
TDDD14/TDDD85 Lecture 11:

Closure Properties and Pumping Lemma

Jonas Wallgren

Abstract

In this lecture some closure properties of CFLs will be presented. The

pumping lemma for CFLs will be presented and exemplified.

1 Introduction

In lecture 4 some closure properties for regular languages were presented and in
lecture 6 the pumping lemma for regular languages was discussed.

In this lecture corresponding features for context-free languages will be dis-
cussed. First some closure properties are presented, then the pumping lemma,
and finally some more closure properties that need the pumping lemma for their
proofs.

2 Some closure properties

Let in this section the two languages L1 and L2 have the grammars
G1 = 〈N1,Σ1, P1, S1〉 and G2 = 〈N2,Σ2, P2, S2〉.

Theorem 1. CFLs are closed under union1.

Proof. Construct a new grammar:
G3 = 〈N1 ∪N2 ∪ {S3},Σ1 ∪ Σ2, P1 ∪ P2 ∪ {S3 → S1|S2}, S3〉.
Now, starting from S3 all derivations starting with either S1 or S2 can be per-
formed, i.e. all strings in L(G1) and L(G2) can be derived, i.e.
L(G3) = L(G1) ∪ L(G2).

Theorem 2. CFLs are closed under concatenation.

Proof. Construct a new grammar:
G4 = 〈N1 ∪N2 ∪ {S4},Σ1 ∪ Σ2, P1 ∪ P2 ∪ {S4 → S1S2}, S4〉.
Now, starting from S4 all derivations consist of one part derived from S1 in
L(G1) followed by one part derived from S2 in L(G2), i.e. L(G4) = L(G1)L(G2).

1This is an alternative, common, way to express that the set of CFLs is closed under union.

It does not express a property of every single CFL.

1

Theorem 3. CFLs are closed under the star operation.

Proof. Construct a new grammar:
G5 = 〈N1 ∪ {S5},Σ1, P1 ∪ {S5 → S1S5|ε}, S5}.
Now, starting from S5 either ε can be derived or one string from L(G1) followed
once again by what can be derived from S5. So, L(G5) = (L(G1))

∗.

Since a CFL can be defined either by a grammar and by a PDA we could
have tried to prove these properties “on the automata side”, but a grammar is a
more natural tool for specifying a CFL, so our proofs come closer to the natural
thinking. But there are always two ways to look at such problems.

3 Pumping lemma

We will first motivate the pumping lemma by an illustration. Then we will state
the lemma in two forms. Finally some examples will be given.

3.1 Motivation

The main idea in the pumping lemma for regular languages—if something very
big must fit into something limited then some parts have to loop, and then must
be able to loop arbitrarily many times—also holds for the the pumping lemma
for CFLs.

See the top figure on the last page. The whole triangle symbolizes the outline
of a derivation tree. S is the root of the tree, the start symbol. The sequence
uvwxy stands for parts of the derived string, the sequence of leaves of the tree.
The squiggly curve down the middle stands for one path down the tree from the
root to one single leaf. Even if the grammar is large it is finite. It has a limited
number of nonterminals. If a string is very long at least some such path down
the tree must encounter the same nonterminal, symbolized with A here, at least
twice. It means that in the grammar there must be at least two alternatives for
A (A → something1 (using A)|something2 (not using A)). Following the squiggly
path from S the derivation for the first A used the first grammar rule and the
derivation for the second A used the second one.

The middle figure shows the situation when the derivation for the first oc-
curence of A in the tree uses the second rule. Directly the small derivation
subtree appears and there is no v and x in the string.

The bottom figure shows the situation when also the derivation for the second
A uses the first rule, and the derivation for the third A then appearing uses the
second rule. In this case v and x occur twice in the derived string.

3.2 Direct form

From the ideas in the figures this form of the pumping lemma can be stated,
which will be given here without proof:

2

L is CF → ∃k > 0 : 1
∀z ∈ L : |z| > k → 2
∃u, v, w, x, y ∈ Σ∗ : z = uvwxy ∧ vx 6= ε ∧ |vwx| 6 k → 3
∀i > 0 : uviwxiy ∈ L 4

Line 1: If L is context-free then there is some constant (pumping length) such
that
Line 2: if a string in L is of enough length then
Line 3: it can be splitted into uvwxy—such that vx isn’t empty and uvw isn’t
too long—so that
Line 4: the vx parts can be repeated arbitrarily number of times and the string
still is in L.

