
TDDD14/TDDD85 Lecture 15: Undecidability
Victor Lagerkvist (based on slides by Christer Bäckström and
Gustav Nordh)

In this lecture we investigate the limits of Turing machines, and thus
the limits of computation itself, and prove that there exist languages
which cannot be recognised by any Turing machine.

Background and Intuition

Recall that a language is Turing-recognizable if there exists a Turing
machine recognising the language (which may or may not loop for
strings not included in the language) and that a language is Turing-
decidable, or simply decidable if there exists a Turing machine which
recognises the language and which halts on every input. Since Turing
machines are so powerful, could it be the case that every language
is Turing-recognisable, or even decidable? Or could there exist lan-
guages which no Turing machine can recognise (or decide)? On the
one hand, for the previous classes of automata we have always been
able to come with classes of languages which the automata in ques-
tion could not recognise. For example, by proving that {0n1n | n ≥ 0}
is not regular, or that {0n1n2n | n ≥ 0} is not context-free. On the
other hand, it is not evident that this can be done in the context of
Turing machines, and it is certainly not evident if it (for example) is
possible to generalise {0n1n2n | n ≥ 0} to a language which is not
Turing-recognisable. Although we will successfully show the exis-
tence of languages which are not Turing-recognisable, we will see
that the resulting languages are rather different from what we are
accustomed to.

A Remark Concerning Encodings

Before we turn to the main topic of this lecture we need to make a
few remarks about encodings. Most of the problems that we will
encounter can be seen as meta problems, meaning that they ask ques-
tions about various properties of Turing machines. For example, can
we construct a Turing machine which given a Turing machine and a
string, decides if the string is accepted by the given Turing machine?
To accomplish this the Turing machine could e.g. attempt to simulate
the given Turing machine on the given input string.

However, a Turing machine, according to the definition from the
previous lecture, always takes a string (over some fixed alphabet) as
argument. So what do we really mean by “taking a Turing machine



tddd14/tddd85 lecture 15: undecidability 2

as argument”? The answer, as it turns out, is actually not so compli-
cated.

Example 1. Assume that you want to write a program simulating a Tur-
ing machine, similarly to how one can write a program simulating a finite
automaton, or a pushdown automaton. To represent a Turing machine one
could e.g. use a class consisting of a finite set of states, a finite alphabet, the
finite transition function, and so on. But in the end, any instantiation of
this class is nothing else than a bitstring, a sequence of 0 and 1. A sequence
like this is roughly what we mean by an “encoding” in this context.

If M is a Turing machine then we will write 〈M〉 to denote a suit-
able string encoding. We will not explicitly mention the alphabet or
any details of the actual encoding, since the details are not impor-
tant. Hence, just think of 〈M〉 as a (probably) long string which can
be used to reconstruct M. If M is a Turing machine and w an input
string to this Turing machine then we will occasionally also write
〈M, w〉 to denote a suitable encoding of this pair. Again, the precise
details are not important.

The Theoretical Limits of Computation: Undecidability

We first remark that there is no analogue to the pumping lemma in
the context of Turing machines. To see this, note that while a Turing
machine has a fixed number of states, the number of configurations
cannot be bounded, and we thus cannot guarantee that accepted
strings follow some sort of “pattern”. And although we have not
yet discussed the “grammatical counterpart” to Turing machines, it
is not possible to use this description to come up with a pumping
lemma either. Hence, we have to investigate alternative proofs, and
begin with the following theorem which uses a counting argument to
conclude that not every language is Turing recognisable.

Theorem 1. There exist languages that are not Turing-recognizable

Proof. (Sketch)
The basic idea is to show that while there exists an infinite num-

ber of Turing machines, it is possible to design an algorithm which
enumerates Turing machines M1, M2, M3, . . . such that every Turing
machine appears in this list. This turns out to be surprisingly simple.
Assume that we fix the size of the alphabet, the tape alphabet and
the number of states to some constant. Then there only exists a finite
number of Turing machines which we can enumerate by enumerat-
ing all possible transition functions. Hence, if we enumerate Turing
machines in this manner, and gradually increase the size of these
constants, then every Turing machine will eventually appear in this



tddd14/tddd85 lecture 15: undecidability 3

list. In mathematical terminology the set of Turing machines is count-
able. Other examples of countable sets are the set of natural numbers
and the set of prime numbers, which can also be enumerated in a
straightforward manner.

