
TDDD14/TDDD85 Lecture 14: Turing Machines
Victor Lagerkvist (based on slides by Christer Bäckström and
Gustav Nordh)

In the last theme of the course we will introduce a model of computa-
tion, which at a first glance may only seems like a minor upgrade to
pushdown automata, but which turns out to be an incredible powerful
model of universal computation, Turing machines.

Background and Intuition

At this stage we have seen several classes of languages which we
have defined either on the “grammatical” side or on the “automaton”
side. While both regular and context-free languages have their own,
important applications, it is clear that both finite automata and push-
down automata have rather limited expressive power. For example,
the language {0n1n2n | n ≥ 0} is not context-free, and if we try to
implement a pushdown automaton for this language then the prob-
lem is that the stack is not flexible enough to keep track of both the
number of zeroes, the number of ones, and the number of twos.

Intuitively, we should then consider a less restrictive form of mem-
ory. Should we add yet another stack, a random-access memory, a
queue, or something completely different? Amazingly, it turns that
essentially every generalisation of a PDA which adds some form
of (unbounded) memory results in a computational device of the
same expressive power. Hence, although we in principle have several
choices, we in this lecture settle for a (conceptually) simple machine
which uses a tape. The resulting machine is called a Turing machine Named after the British mathematician

Alan Turing.and the tape is used as a read/write memory where one is allowed
to read a single “cell” (containing a symbol from the alphabet) and
transition to the left or right on the tape, in a sequential manner. Im-
portantly, the Turing machine can both read and write on this tape,
and it can be stretched arbitrary long so that it does not run out of
memory in the middle of a computation. Although much more pow-
erful than finite automata and pushdown automata, many definitions
and concepts carry over, and we define (1) acceptance and rejectance
of strings, (2) the language recognised by a Turing machine, (3) the
class of Turing-recognisable languages, and (4) the important subclass
of decidable languages. Last, we introduce and discuss the Church-
Turing thesis and see how deterministic Turing machines can simulate
nondeterministic Turing machines.

tddd14/tddd85 lecture 14: turing machines 2

The Turing Machine

Control unit

Read-write tape

4 7 1 1 ...

Figure 1: A visualisation of a Turing
machine.

We now properly define the most powerful model of computation
that we will investigate in this course. Intuitively, a Turing machine
may be viewed as a DFA which can both read and write on the input
string, and which in addition is allowed to increase the length of this
string if it needs additional memory. In addition the Turing machine
satisfies the following specification.

1. The input string is visualized as a tape consisting of cells.
Those of you not familiar with magnetic
tapes can simply view a magnetic tape
as a doubly-linked list where each
node, corresponding to a cell, knows
the cell to the left and to the right, but
nothing else. Hence, just as in a doubly
linked list, we can move sequentially
both to the left and to the right, but
do not have “random access” to the
memory.

2. Cells on the tape either contains a symbol from the alphabet or a
special blank symbol, which we denote by B.

3. The Turing machine has a “head” which can read, write, move
left, and move right, on the tape, but does this in a sequential
manner, just as a DFA.

4. The Turing machine cannot move any further left once it has
reached the leftmost position of the tape.

5. However, the tape is effectively unbounded in size, meaning that
the Turing machine cannot reach the (right) end of it. Conceptu-
ally, the tape at a single moment in time is always finite, but if the
Turing machine reaches the rightmost cell then we “stretch” the
tape by adding additional blank cells.

The formal definition of a Turing machine is then surprisingly un-
dramatic and closely follows the various types of automata defined
earlier.

Definition 1. A Turing machine is a 7-tuple (Q, Σ, Γ, δ, q0, qaccept, qreject)

where:

• Q is the finite set of states,

• Σ is the finite input alphabet not containing the blank symbol B,

• Γ is the finite tape alphabet where B ∈ Γ and Σ ⊆ Γ,

• δ : Q× Γ → Q× Γ× {L, R} is the transition function, where L and R
stands for “left” and “right”, respectively,

• q0 ∈ Q is the start state,

• qaccept ∈ Q is the accept state, and

• qreject ∈ Q is the reject state.

Intuitively, a Turing machine then operates as follows.

tddd14/tddd85 lecture 14: turing machines 3

1. The “input string” is written to the “left” of the tape.

2. The Turing machine moves its head to the first cell of the tape and
begins in its initial state q0.

3. The Turing machine reads a single symbol at the current position
of its head, writes a symbol at the cell, transitions to the state
specified by the transition function, and moves its head left or
right.

