . A for k ≥ 1 (the kth power).

7. A∗ = A0 ∪ A1 ∪ A2 ∪ . . . (the star operation).

8. A+ = AA∗ =
⋃

n≥1 An (union of all non-zero powers of A).

The star operation A∗ is by design very similar to the operation Σ∗

where Σ is an alphabet, and the only difference between these two
concepts is that A in Definition 9 is allowed to be infinite.

Example 6. Consider the following examples over Σ = {0, 1}.

1. {0, 1}0 = {ε}.

2. {0, 1}1 = {0, 1}.

3. {0, 1}2 = {00, 01, 10, 11}.

4. {0, 1} ∪ {ε} = {0, 1, ε}.

5. {0, 1} ∩ {ε} = ∅.

6. {0, 1}2{ε} = {0, 1}2.

7. {0, 1}k = {x ∈ {0, 1}∗ | |x| = k} (i.e., the set of Boolean strings of
length k).

8. {0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .} (all strings over 0 and 1),

9. {0, 1}+ = {0, 1, 00, 01, 10, 11, 000, 001, . . .} (all non-empty strings over
0 and 1),

10. {0, 1}∗ ∩ {0, 1}k = {0, 1}k.

11. {0, 1}∗∗ = {0, 1}∗.

12. {0, 1}∗ ∩∅ = ∅.

13. {0, 1}∗ ∩ {ε} = {ε}.

Summary

After giving a brief introduction to the course we defined (1) strings
and operations on strings, and (2) languages and operations on lan-
guages. This is a reasonable starting point but we have opened up
more questions than we have answered. In the next lecture we will
formally define our first computation device, finite automata, and
investigate the resulting class of languages.

tddd14/tddd85 lecture 1: introduction and formal languages 7

Food for Thought

1. Is the set of rational numbers Q (e.g., 1, 1
2 , 4

7 , . . .) a formal lan-
guage?

2. Is the set of real numbers R (e.g., 1, 1
2 , π, 2, . . .) a formal language?

3. Is written English, as it is normally understood, a formal lan-
guage?

	Introduction
	Formal Languages
	Summary
	Food for Thought

