TDDD14/TDDDS85 Lecture 12:
LL(1) and LR(0) parsing

Jonas Wallgren

Abstract

This lecture presents the two parsing methods LL(1) and LR(0) and
their theoretical background.

1 Introduction

In formal langauge theory you can use a PDA/DPDA to reason about accepting
or rejecting a string in the language defined by a CFG. But in a more practical
setting, in compiler theory and technology, you need something else, something
whose formulation comes closer to the grammar, something that comes closer to
implementation and leeds to such an implementation being at least somewhat
efficient. This lecture presents two such methods—LL(1) and LR(0)—and the
next lecture a third one—LR(1).

In compilers you call the process of accepting or rejecting a string parsing
and it is not primarily seen as a method to accept or reject a string but to build
its derivation tree, or parse tree as we will call it now. The methods presented in
these two lectures will still only accept or reject strings, but they are constructed
in such a way that implementations of them could easily be extended with code
that really builds the trees.!

We need some terms:

Definition 1. A prefix of a string is an initial part of it. E.q. the prefizes of
abcd are €, a, ab, abc, and even abed.

Definition 2. A sentential form is a string v € (X + N)* of terminals and
nonterminals that may be derived from the start symbol: S = .
E.g. S = aAbC in grammar Gg in lecture 11.

Definition 3. A token in compilers is what in formal languages is called a
symbol (in the alphabet). The leaves of our parse trees will be called tokens.

In e.g. section 3 and lecture 13 we will be able to explicitly recognize the
end of a string. For that purpose all strings in those cases are equipped with an
extra, last end-of-string symbol $ & 3.

ISee Kozen (lecture 26) or some compiler course material.

2 Example grammar

Throughout this lecture we will use this small example grammar (start symbol

S):

S — aBCd
B — pq
C—rs

The language of this grammar contains just the string apgrsd, so it is reg-
ular, but it can be used to illustrate the ideas and techniques of our parsing
methods.

The only leftmost derivation with the grammar is:

S =m aBCd =y, apgCd =1, apqrsd

and the only rightmost derivation with the grammar is:
S =m aBCd =, aBrsd =, apqrsd.

The leftmost derivation corresponds to building the parse tree as in Fig. 1
in the last page, from the root to the leaves, top-down.

The tree in Fig. 2 is built in the other direction, from the leaves to the
root, bottom-up. The principle is to build a part of the tree as soon as you can.
When e.g. apq is read you can build the B node without having read anything
more yet. The leaves not shown in each step are yet unread. If you in each step
imagine the parts built so far together with the unread tokens, e.g. with B just
built it is aBrsd, you see that the tree building step by step corresponds to the
rightmost derivation backwards. If you read a string from left to right and build
nodes bottom-up as soon as possible it corresponds to deriving from the right
if the tree were to be expanded top-down.

3 LL(1) parsing

The first L stands for Left to right reading of the string. The second L stands
for Leftmost derivation, The number 1 means that to decide what to do next
during the parsing you are allowed to look ahead, to peek, at the next token
without really using it. You talk about 1 token lookahead.

To be able to handle lookahead we need the following construction:

Definition 4. For a nonterminal A in a grammar
FOLLOW(A)={a € B|371,72 : S = y1Aay} U{$|3y1 : S = 1A}

ILe. If a sentential form can contain A immediately followed by a then a
belongs to FOLLOW(A). And if a sentential form can end in A, then a special
end-of-string marker, $, belongs to FOLLOW(A).

So, in our example grammar FOLLOW(B)={r}, FOLLOW(C)={d},
FOLLOW(S)={$}.
Now we can define LL(1):

Definition 5. The grammar G = (N, %, P, S) is LL(1) iff when there are two
rules A — a and A — (3 so:

o Ifa= ay, and o = by, then a # b.
o Ifa= ¢ then B 3 e.
o Ifa=eand B = ay then a ¢ FOLLOW (A).

The first point says that if you look ahead on the next token you should be
able to decide which rule to use.

The second point says that you shouldn’t be able to derive the empty string
with different rules.

The third point says that you shouldn’t be able to choose between reading
a in this part of the derivation and not do it.

In a PDA given the string ax and the stack Ay there could be several pos-
sible actions. If the grammar is LL(1) there is always at most one alternative.
Some important properties of LL(1) grammars are:

e An LL(1) grammar is unambiguous.

e An LL(1) grammar can’t have left-recursion. If a given grammar has left-
recursion it has to be rewritten in order to possibly become LL(1). Se
section 6 in lecture 8.

e An LL(1) grammar can’t contain A — af|ay. If a given grammar uses
such a formulation it has to be rewritten to A — aB, B — (]y for the
grammar to have a possibility to become LL(1). Such rewriting is called
left factoring.

3.1 Recursive descent

Recursive descent is one way of implementing an LL(1) parser. The main idea
is that there is one subrogram pA for each nonterminal A. The body of a sub-
program follows the right-hand side(s) of the rule(s) for the nonterminal. Some

examples:
Grammar rule | S — aBCd T — aX|bY U — aM|N
Program | procedure pS: | procedure pT: procedure pU:
read a; read first token; | look at first token;
call pBQ); if a: call pX(); | if a: read first token; call pM();
call pCQ); if b: call pY(); | else: call pNQ);
read d;

3.2 Table driven parsing

The grammar can be coded into a table. Parsing then is done by reading the
table step by step while reading the string. It is like using the next-configuration
function for a PDA. This will be treated in a compiler course.