4. The machine accepts (immediately) if it reaches the accept state,
and rejects (immediately) if it reaches the reject state, and in both
cases the machine is said to halt.

5. If the machine does not reach an accept state or the reject state
then it continues forever and is said to loop.

The operational semantics of a Turing machine can be formally de-
scribed by configurations, very similar to how one can describe the be-
haviour of a PDA by a configuration consisting of a state, the current
symbol from the input string, and the stack. Here, we only sketch the
details. A configuration of a Turing machine then consists of the cur-
rent state, the current position of the head, and the current content
of the tape. This is typically written xqy where (1) x is the content of
the tape to the left of the current position, q is the current state, and
y is the content of the tape to the right, including the current cell as
its first element. A Turing machine then accepts a string if the start
configuration leads to a configuration containing the accept state,
and rejects the string if it leads to a configuration containing the re-
ject state. Note that if a Turing machine does not accept a string then
it either (1) rejects the string or (2) loops indefinitely. We consider a
detailed example of a simple Turing machine in the appendix, but for
the moment continue to define the class of languages recognised by a
Turing machine.

Definition 2. The collection of strings that a Turing machine M accepts is
the language recognized by M, denoted L(M).

This immediately leads to the following definition.

Definition 3. A language is Turing-recognizable if some Turing machine
recognizes it1. 1 Sometimes called a recursively enu-

merable language.
However, note that in the above definition it could be the case

that we have a language L which is recognised by a Turing machine
M, but that there exists x /∈ L where the machine M loops. That is,
instead of rejecting the string the machine simply fails to provide
any answer and loops. This behaviour is not always desirable, so

tddd14/tddd85 lecture 14: turing machines 4

to circumvent this problem we also make the following stronger
definition which in addition requires the Turing machine to always
accept or reject a string (but is not allowed to loop indefinitely).

Definition 4. A language is decidable if some Turing machine recognizes
it and rejects all strings that are not in the language2. 2 Sometimes called a recursive lan-

guage.
We conclude this section with two examples.

Example 1. Consider a Turing machine M with Σ = {0, 1} that works as
follows: M accept all strings of even length and loops on all strings of odd
length. Then L(M) = {w ∈ {0, 1}∗ | |w| is even}, i.e., simply the set
of strings accepted by the Turing machine M, and the fact that the machine
M loops on every other string does not matter. But is this language also
decidable?

Yes! For example, by the Turing machine M′ which accept all strings of
even length and reject all strings of odd length (we will see later that this is
a very simple task for a Turing machine).

Example 2. Let us construct a Turing machine which recognises the lan-
guage {0n1n2n | n ≥ 0}. This language is well-known not to be context-
free, so if we succeed with this then Turing machines definitely exceed the
power of finite automata and pushdown automata. Consider a Turing ma-
chine which operates according to the following description.

1. Scan the input from left to right and make sure it is of the form 0∗1∗2∗

(if it is not, then reject).

2. Return the head to the left end of the tape.

3. If there is no 0 on the tape, then scan right and check that there are no
1’s and 2’s on the tape and accept (should a 1 or 2 be on the tape, then
reject).

4. Otherwise, cross of the first 0 and continue to the right crossing of the
first 1 and the first 2 that is found (should there be no 1 or no 2 on the
tape, then reject).

5. Go to Step 2.

When describing a Turing machine our main interest is typically
not to describe the precise number of states or how the transition
function should be defined. All that matters is that the high-level de-
scription is unambiguous and precise enough so that we in principle
could describe the states and the resulting transition function. See
Lecture 28 in Kozen 3 and Chapter 3.1 in Sipser 4 for concrete and 3 D. C. Kozen. Automata and Computabil-

ity. Springer-Verlag, Berlin, Heidelberg,
1st edition, 1997

4 M. Sipser. Introduction to the Theory
of Computation. Course Technology,
Boston, MA, third edition, 2013

formal examples.

tddd14/tddd85 lecture 14: turing machines 5

The Church-Turing Thesis

The Turing machine seems to be stronger than the other compu-
tational devices we have encountered thus far. But how strong is it
really?

Example 3. Assume that we want to describe a Turing machine which,
given a binary number on its tape, adds 1 to this number and accepts. The
machine could then shift the input one step to the right and proceed to the
last symbol of the string. If this symbol is 0 then it simply replaces it by 1. If
this number is 1 then it replaces it by 0, remembers that it has 1 in “carry”,
goes to the left, and repeats this as long as necessary.

