TDDD14/TDDDS85 Lecture 16:
Chomsky hierarchy and a summary with
extensions and outlooks

Jonas Wallgren

Abstract

This lecture presents the Chomsky hierarchy of languages and for-
malisms. It relates the various parts of the course to the hierarchy. It also
presents some material outside the course range and gives some examples
of further use of formal languages.

1 Introduction

Through the sequence of lectures we have found that some languages or for-
malisms (expressions, grammars) are more powerful than others. That feature
allows the languages to be placed in a hierarchy of varying power.

2 The Chomsky hierarchy

To the general public Noam Chomsky maybe is most known for his political
writings, but he is—among other things—a linguist that has tried to formalize
(natural) languages. In 1956 he presented a hierarchy of languages which has
become a standard classifiation scheme for formal languages.

2.1 The original levels

This table shows the original levels of the Chomsky hierarchy. The circled
numbers indicate the order of description below.

‘ Type H Language ‘ Grammar ‘ Automaton ‘
0 recursively enumerable (© unrestricted ™ TM
1 context-sensitive @ context-sensitive @ LBA
2 @ context-free (®) context-free (6 PDA
3 @ regular (® regular (@ DFA

(Recursively enumerable is also called Turing-recognizable.)

D@ The first part of the course (Victor’s lectures) dealt with regular lan-
guages. A DFA (Deterministic Finite Automaton) consists of a number of

@O

states connected by transitions. One state is the start state. There may
be several accepting/final states. From a state, reading a symbol, there
is a transition to exactly one state. In an NFA (N=nondeterministic)
there may be several or no states in that situation. There may also be ¢
transitions with state changes without reading. An NFA can always be
transformed to a DFA. A regular language is a language accepted by a
DFA.

Every (original) hierarchy level has its corresponding grammar type. Reg-
ular grammars are mentioned in the tutorial problems but are not pre-
sented in the lectures. In a regular grammar either all rules are on the
form X — wY or X — w (Then the grammar is right linear.) or all rules
are on the form X — Yw or X — w (Then the grammar is left linear.).

Example 1. A grammar for the regular expression 0(10)* is

S— 04

A — 10A|e

That right-linear grammar quite easily is transformed into an NFA accept-
ing the regular expression:

€ 0 1

— [9] {[0A]} [} 0

[0A] 0 {1A]} 0

[A] | {[e]. [t0A]} | 0 0

Fle] 0))
[10A] 0) {[104]}

The start state represents the start symbol of the grammar. From a state
representing a nonterminal there are € transitions to states representing
the righthand sides of the grammar rules for that nonterminal. From other
states there are transitions for reading symbols like the steps

[104] 5 [04] 2 [A4].

Not mentioned in this hierarchy are regular expression. They are another
way to describe regular languages.

The next part of the course (Jonas’ lectures) dealt with context-free lan-
guages. In a context-free grammar every rule has the form A — «, where
« is a sequence of terminals and nonterminals. A context-free language is
a language definable by a context-free grammar. A context-free grammar
is in Chomsky normal form if all rules have the form A — BC or A — a.
A context-free grammar is in Greibach normal form if all rules have the
form A — aB1ByBs3... . A problem in some applications of context-free
grammars is left-recursion, when A — Ac«|f occurs in a grammar. That
can be rewritten to A — SA’, A’ — aA'|e.

A PDA (PushDown Automaton) consists of a number of states connected
by transitions plus a stack. One state is the start state. There may be
several accepting/final states or none. A string can be accepted with

empty stack. From a state, reading a symbol or nothing, checking the
stack top, there could be a possibility to go to one of a number of states
and also to put symbols on the stack. Note that the PDA in its standard
form is an NPDA, nondeterministic.

The third part of the course (Victor’s lectures) dealt with Turing ma-
chines. A Turing machine (TM) consists of a number of states connected
by transitions plus an infinite tape. One state is the start state. There
may be several accepting/final states. From a state, reading a symbol
from the tape, one symbol is written on the tape and there is one state to
go to and a move of the tape head one step to the left or to the right. A
TM may loop.

The languages that are recognized by a TM are called recursively enumer-
able or Turing-recognizable.

There is a grammar form related to this level in the Chomsky hierarchy.
In an unrestricted grammar all rules have the form o — 3, i.e. both left-
and righthand sides can be sequences of terminals and nonterminals. An
example:

Example 2.
S — ACaB
Ca — aaC
CB — DB|E
aD — Da
AD — AC
aF — Fa
AFE — ¢

An example derivation:
S =

ACaB =
AaaCB =
AaaDB =
AaDaB =
ADaaB =
ACaaB =
AaaCaaB =
AaaaaCB =
Aaaaal =
AaaaFa =
AaaFaa =
AaFaaa =
AFaaaa =
aaaa

A and B can be seen as the (temporary) endpoints of the currently used
part of a TM tape. Cis moved to the right across each a and doubles them.