4 LR(0) parsing

The L stands for Left to right reading of string. The R stands for Rightmost
derivation (in reverse). The number 0 means that we don’t use any lookahead.

LR parsing works by constructing an almost-DFA. There are states and
transitions as in a DFA, but we don’t have any final states. We’ll use the
structure of the DFA to guide us through the parsing. The states of the DFA
contains LR items:

Definition 6. An LR(0) item is a grammar rule with o dot somewhere in the
right-hand side.

Examples of LR(0) items are S — -aBCd,B — p-q, and C — rs-. The dot
is a marker showing how much of a rule is used during the actual parsing.

4.1 Building the automaton

To explain the automata construction we can start with an NFA. There is one
grammar rule for the start symbol. In the first state of the NFA we put the
item for the start symbol with the dot at the front. See state 0 in Fig. 3. When
we read the first token a we make a transition to state 1 and move the dot one
step ahead. After that we should read a B, a C, and a d and finally end up
in state 4 after having moved the dot one step further for each transition. But
wait! We can read a and d in one step each, but B and C' correspond to whole
substrings. Their contents have to be read one token at a time. There must be
a sequence of states that move the dot across the right-hand side of the rule for
B, and also for C. So, from state 1 to state 1’ you can go without reading. From
state 1’ you can read pq in two transitions to state 6. And from state 2, without
reading, you can come to state 2’ and from there to state 8 by reading rs. The
item in state 6 has the dot at its end. It is called a complete item. Also the
items in states 4 and 8 are complete ones. When you stand in state 1 and want
to read a B you can regard the transition to state 1’ as a subroutine call. The
complete item then implies a return back to state 1 and a signal that the whole
B substring is read. If there are several rules for a nonterminal there should be
€ arrows like 1-1’ to states with items for all rules for the nonterminal.

Since there may be several rules for the start symbol the real start state is
qo with epsilon moves to the first states for all rules for the start symol.

We don’t want € arrows. We want a DFA. The result of the transformation
(the subset construction) is shown in Fig. 4. The automaton in Fig. 3 is
constructed to show the background for Fig. 4 but that automaton can be
constructed directly from the grammar:

In the start state there are the items for the start symbol with the dot in
the beginning.
For each state:

e If it contains an item with the dot in front of a nonterminal then add to
the state all items for that nonterminal with the dot in the beginning.

e For each non-complete item make a transition to a state with the same
item with the dot moved one step ahead and the same symbol on the
transition.

E.g. State 1 is constructed from state 0 by moving the dot over a in the item
and there is an a on the transition. Now, in state 1 there is an item with the
dot in front of B. Then the item for B with the dot in the beginning is added
to the state. That results in two items in the state. They give rise to the two
transitions to states 2 and 5 handling corresponding items with the dot moved
and the symbols on the transitions.

4.2 Principal treatment

If in a rightmost derivation there is a step aBCd = aBrsd we will in parsing
look at aBrsd <., aBCd from left to right, i.e. we will from the parts rs
construct C, since that corresponds to the backwards reading of a grammar
rule. The rs part is called a handle. A handle is what is to be replaced by a
nonterminal in a backwards derivation step, a reduction step. We want to find
the handles to know where to reduce. Starting from state 0 reading aBrs we end
up in state 8 with a complete item. There a handle is found. All the prefixes
up to that point—a, aB, aBr, and aBrs—are called viable prefixes.

Definition 7. An item A — « - (3 is valid for a viable prefix o if
S = SAW =y, SaBw

L.e. the next step in the parsing is to reduce af to A. We have just read as
far as the « part of that, so an appropriate item is A — « - 8. The whole prefix
up to this point is dc, it is viable since we are about to read a handle. Thus the
item is valid for this prefix.

The states of the automaton contain valid items.

4.3 Using the automaton

Now, we will describe how to use the automaton in Fig, 4.
Parsing a string consists of two different actions:

e Shift: One token is read and a transition step is taken in the automaton.
E.g. in state 1 p is read and the new state is 5.

e Reduce: One new derivation step is found. If the parse tree was built a
new part of the parse tree could be built now. E.g. in state 6 the B node
is built. That causes the control to go back to state 1 and continue to
state 2 since the dot now can be moved over the B in the item in state 1.

Like for PDA configurations parsing actions handle a stack and the input string.
For every shift action both the symbol read and the new state are pushed onto
the stack. For every reduce action the right-hand side of the current rule are
popped from the stack together with the corresponding states. The left-hand
side of the grammar rule is pushed instead together with the resulting new state.
It works like this:

Stack Remaining string Action
0 apqrsd

Shift
Oal pqrsd

Shift
Oalpb qrsd

Shift
0alpbq6 rsd

Reduce B — pq
0alB2 rsd

Shift
0alB2r7 sd

Shift
0al1B2r7s8 d

Reduce C' — rs
0a1B2C3 d

Shift
0alB2C3d4

Reduce S — aBCd
0S

Accept
There, at the end, with only the start state and the start symbol on the
stack there is a third action, Accept, which means that the string belongs to the
language.

Definition 8. A grammar is LR(0) if it is accepted by an LR(0) parser.
Definition 9. A language is LR(0) if it has an LR(0) grammar.

5 More to think about

1. Recognizing CFLs needs a stack, e.g. as in a PDA, Where is the corre-
sponding stack in the recursive descent method?

2. Implement a recursive descent parser for the example grammar used dur-
ing this lecture in your favourite programming language.

3. What is the complexity of the parsing methods proposed during this lec-
ture? How much memory is needed?