We do not bother with describing the exact number of states or the tran-
sition function, since it is clear that we can accomplish the procedure with
a finite number of states. Even better: if we can add 1 to a binary number,
then we could certainly also compute the addition of two arbitrary binary
numbers simply by repeatedly adding 1 to the sum. However, if we can do
addition, then we can also do multiplication as repeated addition. Simi-
larly, we could describe a Turing machine which given two binary numbers
writes 1 if the first number is strictly smaller than the second number, and
0 otherwise. But if we can implement addition, multiplication, all normal
arithmetical operations and relations, then we could certainly implement e.g.
“for loops”, and so on. We can easily continue in this fashion and describe
more sophisticated constructs from programming languages and describe
their implementation in term of Turing machines.

Once we have the idea of implementing more and more compli-
cated data structures and concepts by shuffling strings around on the
tape then it becomes more and more reasonable that a Turing ma-
chine can compute anything in this manner. Naturally, if we tried to
build a Turing machine following Definition 1 then it would turn out
to be awfully slow in practice, but since the Turing machine is a the-
oretical model of computation we do not care about this deficiency.
The conjecture that Turing machines can compute everything that can
be computed is known as the Church-Turing thesis. The “Church” part of the conjecture is

named after the American mathemati-
cian Alonzo Church who discovered
an equivalent notion of computability
called the lambda calculus.

Conjecture 1. (The Church-Turing thesis) Everything that is “computable”
can be computed by a Turing machine.

There exist several variants of the Church-Turing thesis but the
above claim is good enough for our purposes. Note that the Church-
Turing thesis is not a proper mathematical conjecture since we have
not provided a proper definition of “computable”. We will not delve
deeper into the problematic nature of giving a general definition of
“computation” and take a very pragmatic view: every reasonable

tddd14/tddd85 lecture 14: turing machines 6

model of computation that has been discovered thus far can be sim-
ulated by a Turing machine. In particular, no matter how we try to
generalise a Turing machine (e.g., by adding more memory, or more
features), the resulting machine is still not more powerful than a
Turing machine.

Nondeterministic Turing Machines

As a first sanity check of the Church-Turing thesis we will investi-
gate nondeterminism in the context of Turing machines. This gen-
eralisation will be defined in exactly the same way as we have seen
before, i.e., instead of having a transition function returning a single
state we allow it to return a set of possible states. In the following
definition we could also have defined δ to be a relation (as for the
PDA case in lecture 9), rather than a function, but the two definitions
yield the same result.

Definition 5. A nondeterministic Turing machine is a 7-tuple

(Q, Σ, Γ, δ, q0, qaccept, qreject)

where:

• Q is the finite set of states,

• Σ is the finite input alphabet not containing the blank symbol B,

• Γ is the finite tape alphabet where B ∈ Γ and Σ ⊆ Γ,
Recall that we write P for the powerset
operation.• δ : Q× Γ → P(Q× Γ× {L, R}) is the transition function, where L and

R stands for “left” and “right”, respectively,

• q0 ∈ Q is the start state,

• qaccept ∈ Q is the accept state, and

• qreject ∈ Q is the reject state.

The notion of a configuration immediately generalises to a non-
deterministic Turing machine, and we say that a nondeterministic
Turing machine accepts a string if and only if there exists some se-
quence of configurations leading to a configuration containing the
accept state. This is entirely analogous to how we defined acceptance
in the context of NFA/DFA, and we will not provide a more formal
definition since it is not needed for our purposes. The important
result is then that we can “simulate” a nondeterministic Turing ma-
chine using an ordinary Turing machine. The idea is very similar to
the subset construction for converting an NFA to a DFA, where each
state in the DFA represented a set of possible states in the NFA.

tddd14/tddd85 lecture 14: turing machines 7

Theorem 1. Every nondeterministic Turing machine can be simulated by a
deterministic Turing machine.

Proof. (Sketch) Let M be a nondeterministic Turing machine. We will
construct a deterministic Turing machine which recognises the same
language.

1. Given an input string w our machine explores all possible configu-
rations of the non-deterministic Turing machine using a complete
search strategy (e.g., breadth-first search).