In contrast, the set of all languages is not countable, i.e., is uncount-
able. Assume that we have an alphabet Σ of size at least two. Does it
seem possible to enumerate all languages over Σ, i.e., subsets of Σ∗,
similar to how we could enumerate Turing machines? The idea is
then to perform a proof by contradiction: assume that we are given
an infinite sequence Σ1, Σ2, Σ3, . . . of all languages over Σ, i.e., each
language is equal to Σi for some i ≥ 1. One can then use a technique
known as diagonalization to produce a language which is distinct from
each element Σi in this sequence. This is similar to how the set of
real numbers can be proven to be uncountable. See Corollary 4.18 in
Sipser 1 for details. 1 M. Sipser. Introduction to the Theory

of Computation. Course Technology,
Boston, MA, third edition, 2013

But if we have an uncountable number of languages but only a
countable number of Turing machines, then it cannot be the case that
every language is recognised by some Turing machine. Hence, there
exists languages that are not Turing-recognisable.

This theorem should mainly be viewed as a theoretical result, but
it highlights something of importance: given a language, we cannot
necessarily define a Turing machine which recognises the language.
But can we do better? Can we pinpoint some concrete languages
which are not Turing-recognisable? This can indeed be done, but
we will first turn to the problem of finding languages that are not
decidable, i.e., are undecidable.

Example 2. Assume that you have just finished writing a nice meta-
interpreter for your favourite programming language. This interpreter
takes a program, represented as a string, and an input string, as arguments,
and returns the resulting of interpreting the given program with the given
input string. Naturally, after this feat of engineering you immediately start
looking for applications for your shiny new toy. Would it be possible to
answer some meta questions about programs? For example, could we de-
termine whether a program terminates or not? This would be a rather nice
application since it would make debugging much easier. Hence, you decide
to extend the meta-interpreter so that it returns 1 if a given program halts
with respect to the given input string, and 0 if it loops. The easy part is of
course if the program terminates: you then simply run the interpreter with
the given input, and once it terminates you return 1. To handle the case
when the program does not seem to terminate you implement some “clever”
loop-detection scheme and are completely satisfied with the test programs
that you tried. To make it user-friendly you call the function halt and you
let it take a single argument consisting of the program in question (which



tddd14/tddd85 lecture 15: undecidability 4

contains some type of main function containing some test data).
However, how can you be sure that halt actually works? Could it be

possible to come up with a counter example? Consider the following. We
define a new function (in the same programming language) halt′ which
takes a program P as argument and

1. calls halt(P),

2. if the result is 0 then it returns 1, and if the result is 1 then it loops.

Hence, the new program does exactly the opposite of halt. But now, what
happens if we call halt′ with itself as input? That is, a string encoding of
the the source code of halt′. We have the following possibilities.

1. Case 1: halt returned 0, meaning that halt′ loops. But according to the
definition of halt′ it should return 1, not loop.

2. Case 2: halt returned 1, i.e., that halt′ does not loop. But then halt′ will
loop, which is exactly the opposite of what halt reported.

Since neither outcome is possible we conclude that the claimed properties of
halt cannot be possible, and that it cannot correctly deduce whether every
given program halts or not.

Deciding whether a program (or a Turing machine) halts on a
given input is typically called the Halting problem. The formal proof
of the undecidability of the halting problem closely follows the intu-
ition outlined above. However, before we turn to the halting problem
we begin by proving undecidability of a related problem with re-
spect to Turing machines: given a Turing machine M and a string w,
does M accept w? Thus, we are interested in whether the following
language is decidable.

Definition 1. Let ATM = {〈M, w〉 | M accepts w}.

Hence, each element in ATM is a Turing machine (or rather, an
encoding of it) and a string which the Turing machine accepts. For
example, if we let M be a Turing machine from the previous lecture
recognising the language {0n1n2n | n ≥ 0}, then ATM would contain
〈M, ε〉, 〈M, 012〉, 〈M, 001122〉, and so on. Hence, to decide ATM we
for every Turing machine M would need to determine all strings
that M accepts. Indeed, we can prove that to Turing machine can
accomplish this and that the language is undecidable.

