
TDDD14/TDDD85 Lecture 13:

LR(1) parsing

Jonas Wallgren

Abstract

This lecture closes the context free part of the course by presenting
LR(1) parsing.

1 Introduction

Last lecture presented LR(0) parsing as a method to parse strings in a languge
defined by a CFG. That language was unproblematic to parse. In this lecture
we will continue our exploration of the LR parsing world.

2 Two problematic grammars

We will show two grammars having different problems.

2.1 One problematic grammar

This is a grammar for a simple language:

S → (A)|(B)
A → char|integer|ident
B → float|double|ident

Let’s try to construct the LR(0)-item automaton for the grammar. See Fig.
1 at the last page. The first state contains the items with the dot first for the
two rules for the start symbol. The only thing to do is to read a left paranthesis.
That takes us to the next state. The dots are moved over the parantheses. Now
since there is a dot in front of A and B the other six items are added to the
state. One possible way to continue to a new state is to read ident and go to
the third state. Now, there is a problem: Which rule to use for reduction—
A → ident or B → ident?

Definition 1. A reduce-reduce conflict is a situation where there are (at least)
two complete items in a state in the item automaton.

1

If an LR(0)-item automaton shows (a) reduce-reduce conflict(s) the grammar
isn’t LR(0).

2.2 Another problematic grammar

This is a grammar for a language not quite that simple:

S → L

L → L− E

L → E

E → a

E → b

The language of this grammar contains strings like a− b− a− b.

An initial attemp to construct the LR(0)-item automaton for the grammar is
found in Fig. 2. The first item for the first rule is found at top in the first state.
Since there is a dot in front of L the next two items are added. Since there now
is a dot in font of E the last two items are added. One of the possible things to
do is, as a result of a reduce action, to move the dot over L and go to the next
state. What to do in that state? There is a possibility to read a − and there is
a possibility to reduce.

Definition 2. A shift-reduce conflict is a situation where ther are (at least)
one complete item and one not-complete item in a state in the item automaton.

If an LR(0)-item automaton shows (a) shift-reduce conflict(s) the grammar
isn’t LR(0).

3 LR(1) items

The 1 stands for one token lookahead.
Recall this passage from the last lecture:

“If in a rightmost derivation there is a step aBCd ⇒ aBrsd we will in
parsing look at aBrsd ⇐rm aBCd from left to right, i.e. we will from the parts
rs construct C, since that corresponds to the backwards reading of a grammar
rule. The rs part is called a handle. A handle is what is to be replaced by a
nonterminal in a backwards derivation step, a reduction step. We want to find
the handles to know where to reduce. Starting from state 0 reading aBrs we end
up in state 8 with a complete item. There a handle is found. All the prefixes
up to that point—a, aB, aBr, and aBrs—are called viable prefixes.

Definition 3. An item A → α · β is valid for a viable prefix δα if
S

∗

⇒rm δAw ⇒rm δαβw

2

I.e. the next step in the parsing is to reduce αβ to A. We have just read as
far as the α part of that, so an appropriate item is A → α · β. The whole prefix
up to this point is δα, it is viable since we are about to read a handle. Thus the
item is valid for this prefix.”

Now, in LR(1) we can take into account what follows A.

Definition 4. An LR(1) item is an LR(0) item together with a lookahead token
in a set. (Also $ is seen as a token here1.)

An example of an LR(1) token is L → L · −E{$}.

Definition 5. Let a ∈ Σ.
An item A → α · β{a} is valid for a viable prefix δα if S

∗

⇒rm δAaw ⇒ δαβaw.

The situation is like in LR(0) with the added constraint that a follows what
A is derived to.

Definition 6.

An item A → α · β{$} is valid for a viable prefix δα if S
∗

⇒rm δA ⇒ δαβ.

If a state of items in the automata contains several LR(1) items built from
the same LR(0) item they could be collapsed into one LR(1) item with several
elements in its lookahead set.
E.g. A → b · c{x} and A → b · c{y} gives A → b · c{x, y}.

Elements in the lookahed set are elements in the FOLLOW set for the non-
terminal in the left-hand side.

4 Building the automaton

This is how the automaton in Fig. 3 is constructed. Start with the top item in
state 0. It’s the only rule for the start symbol. The dot is in the beginning. The
lookahead set contains what could follow S, i.e. end of string. There is a dot
before L, so there are the two new items L → ·L−E{$} and L → ·E{$}. Since
L is at the end of the first item what could follow L is what could follow S so the
lookahead set is the same. Now there is a dot before L in another situation—it’s
followed by a −. The new items are L → ·L−E{−} and L → ·E{−}. As I said
before these items could be written as the two items in state 0.

It’s only when a dot is in front of a nonterminal we have to bother about
constructing a new lookahead set. If the nonterminal is at the end just copy the
lookahead set of the rule where the dot was found. If the nonterminal is not at
the end then the new lookahead set should contain those tokens that may follow
directly after the nonterminal.

When moving the dot over a symbol the lookahead set is not changed. Mov-
ing the dot takes place in one item having the same nonterminal in its left-hand
side, so the lookahead situation doesn’t change.

1I.e. the new special end-of-string symbol

3

5 Using the automaton

Shift actions work as in the LR(0) case. Lookahed sets are involved in reduce
actions. Look at state 3. Now the shift-reduce conflict can be solved. If we see
a − it is a token that cannot follow S, so it’s OK to shift. If we see $ it cannot
be shifted ($ never can.) but it can follow S so it is OK to reduce.

The automaton usually is described/represented by this table:

State a b − $
0 shift shift
1 reduce E → a reduce E → a

2 reduce E → b reduce E → b

3 shift accept
4 shift shift
5 reduce L → L− E reduce L → L− E

6 reduce L → L− E reduce L → L− E

The empty positions in the table mean error. Some positions you come to
if you try to parse a string not in the language of the grammar. Some other
positions you end up in only if you handle the method wrong.

So, parsing using an LR(1) table follows this steps:

• Start in the start state with the start state on the stack.

• Look at the next token without really reading it.

• Look up the next action in the table using the state and the token as
indices.

• Perform the action as for LR(0).

• Iterate this procedure until an Accept action or an error is found in the
table.

6 A hierarchy of grammars and a hierarchy of
lamguages

We have just seen an example of a grammar that is not LR(0) but it is LR(1).
The following relations hold between some grammar formalisms:

LR(0) languages ⊂ SLR(1) languages ⊂ LALR(1) languages ⊂ LR(1) languages.

The two in the middle thus have a power in between LR(0) and LR(1). They
will be presented in some compiler course. Often LR(1) automata/tables be-
come very large in “real” applications. Those two formalisms try to solve that
problem to some extent while still having the capability to express normal pro-
gramming language constructions.

4

If we continue beyond LR(1) this is a relation between grammars:

LR(0) grammars ⊂ LR(1) grammars ⊂ LR(2) grammars ⊂ LR(3) grammars ⊂ · · ·

i.e. you can have a grammar that needs 3 tokens lookahead, it is LR(3), and
gets a conflict when handled with LR(2). This is the corresponding relation
between languages:

LR(0) languages ⊂ LR(1) languages = LR(2) languages = LR(3) languages = · · ·

i.e. if a language has an LR(3) grammar that grammar can be rewritten to
an LR(2) one and even an LR(1) one. It maybe will be much bigger, but it can
be done. It is only the step from LR(0) to LR(1) that makes the set of definable
languages larger.

7 More to think about

• Parse the string a−b−a according to the table above and/or the automaton
in Fig. 3.

• Can every context-free grammar be converted into an equivalent LR(k)
grammar, for some k?

5