2. If any of these branches leads to an accepting configuration, the
machine accepts w.

3. If all branches have been fully explored without finding an accept-
ing configuration, then the machine rejects w.

Naturally, writing out the full details is more complicated, but the
above sketch represents the intuition behind the proof. Here it is also
important that the deterministic Turing machine may need signifi-
cantly more steps to reach an answer than a nondeterministic Turing
machine since it has to try all possibilities. Whether a deterministic
Turing machine can simulate a nondeterministic Turing machine with
a reasonably small “overhead” is the most important open question
in theoretical computer science, and is known as the P = NP ques-
tion.

Summary

We introduced and exemplified Turing machines, the most power-
ful model of computation that we will encounter during the course.
Despite this tremendous computational power we in the next lec-
ture will see that not all languages are Turing recognisable, and see
how Turing machines can be used to relate languages via mapping
reductions.

Food for Thought

1. Give a high-level description of a Turing machine which recognises
the language of palindromes over Σ = {a, b}. To make this task
simpler you may assume that you have access to a stack.

2. Give a detailed description of a Turing machine over the input
alphabet {0} which for any input string loops (i.e., neither accepts
nor rejects).

tddd14/tddd85 lecture 14: turing machines 8

Appendix

Example 4. We will describe a Turing machine over Σ = {0, 1} which (1)
writes a blank symbol on the first cell and (2) writes 0 on every other cell of
the input tape and returns to the leftmost position of the tape. That is, the
newly written blank symbol. Naturally, this is not a particularly exciting
example, but will show how the various components of a Turing machine are
defined.

• Q = {q0, q1, q2, qr, q f } is the finite set of states,

• Σ = {0, 1} is the finite input alphabet,

• Γ = {0, 1, B} is the finite tape alphabet where B is the blank symbol.

• q0 ∈ Q is the start state,

• q f ∈ Q is the accept state, and

• qr ∈ Q is the reject state.

We proceed by definining the transition function δ. In state q0 the machine writes a blank
symbol, proceeds to the right, and
jumps to state q1. If it reads a blank
symbol then the input tape was empty
and the machine simply rejects.

• δ(q0, 0) = (q1, B, R).

• δ(q0, 1) = (q1, B, R).

• δ(q0, B) = (qr, B, R). In state q1 the machine writes a 0
and proceeds to the right as long as
possible. If it reads a blank symbol then
it has reached the end of the tape and it
jumps to state q2.

• δ(q1, 0) = (q1, 0, R).

• δ(q1, 1) = (q1, 0, R).

• δ(q1, B) = (q2, B, L). In state q2 the machine proceeds to
the left as long as possible. Once it
has reached the blank symbol which
it originally wrote on the leftmost
position of the tape it accepts.

• δ(q2, 0) = (q2, 0, L).

• δ(q2, 1) = (qr, B, L).

• δ(q2, B) = (q f , B, L).

• δ(q f , a) = (q f , a, L) for each a ∈ Γ.

• δ(qr, a) = (qr, a, L) for each a ∈ Γ.

Note that quite a few entries of δ are rather uninteresting, and cannot ac-
tully occur due to the behaviour of the machine (e.g., once the machine
enters state q2 and goes to the left it is impossible to read 1). However, since
δ is a total function it still needs to be defined for all possible combinations.
Now consider the input string w = 011 ∈ {0, 1}∗. We obtain the following
configurations.

• q0011 (the start configuration when there is nothing to the left).

tddd14/tddd85 lecture 14: turing machines 9

• Bq111 (the machine replaces the first symbol 0 with a blank symbol).

• B0q11 (the machine replaces 1 by 0).

• B00q1 (the machine replaces 1 by 0 and has now reached the end of the
input string).

• B0q20 (the machine moves to the left).

• Bq200 (the machine moves to the left).

• q2B00 (the machine moves to the left, and has reached the leftmost posi-
tion).

• q f B00 (the machine has reached the leftmost position and is finished).

The machine then accepts since q f is the accepting state.

After having seen the gritty details we thankfully do not have to
worry about them again, and as we have seen it is preferable to give
“high-level” descriptions of Turing machines.

References

D. C. Kozen. Automata and Computability. Springer-Verlag, Berlin,
Heidelberg, 1st edition, 1997.

M. Sipser. Introduction to the Theory of Computation. Course Technol-
ogy, Boston, MA, third edition, 2013.

	Background and Intuition
	The Turing Machine
	The Church-Turing Thesis
	Nondeterministic Turing Machines
	Summary
	Food for Thought