OO

@

2.2

D is moved back to the beginning. C at the right end can remove B and
become an E which moves to the left and deletes A. Since the number of
a:s doubles for each passage of C from A to B the language is {a®"|n > 1}.

Type 1 languages are not used that much in popular computer science or
technology applications, but they deserve to be mentioned in this type of
overview. In a context-sensitive grammar (CSG) all rules have the form
a — [with the restriction that the righthand side is as least as long
as the lefthand side. In one normal form of a CSG all rules have the
form oy Aas — ay18as. The A — B part works like a CFG rule but the
whole rule means that it can be applied only in the context aq_as. A
context-sensitive language is a language definable by a CSG.

A linear-bounded automaton (LBA) is a TM with a limited tape—there
is a left and a right endmarker on the tape.

Some intermediate levels

Development of theory and its applications have led more levels to appear in
the hierarchy. Some of them have been treated in this course. This extended
table shows their position in the hierarchy.

Type Language Grammar Automaton
0 recursively enumerable unrestricted T™
@ recursive @9 total TM
1 context-sensitive context-sensitive LBA
context-free context-free PDA
@ DCFL @ LR(1) @ DPDA
3 regular regular DFA

(Recursive is also called decidable.)

GO

One could say that a DFA is such a simple formalism that trying to make
it nondeterminstic doesn’t help (It could be easier to define languages
but the formal power doesn’t increase.) and that a TM already is so
powerful that it’s impossible to reach any higher by nondeterminism. But
in between there is a difference. A(n) (N)PDA is strictly more powerful
than a DPDA which is the automaton for this level in the hierarchy. For
each state there is for a given stack top either at most(!) one possibility
for each input symbol to read it or a possibility to change state without
reading. A language accepted by a PDA is context-free (6)@). A language
accepted by a DPDA is called deterministic context-free.

A language accepted by a DPDA can be described by an LR(1) grammar.
Remember that LR parsing is deterministic.

First a comment on LR(0) (a little bit more on LR(0) below). When you
construct an LR(0) parser you start with an automaton containing items
in each state. An item is a grammar rule with a dot in its righthand
side that represents how much of the righthand side that is read during

parsing. If a grammar contains A — aBC, B — dFE and C — fGH and
the item A — a - BC is found in a state, also the item B — -dE should
be in that state.

In LR(1) lookahed is used to increase the power of the formalism a bit.
Every item is equipped with a lookahead set that indicates what could
follow the lefthand nonterminal. In the example an item should be

B — -dE{f} since after B can follow f (from the C after B in the item
with -BC).

LR(1) has more formal power than LR(0) but increasing the amount of
looakahead to e.g. LR(2) or LR(3) maybe makes grammar writing more
practical for some languages but the formal power is not greater—the
same class of languages is definable.

@@ A somewhat limited class of TM are those that always halt. They are
called total Turing machnes. The corresponding languages are called re-
cursive or decidable.

2.3 More levels

Even more levels in the hierarchy have been defined, investigated, and charac-
terized. They get their applications mainly inside formal language theory. See
the table at bottom of most formal language articles in English Wikipedia.

Some ideas don’t result in new levels. What about a 2PDA, a PDA with
two stacks? Doesn’t the possibility to use two stacks increase the power? Yes
it does! Very much, indeed. You can use the two stacks to simulate a TM tape:
Move tape head to the left=Pop from stack 1 and push onto stack 2, Move tape
head to the right=Pop from stack 2 and push onto stack 1. But it didn’t result
in a new level.

2.4 What about LR(0)?

LR(0) is mentioned above but still isn’t in the hierarchy. We know that the
language {0™1™|n > 1} isn’t regular but it is LR(0). The language a* is regular
but it isn’t LR(0). It doesn’t possess the prefix property: aaa is a string in the
language and so is aaaa. Having read aaa you can’t tell whether to accept or
shift without using lookahead.

So neither of regular languages and LR(0) is a subset of the other one. LR(0)
doesn’t fit into the hierarchy.

3 Looking forward

After this course, into coming courses and work in computer science and tech-
nology, what will be most important, what will be used most?

One main area is interpreters and compilers. There you will use regular
expressions or something equivalent to define the tokens. Often some grammar
formalism between LR(0) and LR(1) is used.

Another main area is complexity and computability. There one important
tool is to construct reductions between problems. For example, one could be
interested in mapping reductions between computational problems where the
mapping function can be computed by a Turing machine which does not use too
much computational resources. In this manner one can e.g. define complexity
classes and relate computational problems to each other, leading to the area of
complezity theory.

(This doesn’t mean that these are the most important concepts for the
exam!)