Theorem 2. ATM is undecidable.

Proof. The basic idea is similar to the construction in Example 2. As-
sume, with the aim of reaching a contradiction, that ATM is decided



tddd14/tddd85 lecture 15: undecidability 5

by some Turing machine H. Hence, for any Turing machine M and
string w, the machine H can always decide if M accepts w.

Now, define a Turing machine D which takes a Turing machine
〈M〉 as input and:

〈M, 〈M〉〉 looks weirder than it actually
is. All that we are asking is whether
the Turing machine M, when given
itself as input (in a suitable string
encoding) accepts or rejects. Think
about a compiler for a programming
language written in the same language:
why should it not be able to compile
itself?

1. Runs H with 〈M, 〈M〉〉 as input, and

2. accepts if it is rejected and rejects if it is accepted.

Hence, the machine D asks H whether the machine M accepts 〈M〉,
and returns the opposite answer. Now comes the fun part. What
happens if we run D with 〈D〉 as input? Then D asks H if D accepts
〈D〉. But if H answers “yes”, then D rejects, meaning that the answer
was false. Similarly, if H answers “no”, then D accepts, also meaning
that the answer was false. Both these cases lead to a contradiction,
and we conclude that our original assumption was false. Hence, ATM

is undecidable.

We finish this section by showing the existence of a language
which is not Turing-recognisable. Let ATM = {〈M, w〉 | 〈M, w〉 /∈
ATM} be the complement of ATM, i.e., it contains a pair 〈M, w〉 if M
does not accept w.

Theorem 3. ATM is not Turing-recognisable.

Proof. Assume there exists a Turing machine M′ which recognises
ATM. We will show that M′ can be used to decide ATM, which contra-
dicts Theorem 2. Hence, let M be a Turing machine and let w be an
input string. We construct a Turing machine which:

1. simulates M with w as input, and

2. simulates M′ with 〈M, w〉 as input,

but does so simultaneously, in the sense that it first runs M a fixed
number of steps, and then runs M′ with a fixed number of steps,
and then goes back and forth between the simulations. But then this
machine decides ATM since if w is accepted then this will eventually
be discovered by the simulation of M, and if w is not accepted then
this will eventually be discovered by the simulation of M′.

Mapping Reductions

We have discovered the existence of undecidable languages, but do
not have a general recipe for proving that a language is undecidable
(or not Turing-recognisable). While we cannot obtain something as
simple as the pumping lemma for regular or context-free languages,



tddd14/tddd85 lecture 15: undecidability 6

we in this section introduce a fairly powerful method for proving
undecidability based on the notion of a reduction. The idea is as fol-
lows. Given a language B which we suspect might be undecidable,
take a language A that we have already established to be undecid-
able (e.g., ATM from the preceding section), and attempt to translate
A into B so that the decidability of B would imply the decidability
of A. Formally, we then want to find a function f : A → B taking a
string w ∈ A as argument and returning a string f (w) ∈ B. However,
since we are thinking in terms of computability and decidability, the
function f has to be sufficiently simple so that it can be computed by
a Turing machine.

Definition 2. A function f : Σ∗ → Σ∗ is said to be computable if some
Turing machine M on every input w halts with f (w) on its tape.

The formal definition of a reduction, often called a mapping reduc-
tion, is then fairly straightforward.

Definition 3. The language A is mapping reducible to the language B if
there is a computable function f : Σ∗ → Σ∗ such that for every w Hence, a mapping reduction f is a

“translation” between two languages
such that a string w belongs to the first
language if and only if the result of the
translation, f (w), belongs to the second
language.

w ∈ A⇔ f (w) ∈ B.

1. The function f is called a reduction from A to B.

2. If A is mapping reducible to B then we write A ≤m B.

It is then not so difficult to prove that mapping reductions can be
used to relate languages when it comes to decidability.

Theorem 4. Let A and B be two languages. If B is decidable and A ≤m B,
then A is decidable.