3.3 Inverted form

Like for regular pumping instead of using the lemma on the form “if a then b”
we will use the inverted form “if not b then not a”. The pumping lemma in this
form follows this reasoning:
If this test holds

Line 1: For all constants (pumping lengths)
Line 2: there is a string of enough length and
Line 3: for all ways to split it into uvwxy—such that vx isn’t empty and

uvw isn’t too long—
Line 4: you can pump the vx parts to get the string outside of the language.

then the language is not context-free.

Lemma 1. (Inverted pumping lemma for CFLs)
(∀k > 0 : 1
∃z ∈ L : |z| > k∧ 2
∀u, v, w, x, y ∈ Σ∗ : z = uvwxy ∧ vx 6= ε ∧ |vwx| 6 k → 3
∃i > 0 : uviwxiy 6∈ L) → L is not CF 4

3.4 Examples

Some examples of using the pumping lemma.

Example 1. Prove that L6 = {anbncn|n > 0} is not context-free.
For the pumping length k let z = akbkck.
Now, since vwx cannot contain more than k symbols vx cannot contain both
a:s, b:s, and c:s. They have the same number of occurences in z but not all of
them will change when pumping so the pumped string will be out of L6. E.g. if
u = ap, v = aq, w = ar, x = as, y = ak−p−q−r−sbkck, then pumping to uv2wx2y

will give the string ak+q+sbkck. So L6 is not context-free.

Example 2. Prove that the language L7 = {ambnambn|m,n > 0} is not context-
free.
For the pumping length k let z = akbkakbk.
I’ll call each of ak and bk a block.

3

• If v or x contains both a and b then pumpig up (uv2wx2y) will in v2 or x2

result in a mixture of two symbols and z will break the original a∗b∗a∗b∗

pattern in L7.

• If v and x are in the same block then pumping up (uv2wx2y) will make
that block longer than the other block with the same symbol.

• If v and x are in neighbouring blocks then there will be different numbers
of both a:s and b:s in the blocks. E.g. if u = ap, v = aq, w = ak−p−qbr, x =
bs, y = bk−r−sakbk then uv2wx2y = ak+qbk+sakbk.

So, for every possible split of z it is pumpable out of L7. L7 is not context-free.

4 Some more closure properties

In this section we will introduce a number of languages (L8, L9, . . .), their
grammars(G8, G9, . . .), and a number of automata (M10,M11, . . .)

Theorem 4. CFLs are not closed under intersection.
Let L8 = {ambmcn|m,n > 0} and L9 = {ambncn|m,n > 0}. Both languages
are context-free. They can be defined with the following grammars:

G8 : S → AC G9 : S → AC

A → aAb|ε A → aA

C → cC|ε C → bCc|ε
Now, L8 ∩ L9 = {anbncn|n > 0}
Since L8 and L9 are context-free and the result was proved not context-free in
Example 1 context-free languages are not closed under intersection.

Theorem 5. CFLs are closed under intersection with regular languages.

Proof. Let CFL L10 be accepted by a PDA M10 and regular L11 by a DFA
M11. A PDA M12 can be constructed where each state is a pair of one state
in M10 and one state in M11. The transitions in M12 follow simultaneously the
transitions in M10 and M11. A string is accepted in M12 if it is accepted in both
M10 and M11. The stack is handled as in M10—since M11 doesn’t use the stack
the M10 stack handling won’t be disturbed.

Theorem 6. CFLs are not closed under complement.

Proof. L13 ∩ L14 =∼ (∼ L13∪ ∼ L14)
If CFLs were closed under complement then the union of two CFLs would have
been constructed, which would be context-free, and then the complement of
that result should have been context-free. But the result is the intersection
that, according to Theorem 4, does not preserve context-freeness.

Example 3. L15 = {ww|w ∈ {a, b}∗} is not context-free.
(L15 contains strings consisting of two equal parts, e.g. aabaab, ababaababa, and
bbbbabbbba.)

4

Some of the strings in L15 are the same as some strings of the form a∗b∗a∗b∗.
L15 ∩ a∗b∗a∗b∗ = L7, with L7 from Example 2. Since CFLs are closed under
intersection with regular languages L15 would be context-free if L15 was context-
free.

5 More to think about

1. Can we use the pumping lemma for context-free languages to prove that
a given language is context-free?

2. Can every language which is not context-free be proven so by using the
pumping lemma introduced in this lecture?

5