Proof. Let MB be a Turing machine that decides B and let f the re-
duction from A to B. Given input w we:

1. compute f (w),

2. run MB on f (w), accept if MB accepts f (w), and reject if MB re-
jects f (w).

But since our main focus at the moment is to show undecidability
we are more interested in the contrapositive form (¬y → ¬x instead
of x → y) of Theorem 4.

Corollary 1. Let A and B be two languages. If A is undecidable and A ≤m

B, then B is undecidable.



tddd14/tddd85 lecture 15: undecidability 7

Using the exact same arguments one can also prove (1) that if B
is Turing-recognisable and A ≤m B, then A is Turing-recognisable,
and (2) that if A is not Turing-recognisable and A ≤m B then B is not
Turing-recognisable. However, let us concentrate on undecidability,
and consider an example of how we can use a mapping reduction to
prove that a language is undecidable.

Definition 4. Let HTM = {〈M, w〉 | M halts with input w}.

This language, or rather, the corresponding computational prob-
lem of determining whether a Turing machine halts or not, is typi-
cally called the Halting problem. We could prove that it is undecidable
using similar arguments to those in Theorem 2, but it is easier to
prove undecidibility by using the already established fact that ATM is
undecidable.

Theorem 5. HTM is undecidable.

Proof. We begin by showing the idea behind the reduction and then
show how it can be phrased as a mapping reduction. Assume that
we have a machine MH which decides HTM. We want to use this
machine to decide ATM. Hence, let M be an arbitrary Turing machine
together with an input string w. Merely running MH with 〈M, w〉 as
input is not good enough since if it halts we do not know whether
M accepts or rejects w. Instead, we construct a new Turing machine
M′ which simulates M over a given string, accepts if it accepts, and
loops if it rejects. Hence, the machine M′ almost agrees M, but instead
of rejecting a string it chooses to loop. If we then use HTM with the
input 〈M′, w〉, then (1) if HTM accepts then M′ halted, meaning that
M accepted w, and (2) if HTM rejects then M′ looped, meaning that
M rejected the string w. But since ATM is undecidable this leads to a
contradiction, and we conclude that HTM cannot be decidable.

Let us now see how the above can be expressed as a mapping
reduction. We now need to show that there exists a (computable)
function f : ATM → HTM such that 〈M, w〉 ∈ ATM if and only if
f (〈M, w〉) ∈ HTM. We describe f as follows.

1. Let 〈M, w〉 be an input string.

2. Construct a Turing machine M′ which for a given input string
simulates M and accepts if M accepts, and loops if M rejects.

3. Output 〈M′, w〉.

For correctness, assume first that 〈M, w〉 ∈ ATM. Hence, M accepts
w. But due to the definition of the new machine M′ it follows that M′

accepts w and halts. Hence, f (〈M, w〉) = 〈M′, w〉 ∈ HTM.



tddd14/tddd85 lecture 15: undecidability 8

For the other direction, assume that f (〈M, w〉) = 〈M′, w〉 ∈
HTM. Then M′ halts under the input string w. But this means that
M accepts w, and that 〈M, w〉 ∈ ATM.

For more examples of mapping reductions, see Ch. 5.3. in Sipser 2. 2 M. Sipser. Introduction to the Theory
of Computation. Course Technology,
Boston, MA, third edition, 2013

Summary

We proved the existence of undecidable and non-Turing-recognisable
languages. Hence, not even Turing machines can compute every-
thing. This should not be viewed as a shortcoming of Turing ma-
chines, but rather that not all properties are inherently computable.

Food for Thought

1. The nth busy beaver number is the largest number of ones which
can be written by a halting Turing machine over Σ = {0, 1} with
exactly n states (with a blank input tape). Determine the first and
second busy beaver numbers.

2. Can you come up with any non-trivial meta questions in com-
piler design which risk being undecidable? For example, given
two functions, can we decide whether they always give the same
output?

References

M. Sipser. Introduction to the Theory of Computation. Course Technol-
ogy, Boston, MA, third edition, 2013.


	Background and Intuition
	A Remark Concerning Encodings
	The Theoretical Limits of Computation: Undecidability
	Mapping Reductions
	Summary
	Food for Thought

